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Abstract
Within the family of purinergic receptors, the P2X1 receptor is a ligand-gated ion channel that plays a role in urogenital, 
immune and cardiovascular function. Specifically, the P2X1 receptor has been implicated in controlling smooth muscle 
contractions of the vas deferens and therefore has emerged as an exciting drug target for male contraception. In addition, 
the P2X1 receptor contributes to smooth muscle contractions of the bladder and is a target to treat bladder dysfunction. 
Finally, platelets and neutrophils have populations of P2X1 receptors that could be targeted for thrombosis and inflamma-
tory conditions. Drugs that specifically target the P2X1 receptor have been challenging to develop, and only recently have 
small molecule antagonists of the P2X1 receptor been available. However, these ligands need further biological validation 
for appropriate selectivity and drug-like properties before they will be suitable for use in preclinical models of disease. 
Although the atomic structure of the P2X1 receptor has yet to be determined, the recent discovery of several other P2X 
receptor structures and improvements in the field of structural biology suggests that this is now a distinct possibility. Such 
efforts may significantly improve drug discovery efforts at the P2X1 receptor.
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P2X1 receptors

P2 receptors

P2 receptors have been identified in all human organ systems; 
they mediate a wide array of physiological responses [1, 2]. In 

humans, there are seven subtypes of the P2X ligand-gated ion 
channel (P2X1-7) and eight subtypes of the P2Y G protein-
coupled receptor (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, 
P2Y13, P2Y14). Studies utilising selective antagonists and 
genetic knockouts have identified P2 receptors as potential tar-
gets for multiple conditions [3, 4]. However, only a small pro-
portion of P2X and P2Y receptors are current targets of clini-
cally successful medicines (Table 1). There is, thus, a clear need 
for more selective drug-like compounds to validate and progress 
clinical opportunities. This is particularly true for the subject of 
this review, the P2X1 receptor. Although the P2X1 receptor has 
been discussed in several exemplar reviews [4–9], it has often 
been overlooked in favour of other P2X subtypes. Herein, we 
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review what is known about the P2X1 receptor as a drug target 
and the currently available ligands that target the receptor. We 
also highlight the potential impact that advances in structural 
biology could have on P2X1 receptor drug development.

P2X receptors

P2X receptors consist of three individual subunits that can be 
homotrimeric or heterotrimeric and together form a ligand-gated 
ion channel [10, 11]. Each P2X subunit contains two transmem-
brane spanning helices, a large extracellular domain and a small 
intracellular N- and C-terminus (Fig. 1a) except for the P2X7 
receptor, which has a longer C-terminus. Endogenous ATP acti-
vates P2X receptors by binding to the three ATP binding sites 
that are located in the extracellular domain between subunits 
(Fig. 1b). Upon activation, P2X receptors form a non-selective 
pore that is permeable to cations; in the cellular context, these 
are typically calcium, potassium and sodium [12]. In addition, 
the P2X1, P2X2, P2X3, P2X4 and P2X7 receptors have been 
shown to transport large organic cations such as NMDG+ and 
spermidine across the membrane [8, 13–15]. The physiological 
importance of the transport of large cations has been difficult to 
study. However, a mutation in the P2X7 receptor which restricts 
large pore formation but not cation permeability was linked to 
chronic pain sensitivity [16]. The permeation of small cations, 

on the other hand, is critical in mediating specific cellular events. 
A few examples include smooth muscle contraction [17, 18], 
action potential propagation [19] and inflammation [20]. Fol-
lowing activation of P2X receptors, P2X1 and P2X3 receptors 
undergo rapid desensitisation while P2X2, P2X4, P2X5 and 
P2X7 receptors are minimally desensitised [12]. Trafficking 
studies show that the P2X1, P2X3, P2X4 and P2X7 receptors 
internalise upon activation and utilise the dynamin and clathrin-
mediated pathways [21–25]. The P2X6 receptors are unique in 
that they have an uncharged N-terminal region that restricts the 
formation of functional homomeric channels and is retained 
within the endoplasmic reticulum [26]. P2X6 receptors can 
form functional heteromeric channels with P2X2, P2X4 and 
P2X7 receptors [11]. Glycosylation of P2X receptors is essen-
tial in the assembly and trafficking of functional receptors to 
the cell membrane [27–30], and enhanced P2X6 glycosylation 
has been shown to improve cell-surface expression and restore 
function [31]. In addition, the C-terminal of P2X receptors share 
a YXXXK motif that is important for membrane expression, 
while other regions, such as a tyrosine C-terminal motif at the 
P2X4 receptor and single residues within the C-terminus of the 
P2X7 receptor, control internalisation and trafficking [32–36]. 
Further information on the general properties of P2X receptors 
is available in a recent International Union of Basic and Clinical 
Pharmacology review [4].

Table 1   P2X and P2Y receptor 
ligands approved as drugs and 
their indications

Name Class Indication

Gefapixant P2X3 receptor antagonist Chronic cough
Clopidogrel, ticlopidine, ticagrelor, 

prasugrel and cangrelor
P2Y12 receptor antagonist Thrombosis and stroke

Diquafosol P2Y2 receptor agonist Dry eye

Fig. 1   a A monomeric subunit 
of the P2X receptor in the 
plasma membrane and b a func-
tional trimeric P2X receptor 
shown as a cartoon. There are 
three ATP binding sites located 
in the extracellular domain 
between subunits. Upon recep-
tor activation by ATP bind-
ing, there is an inward flux of 
calcium and sodium ions and an 
outward flux of potassium ions
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P2X1 receptors

The P2X1 receptor has a unique pharmacological profile that 
distinguishes it from other P2X receptors. For example, in 
heterologous systems, ATP exhibits the highest potency at 
the P2X1 receptor, with values ranging from 56 to 300 nM 
(Table 2). Additionally, only the P2X1 and P2X3 receptors are 
rapidly desensitised on a sub-second timescale [37]. This fast 
desensitisation has been shown to reduce the apparent potency 
of ATP for the P2X1 receptor [38]. Fluorescent labelling and 
cell surface biotinylation studies show that, in contrast to other 
P2X receptors, the P2X1 receptor is quickly internalised and 
recycles back to the membrane [25, 39, 40]. The P2X1 recep-
tor also has higher fractional calcium currents than all other 
P2X receptors and is ranked highly among other ligand-gated 
ion channels for having high calcium permeability [41].

There are functional roles for the P2X1 receptor in the 
urogenital, immune and cardiovascular systems. Within the 
urogenital system, P2X1 receptors localise to smooth muscle 
cells of various organs and tubules, including the vas defer-
ens and bladder [1, 42]. Knockout studies in mice showed 
reduced fertility in male mice due to decreased vas deferens 

contractility, demonstrating the importance of the P2X1 
receptor on the vas deferens [43, 44]. In the cardiovascu-
lar system, P2X1 receptors are primarily located on arterial 
smooth muscle, and P2X1 receptor knockout mice showed a 
slight increase in blood pressure [1, 42, 44, 45]. P2X1 recep-
tors are also localised to immune cells such as platelets, mac-
rophages, neutrophils and mast cells [1, 42, 46, 47]. Further 
studies in knockout mice established a functional role as mice 
exhibited impaired thrombus formation [48].

Like most P2X receptors, the quaternary P2X1 receptor 
structure can be in a heterotrimeric or homotrimeric form. 
Biochemical methods, ligand sensitivity and desensitisation 
kinetics have shown differences between the homotrimeric 
and heterotrimeric forms of the P2X1 receptors [11]. The 
P2X1/2, P2X1/4 and P2X1/5 heterotrimeric receptors have 
been co-purified and functionally verified in heterologous 
systems [11]. In native systems, heterotrimeric P2X1 recep-
tors were expressed in low quantities making it difficult to 
ascertain their functional implications [49–51]. The homo-
trimeric form of the P2X1 receptor is likely the prevalent 
form, particularly in systems like the vas deferens where 
only the P2X1 receptor is expressed [44].

P2X1 receptors as therapeutic drug targets

Male contraception

P2X1 receptors and α1A-adrenoceptors are co-localised on the 
smooth muscle of the vas deferens [43]. Following activation 
of these receptors, there are contractions of the vas deferens, 
which propel spermatozoa anterograde through the vas deferens 
to the ejaculatory duct, where they mix with glandular secre-
tions and are expelled during ejaculation [52]. If these receptors 
are blocked, sperm cannot leave their storage site in the cauda 
epididymis rendering a male infertile. Validation for this concept 
comes from a combined genetic knockout of the P2X1 recep-
tor and α1A-adrenoceptor that produced complete infertility in 
a dual knockout male mice population [43]. Furthermore, the 
contraction of the human and mouse vas deferens is controlled 
by the same adrenergic and purinergic receptors suggesting 
that the contraceptive efficacy seen in mice could translate to 
humans [43, 53]. Equally important was the observation that 
the dual knockout male mice were sexually, physiologically and 
behaviourally healthy. There was concern that the P2X1 receptor 
and α1A-adrenoceptor knockout mice could have cardiovascular 
complications as both receptors are located on the smooth mus-
cle of blood vessels and mediate vasoconstriction. Fortunately, 
the dual knockout mice had only minor changes in their barore-
flex response, resting arterial pressure and heart rate similar to 
the changes seen in α1A-adrenoceptor knockout mice. In addi-
tion, clinical trials using α1A-adrenoceptor antagonists such as 
silodosin and tamsulosin as oral male contraceptives have shown 

Table 2   Pharmacological properties of P2X1 receptor modulators. 
EC50 or IC50 values are recorded as nM values with respect to P2X1 
activity. Letters in activity column designate P2X1 receptor origin 
with m for mouse, r for rat and h for human

Compound P2X1 Activity 
(nM)

Source Mode of action

ATP 56 (h), 100–300 (r) [37, 73, 108] Agonist
α,β-meATP 200 (h), 3200 (r) [37, 108] Agonist
2-MeSATP 54 (h), 100 (r) [37, 108] Agonist
BzATP 1.8 (h), 24,200 (r) [37, 108] Agonist
Ap6A 1120 (h), 600–720 

(r)
[37, 73, 108] Agonist

TNP-ATP 1 (r), 6 (h) [108–110] Antagonist
IP5I 3.1 (r) [74, 108, 109] Antagonist
Suramin 851 (h), 1700 (r) [37, 108] Antagonist
NF449 0.05 (h), 0.28–0.29 

(r)
[75, 111, 112] Antagonist

PPADS 1820 (h), 69 (r) [37, 109] Antagonist
PPNDS 14 (r) [113] Antagonist
MRS2159 9.4 (r) [77, 109] Antagonist
MRS2219 5900 (r) [81] PAM
Aurintricar-

boxylic acid 
(ATA)

8.6 (r) [79] Antagonist

PSB-2001 19 (h) [78] Antagonist
1 236 (m) [76, 114, 115] Antagonist
2 14,000 (r) [80] Antagonist
3 602 (h) [116] Antagonist
4 100,000 (h) [117] Antagonist
5 3000 (h) [118] Antagonist
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promise [54–56]. This is encouraging, as α1A-adrenoceptor 
antagonists have been used chronically by men to treat benign 
prostatic hyperplasia  and have proven to be safe and effective 
[57, 58]. However, pharmacological in vivo studies are needed 
to further validate the P2X1 receptor as a male contraceptive 
target. Nevertheless, the P2X1 receptor is a promising target for 
the design of a non-hormonal oral contraceptive.

Thrombosis and inflammation

P2X1 receptors are also located on platelets and neutrophils, 
and within these cells, P2X1 receptors have important func-
tional roles. P2X1 receptor activation can mediate platelet 
shape change, amplify platelet signalling and cause shear-
induced aggregation of platelets [59, 60]. In mice models, 
pharmacologically blocking or genetically deleting the P2X1 
receptor causes impairment in thrombus formation [48, 61]. 
Thrombosis is a cardiovascular condition in which a blood 
clot blocks blood flow. In theory, reducing platelet activation 
by antagonising the P2X1 receptor could alleviate thrombo-
sis. P2X1 receptor activation also regulates activation and 
promotes chemotaxis of neutrophils [62, 63]. These two 
actions may be conflicting in inflammatory conditions, as 
seen in a model of acute colitis where P2X1 receptor knock-
out mice had high neutrophil levels, which contributed to 
thrombosis and intestinal bleeding [64]. In addition, studies 
into sepsis survival in pharmacological and genetic P2X1 
receptor knockout mice have been conflicting, although 
most reported a reduction in survival rates signifying that 
the P2X1 receptor has a protective role [62, 65, 66]. There-
fore, P2X1 receptors on neutrophils and platelets could be 
targeted for their regulatory role in severe inflammatory con-
ditions such as sepsis. Further research is needed to describe 
if these conflicting functions of the P2X1 receptor will be 
detrimental for drug development. A functional role for the 
P2X1 receptor has also been identified for mast cells and 
macrophages, suggesting additional roles in inflammation 
and the immune system [46, 47].

Bladder dysfunction

ATP and acetylcholine co-released from parasympathetic nerves 
stimulate smooth muscle contractions of the bladder from P2X1 
and muscarinic receptors, respectively, which causes the voiding 
of urine [67]. Post junctional muscarinic receptors are typically 
targeted to treat bladder dysfunction, but purinergic contractions 
in bladder conditions such as overactive bladder and interstitial 

cystitis can be enhanced [68, 69]. Prolonged exposure of isolated 
detrusor muscle to α,β-meATP completely abolished purinergic 
contractions; hence, a P2X1 receptor antagonist could theoreti-
cally be used to abolish the purinergic component of the blad-
der contractions [70]. However, the P2X receptor antagonists 
suramin and PPADS were unable to completely inhibit the non-
cholinergic contractions suggesting a role for another purinergic 
receptor [70]. As such, specific P2X1 receptor antagonists are 
needed to further validate the role of the P2X1 receptor as a target 
for bladder dysfunction.

P2X1 drug discovery

Medicinal chemistry

Many compounds have been shown to modulate P2X1 recep-
tors with varying levels of selectivity and potency (Table 2, 
see for references). Derivatives of ATP have been designed 
to increase selectivity and reduce metabolic breakdown by 
ectonucleotidases. α,β-meATP is one such compound with 
high selectivity for the P2X1 and P2X3 receptor and has 
slower enzymatic breakdown than ATP [71, 72]. Another 
ATP derivative, BzATP, is the most potent agonist at the 
P2X1 receptor. Diadenosine polyphosphates and similar 
compounds can be both antagonists or agonists of the P2X1 
receptor depending upon the length of the phosphate chain 
and the substituents on the adenosine group [73, 74]. The 
most potent P2X1 receptor antagonist is NF449 with sub-
nanomolar potency at human and rat P2X1 receptors and is 
selective over other purinergic receptors [75]. Due to high 
molecular weight and polarity, these compounds are poor 
starting points for drug development (Fig. 2) [71]. Never-
theless, these compounds have been useful for in vitro and 
in vivo studies to investigate the function of the P2X1 recep-
tor [17, 48]. PPADS is a selective P2 receptor antagonist 
whose drug properties were improved to create a series of 
antagonists, including MRS2159 and compound 1, which are 
low molecular weight compounds that are selective for the 
P2X1 receptor [76, 77]. Several research groups have iden-
tified novel P2X1 receptor antagonists. These antagonists 
have inhibitory activity in the range of low micromolar to 
low nanomolar potency and will hopefully become building 
blocks for molecules to be used in preclinical and clinical 
studies. Currently, MRS2159, aurintricarboxylic acid (ATA), 
PSB-2001 and compound 1 are the most exciting antagonists 
of the P2X1 receptor due to their nanomolar potency and 
low molecular weight. Furthermore, ATA, PSB-2001 and 
compound 2 are reported as non-competitive antagonists 
due to their pharmacological profile and molecular model-
ling studies [78–80]. Allosteric ligands are of great interest 
as it is likely easier to design selective ligands by not tar-
geting the conserved ATP binding sites. In addition, a few 

Fig. 2   Chemical structures of P2X1 receptor modulators. P2X1 
receptor modulators are referred to by their most common abbrevi-
ated name except for compounds 1–5 which do not have a common 
name and have been assigned a number

◂
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studies have also looked into designing positive allosteric 
modulators (PAMs) that target the P2X1 receptor. So far, 
only MRS2219 has been identified as a small molecule PAM, 
although phosphoinositides and gintonin have been shown to 
potentiate P2X1 activation [5, 81, 82].

P2X1 structural biology

Structural biology of P2X receptors

Structural biology delivers a unique view into understand-
ing the function of macromolecules on a molecular level. In 
particular, structural biology techniques are highly comple-
mentary to drug discovery efforts and can greatly facilitate 
the discovery and improvement of new therapeutics [83–85]. 
Prior to 2009, there were no available P2X receptor struc-
tures and mutagenesis studies were the primary method to 
study the key components of P2X receptors. However, since 
then, 29 P2X receptor structures have been deposited in the 
Protein Data Bank (PDB; Table 3). These structures were 
solved using nuclear magnetic resonance (NMR) spectros-
copy (1 structure), X-ray crystallography (26 structures) 
and cryogenic electron microscopy (cryo-EM; 2 structures) 
with a resolution range between 2.7 and 4.1 Å. Recent 

advancements in 3D protein prediction have been signifi-
cant, highlighted by AlphaFold predicting structures for the 
entire human proteome with reasonable accuracy for many 
proteins [86, 87].

The primary structure of human P2X receptors 
(hP2X1-7) is between 388 and 595 amino acids and has 
35–52% sequence similarity. The general structure of a 
P2X receptor was first described in the discovery of the 
zebrafish P2X4 receptor structure and the P2X4 subunit 
was zoomorphically described as the shape of a dolphin 
(Fig. 3a) [10]. Specifically, each P2X monomer can be 
described as having a head domain, left and right flipper, 
dorsal fin, upper body, lower body and fluke (Fig. 3a). 
All experimentally determined P2X receptor structures 
have exhibited the same structural architecture for the 
extracellular and transmembrane regions (Fig. 3a) [88, 
89]. AlphaFold structure prediction of the P2X1, P2X2, 
P2X5 and P2X6 receptors also shows a similar architec-
ture for the extracellular and transmembrane domains but 
not the intracellular region, this may reflect the fact that 
the N- and C-terminus are likely to be disordered, as all 
experimentally solved P2X receptor structures, except 
the cryo-EM P2X7 receptor structure, have truncated N- 
and C-termini (Fig. 3b) [86, 87].

Table 3   P2X receptor structures solved to date. Structures are characterised by their conformation, bound ligands, resolution, method of deter-
mination and length of the construct

Structure Reference Ligands’ bound and resolu-
tion

Receptor conformation Method Receptor construct

Zebrafish P2X4 receptor 
(zfP2X4)

[10, 92, 119] Apo 2.9–3.5 Å
ATP 2.8 Å
CTP 2.8 Å

Closed, open X-ray crystallography Truncated

Rat P2X4 receptor (rP2X4) [120] N/A N/A NMR spectroscopy Head domain
Gulf Coast tick P2X recep-

tor (amP2X)
[121] ATP + Zn2+ 2.9 Å Pre-open X-ray crystallography Truncated

Human P2X3 receptor 
(hP2X3)

[89, 101, 94] Apo 3.0 Å
ATP 2.8–2.9 Å
2MeSATP 3.1 Å
TNP-ATP 3.3 Å
A317491 3.1 Å
Gefapixant 3.4 Å
ATP + Mg2+ 3.8 Å
ATP + Ca2+ 3.3 Å

Open, closed, desensitised X-ray crystallography Truncated

Panda P2X7 receptor 
(pdP2X7)

[102] Apo 3.4 Å
ATP + A804598 3.9 Å
A740003 3.6 Å
GW791343 3.3 Å
JNJ47965567 3.2 Å
AZ10606120 3.5 Å
A804598 3.4 Å

Closed X-ray crystallography Truncated

Chicken P2X7 receptor 
(ckP2X7)

[122] TNP-ATP 3.1 Å Closed X-ray crystallography Truncated

Rat P2X7 receptor (rP2X7) [88] Apo 2.9 Å
ATP 3.3 Å

Closed, open Cryo-EM Full length
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P2X1 receptor structure

Currently, there are no experimentally determined P2X1 
receptor structures; however, reasonable assumptions can 
be made from other solved P2X receptor structures, molecu-
lar modelling, protein predication and mutagenesis of the 
P2X1 receptor. The P2X1 receptor AlphaFold model has 
a well predicted extracellular domain, orthosteric binding 
site and transmembrane domain (Fig. 3b). A recent study 
generated P2X1 receptor homology models using the experi-
mentally determined zfP2X4, hP2X3 and pdP2X7 receptor 

structures [78]. This homology model compares well with 
the AlphaFold model of a single subunit alignment that has 
a root-mean-square deviation of 2.38 Å. P2X1 receptor mod-
els such as these could serve as valuable tools for modelling 
and structure-based drug design projects.

Structures of P2X receptors have revealed three ATP 
binding sites where each monomer interfaces with the neigh-
bouring monomer and is located approximately 40 Å above 
the transmembrane helices (Fig. 4a). The ATP molecules 
assume a U shape in the conserved orthosteric binding site 
(Fig. 4b). Mutagenesis of the ATP binding site in P2X1 

Fig. 3   a Experimentally deter-
mined P2X structures coloured 
by features of a dolphin (based 
on the zfP2X4 [10]) with the 
head domain in pink, the upper 
body in dark blue, the lower 
body in light blue, the left flip-
per in yellow, the right flipper in 
red, the dorsal fin in orange and 
the fluke in green. b Alpha-
Fold generated P2X receptor 
structures with each residue 
coloured by the confidence of 
the prediction with dark blue a 
very high confidence prediction, 
light blue a high confidence pre-
diction, yellow a low confidence 
prediction and orange a very 
low confidence prediction
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receptors has revealed key residues. Alanine mutation of 
amino acid residues K68, K70, T186, N290, R292 and K309 
in the P2X1 receptor caused large reductions in the potency 
of ATP [90, 91]. These residues are highly conserved, 
and ATP-bound P2X receptor structures reveal that these 
residues interact strongly with ATP (Fig. 4b) [88, 89, 92]. 
Several other P2X1 receptor residues have been linked to 
receptor activation, but most of these residues are unlikely to 
interact with ATP directly and instead may be important for 
either protein folding or the conformational rearrangement 
that occurs during activation (see review [93]). Another fea-
ture of the P2X1 orthosteric binding site may have been 
revealed by the hP2X3 receptor structures that contained a 
magnesium binding site adjacent to ATP [94]. This is sup-
ported by the ATP-Mg2+ complex being an agonist for the 
hP2X1 and hP2X3 receptors suggesting the magnesium 
binding site may also be located in the P2X1 receptor [95]. 
Although we have a good description of the ATP binding 
site for the P2X1 receptor, additional interactions could be 
uncovered by a high-resolution structure.

Channel activation shares a common mechanism among 
P2X receptor structures in which the dorsal fin and head 
domains move toward each other, producing a cleft closure, 
while the left flipper domain moves away from the orthosteric 
binding site. A P2X1 receptor mutagenesis study revealed that, 
unsurprisingly, the head domain is important in receptor activa-
tion. The movements of the dorsal fin and head domains pro-
duce an outward flexing of the rigid lower body and the beta-
sheet strands of the lower body translate the movement to the 
transmembrane domains (TM). TM2 rotates counterclockwise, 
and there is an outward flexing that opens the pore and allows 
the permeation of cations. Mutagenesis studies of the P2X1, 
P2X2, P2X3 and P2X4 receptors have identified that polar and 
acidic residues on the outer edge of the transmembrane regions 
contribute significantly to calcium permeability; however, 

further studies are needed to explain what residues contrib-
ute to differing cation permeability among P2X receptors [41, 
96–98]. Another region of interest for the P2X1 receptor is the 
cytoplasmic region, of which the N-terminus has been shown 
to control receptor desensitisation [99]. A study using cysteine 
mutagenesis and cross-linking compounds at the P2X1 receptor 
suggested that the cytoplasmic domain remains in a cap-like 
structure in both the apo and desensitised states [100]. The open 
state structure of the hP2X3 receptor revealed a cytoplasmic 
cap containing β-strands from the N- and C-terminus, which 
contain residues responsible for modulating receptor desensiti-
sation [89]. Full-length P2X receptor structures would be useful 
in defining the differences among P2X receptors for receptor 
desensitisation and ion permeability.

P2X3, P2X4 and P2X7 receptor structures have revealed 
novel allosteric binding sites located in the extracellular domain 
of the P2X receptor [101, 102]. The hP2X3 receptor bound to 
gefapixant (other names: AF-219 and MK-7264) revealed an 
allosteric binding site located between the lower body and left 
flipper [101]. A series of structurally distinct ligands were crys-
tallised in the pdP2X7 structure and revealed another allosteric 
binding site found in the upper body of the pdP2X7 receptor 
[102]. Using the zfP2X4 receptor structure to model in ligands 
complimented with mutagenesis studies, BX430 and 5-BDBD 
were demonstrated to bind the P2X4 receptor at an allosteric 
site located at the upper and lower body of the P2X4 receptor 
[103, 104]. There are other P2X receptor ligands that have been 
described as non-competitive but need to be further validated 
using mutagenesis and molecular modelling studies to verify 
their binding location. Unfortunately, most allosteric ligands 
for other P2X receptors have low potency for the P2X1 recep-
tor, suggesting that these allosteric binding sites may not be 
completely conserved in the P2X1 receptor [105–107]. For-
tunately, non-competitive antagonists for the P2X1 receptor 
have been recently discovered and molecular modelling studies 

Fig. 4   a ATP-bound hP2X3 
receptor with one of the ATP 
binding locations emphasised 
(Protein Data Bank: 5SVK). 
b A close up view of the ATP 
molecule bound to the hP2X3 
receptor with the interacting 
residues labelled, the interacting 
hP2X3 residues are reported 
in the table below with the 
sequence aligned P2X1 residues
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have revealed two putative allosteric binding sites [78–80]. One 
allosteric site is located in the upper body of the P2X1 recep-
tor using PSB-2001 which was docked into a homology model 
of the P2X1 receptor [78]. The other allosteric site is located 
between the lower body and left flipper as binding data demon-
strated that ATA did not bind to the orthosteric binding site and 
molecular modelling showed that ATA docks at the same loca-
tion as gefapixant in the hP2X3 receptor structure. Identifying 
and targeting allosteric binding sites is highly desirable for the 
P2X receptors as these are likely to represent better locations 
for designing specific ligands compared to the highly conserved 
orthosteric binding site in P2X receptors. Overall, many sig-
nificant questions remain surrounding P2X1 receptor structure, 
function and drug discovery that are ready to be answered by 
experimental structures of the P2X1 receptor.

Conclusion

The P2X1 receptor is still at the formative stage for the 
development of new therapeutics as promising (patho)
physiology and clinical indications have been identified. The 
development of potent small-molecule ligands is progressing 
but has yet to produce the highly potent and well-validated 
compounds that are needed for in vivo studies. Improvement 
to the current suite of P2X1 receptor modulators is essen-
tial, which could be facilitated by structure-based discovery 
efforts. The recent determination of the P2X3, P2X4 and 
P2X7 receptor structures along with new models generated 
by AlphaFold provides a pathway toward the discovery of 
new P2X receptor structures [83, 84]. Ultimately, the P2X1 
receptor needs better chemical tools to further validate its 
therapeutic potential in the treatment of thrombosis, inflam-
mation, bladder dysfunction and as a male contraceptive.
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