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Abstract
P2 purinergic receptors are involved in the normal function of the kidney, bladder, and prostate via signaling that occurs in 
response to extracellular nucleotides. Dysregulation of these receptors is common in pathological states and often associated 
with disease initiation, progression, or aggressiveness. Indeed, P2 purinergic receptor expression is altered across multiple 
urologic disorders including chronic kidney disease, polycystic kidney disease, interstitial cystitis, urinary incontinence, 
overactive bladder syndrome, prostatitis, and benign prostatic hyperplasia. P2 purinergic receptors are likewise indirectly 
associated with these disorders via receptor-mediated inflammation and pain, a common characteristic across most urologic 
disorders. Furthermore, select P2 purinergic receptors are overexpressed in urologic cancer including renal cell carcinoma, 
urothelial carcinoma, and prostate adenocarcinoma, and pre-clinical studies depict P2 purinergic receptors as potential thera-
peutic targets. Herein, we highlight the compelling evidence for the exploration of P2 purinergic receptors as biomarkers and 
therapeutic targets in urologic cancers and other urologic disease. Likewise, there is currently optimism for P2 purinergic 
receptor-targeted therapeutics for the treatment of inflammation and pain associated with urologic diseases. Further explo-
ration of the common pathways linking P2 purinergic receptor dysregulation to urologic disease might ultimately help in 
gaining new mechanistic insight into disease processes and therapeutic targeting.
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Introduction

Adenosine triphosphate (ATP) is well-established as the 
molecular unit of intracellular energy transfer. In the last four 
decades, ATP has been described in an extracellular context 
as a signaling molecule via activation of surface membrane 
P2 purinergic receptors. [1] Since Burnstock’s “purinergic” 
hypothesis in the early 1970s, the mechanisms that stimulate 
(mechanical, biochemical, physical, host–pathogen interac-
tions) and mediate (exocytosis, ion channels) ATP release 
have been well-studied. [1, 2] Briefly, cell injury, necrosis, 
and apoptosis result in ATP release from intracellular stores 
via pannexin channels or exocytosis into the extracellular 
milieu. [1, 3] Extracellular ATP (eATP) activates mem-
brane-bound P2 purinergic receptors of which there are two 
types: the P2X ionotropic receptors and the P2Y metabo-
tropic receptors (Fig. 1). [1]

The P2X purinergic receptors are a ligand-gated ion chan-
nel-type receptor family of seven mammalian subtypes (P2X1-
P2X7) that can form homomeric or heteromeric ion channels. 
These transmembrane receptors bind eATP in their extra-
cellular loop resulting in a global conformation change that 
facilitates pore opening through which cations freely move. 
The typical consequence is  Na+-mediated depolarization of 
the plasma membrane and an increase in the concentration of 
free cytosolic Ca 2+. [4] The downstream effects include a host 
of biological responses such as cell proliferation, apoptosis, 
cell differentiation, immune cell recruitment and activation, 
and pain transmission that have been studied among different 
cell types. [1, 3, 4] In general, P2X receptors are ubiquitously 
expressed, but individual receptors are expressed in varying 
levels across different cell and tissue types. For instance, P2X4 

and P2X7 receptors are predominantly expressed on innate 
immune cells such as mast cells, macrophages, and neutrophils 
as they play critical roles during inflammation and immune 
response against microbes. [1, 3] Alternatively, P2X3 recep-
tor expression is abundant in primary afferent neurons cor-
responding to its nociceptive function. [5, 6]

The P2Y receptors are a family of G protein-coupled 
receptors of which eight mammalian subtypes have been 
identified. [7] Two subfamilies are described as the 
Gq-coupled P2Y1-like (P2Y1, P2Y2, P2Y4, P2Y6, and 
P2Y11) and the Gi-coupled P2Y12-like (P2Y12, P2Y13, 
P2Y14) receptors. [7] Unlike their P2X counterparts, 
P2Y receptors are differentially activated by diverse 
purines and pyrimidines. [7] When activated, P2Y recep-
tors can couple through the inositol phosphate  (IP3) path-
way thereby mobilizing Ca [2]+ from intracellular stores 
that directly control cell function (Fig. 1). [7] Similar to 
P2X receptors, P2Y receptors are differentially expressed 
across cell types and can sometimes only be detected 
in pathological conditions (Table 1). [1] For instance, 
P2Y6 receptor is highly expressed in T cells infiltrating 
active inflammatory bowel disease, but is absent in T 
cells in the unaffected bowel. [8] Diabetes, Alzheimer’s 
disease, and cancer are likewise among the pathological 
conditions that induce P2 purinergic receptor expression. 
[9–11]

P2 purinergic receptors have diverse functional roles 
across multiple cell types, including cell proliferation, apop-
tosis, cell differentiation, immune cell activation and recruit-
ment, and pain transmission. [1] We focus this review on the 
expression and function of these receptors in the following 
urologic diseases: chronic kidney disease (CKD), polycys-
tic kidney disease (PKD), kidney cancer, interstitial cystitis 
(IC), urinary incontinence, overactive bladder syndrome, 
bladder cancer, prostatitis, benign prostatic hyperplasia 
(BPH), prostate cancer, erectile dysfunction, and infertility. 
Among the most common characteristics of urologic dis-
eases are inflammation and pain.

Inflammation and urologic disease

Inflammation both contributes to and can be the conse-
quence of several urologic diseases. There is substantial 
evidence that inflammation contributes to renal injury as 
well as the development and progression of CKD. [12] Uri-
nary tract infections are among the most commonly diag-
nosed bacterial infections and bladder-related disorders such 
as interstitial cystitis are likewise strongly associated with 
inflammation. [13, 14] Chronic inflammation is frequently 
observed in the adult prostate, is proposed to play a causa-
tive role in the development of benign prostatic hyperplasia 
BPH, and is the defining characteristic of prostatitis. [15–17] 

Key Points  
• P2 purinergic receptors are involved in the normal function 
of the kidney, bladder, and prostate and are also important for 
penile erection and fertility.
• P2 purinergic receptor dysregulation is reported in multiple 
urologic diseases and facilitates related inflammation and pain.
• Select P2 purinergic receptors are overexpressed in urologic 
cancers and are proposed therapeutic targets.
• Multiple P2 purinergic receptor antagonists are in clinical trials 
for treatment of inflammation-related disorders and pain causing 
optimism for novel therapeutic management of urologic diseases.
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Chronic inflammation is also a known or suspected risk fac-
tor for many cancers including prostate, bladder, and kidney 
cancers. [17–19] Therefore, understanding the mechanisms 
associated with initiation and propagation of the immune 
response is essential for improving the management of uro-
logic diseases.

In 1994, Polly Matzinger postulated that the immune sys-
tem responds to danger signals instead of simply factors that 
are foreign. [20] While foreign or pathogen-derived signals 
illicit an immune response, so too could endogenous dan-
ger signals released or produced by cells that are injured, 
stressed, or undergoing cell death. Among the endogenous 
danger signals is eATP. [21] Considerably greater eATP con-
centrations are measured in inflamed versus healthy tissues 
in mouse models of graft-versus-host disease and allergic 
contact dermatitis. [22] Increased concentrations of eATP 
act as a powerful chemotactic stimulus for immune cells, 
many of which express P2 purinergic receptors. [3] Immune 
cell P2 receptor activation results in chemokine and inflam-
matory marker induction and the assembly or activation of 
the inflammasome (Fig. 1).3,21 Propagation of inflamma-
tion is thought, in part, to upregulate multiple P2 puriner-
gic receptors on both immune and non-immune cells. [23] 
Consequently, purinergic signaling continues to be studied 
in chronic inflammation and in inflammation-associated 
pathologies such as inflammatory pain, rheumatoid arthritis, 
and glomerulonephritis. [24]

Pain and urologic disease

Local and referred pain are common symptoms associated 
with urologic disorders and are often the motivation for 
seeking medical attention. Infections contribute to a large 
portion of these concerns; however, other non-infection 
mediated chronic disorders are also characterized by pain. 
For instance, interstitial cystitis/bladder pain syndrome (IC/
BPS) and chronic nonbacterial prostatitis/chronic pelvic 
pain syndrome are both diagnosed after clinical infection, 
malignancy, and/or other identifiable causes for long-term 
urological pain are ruled out. [13, 15] These disorders can 
greatly affect the patient’s quality of life. Similarly, advanced 
genitourinary cancers are characterized by excruciating pain, 
particularly after bone metastases. [25] Studying pain asso-
ciated with urologic disease, whether direct or indirect, is 
important for the holistic treatment of the patient.

Early purinergic signaling studies identified eATP as a 
neurotransmitter. [2] Evidence that ATP was released from 
sensory nerves and consequently elicited action potentials 
in dorsal root ganglionic (DRG) neurons initiated interest in 
P2 purinergic receptors for their role in pain processing .6 
Since then, P2X3 and P2X2/3 receptors were identified as 
key facilitators of direct neuronal activation (Fig. 1). [6, 26] 
Activation of other P2 receptors, including P2X4 and P2X7, 
and some P2Y receptors can modulate pain neurotrans-
mission via indirect mechanisms involving glial-neuronal 

Fig. 1  P2 purinergic receptor signaling. Extracellular ATP (eATP) 
is released from injured, necrotic, and apoptotic cells via exocytosis 
or pannexin channels. Increased concentrations of eATP recruit (e.g., 
neutrophils) and activate (e.g., macrophages) immune cells. Activa-

tion of P2 purinergic receptors increases intracellular calcium initi-
ating signaling cascades that facilitate nociceptive and neuropathic 
pain, inflammasome assembly and activation, and the induction of 
proinflammatory cytokines and chemokines

269Purinergic Signalling (2022) 18:267–287



1 3

interactions and/or modulation of other nociceptive-specific 
receptors. [6] Due to P2 purinergic receptor involvement 
in various pain states, P2 receptor antagonism has been 
investigated for pain management in pre-clinical studies 
and clinical trials. [5, 27] For example, P2X3 antagonist 
AF-315 produced dose-dependent anti-hyperalgesia in both 
an adjuvant-induced arthritis rat model and a rat model of 
knee osteoarthritis. [5]

Kidney

P2 purinergic receptor expression in the kidney has been 
reported in mice, rats, and in human primary mesangial 
and visceral glomerular epithelial cells (Table 1). [28–30] 
Purinergic signaling is well-studied in the normal func-
tion of the kidney, particularly in blood pressure regulation 
(Fig. 2). For example, P2Y2 receptors play a prominent role 
in the regulation of renal electrolyte and water transport. 
[31] P2Y2 knockout mice have salt-resistant hypertension 
associated with abnormal renal  Na+ and fluid physiology. 
[32] Furthermore, a P2Y2 receptor agonist reduced blood 

pressure and increased renal  Na+ excretion in mice, indi-
cating that these receptors might be potential therapeutic 
targets. [33] P2X4 knockout mice are also hypertensive, but 
dietary  Na+ restriction normalizes blood pressure in these 
mice. [30] Interestingly, a loss-of-function polymorphism 
in the human P2X4 receptor is associated with increased 
pulse pressure, but this polymorphism has not been studied 
specifically in renal function. [34] Altogether, the evidence 
suggests that P2 purinergic receptors have critical roles in 
normal kidney function. Here, we discuss how expression 
and dysregulation of these receptors contribute to kidney 
disease (Fig. 2).

Chronic kidney disease

CKD is the most common disease of the kidney and affects 
about 15% of the adult population in the USA. [35] Diagno-
sis is defined by substantially reduced glomerular filtration 
rate (< 60 mL/min/1.73 m [2]) or albuminuria (≥ 30 mg per 
24 h) for more than 3 months [36] and is associated with 
increased cardiovascular and overall mortality. [35] Per-
sistent, low-grade inflammation is considered a hallmark 

Table 1  P2 purinergic receptor 
expression in urologic tissues

Tissue Species Receptor expressed Reference

Kidney Zebrafish P2X7 [52]
Mouse P2X2, P2X4, P2X7 [175]
Rat P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6 [29, 51, 56]
Human P2X6, P2X7 [29, 62, 63]

Ureter Human P2X4, P2Y1 [75]
Urethra Mouse P2Y6 [76]
Vas deferens Mouse P2X1 [176]
Seminal vesicle Mouse P2X1 [176]
Epididymis Mouse P2X1—P2X3 [176]
Sperm Mouse P2X1—P2X4 [177]

Rat P2X1—P2X3 [177]
Hamster P2X1—P2X4 [177]
Human P2X1—P2X4 [177]

Uterus Mouse P2X1 [176]
Vagina Mouse P2X1 [176]
Bladder Mouse P2X1, P2X4, P2Y1, P2Y2, P2Y6, P2Y12, P2Y14 [76, 176, 178]

Rat P2X1 P2X3 P2X4, P2X7, P2Y1, P2Y2, P2Y4, P2Y6 [80, 179]
Rabbit P2X3 [180]
Cat P2X1—P2X7, P2Y1, P2Y2, P2Y4 71
Human P2X1—P2X7, P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, 

P2Y13 P2Y14
[14, 72–75, 83]

Prostate Mouse P2X1 [89]
Rat P2X1—P2X7 [95]
Human P2X4, P2X7 [108, 113]

Corpora cavernosa Mouse P2X1 [140]
Rat P2X1, P2X3, P2X4, P2X7, P2Y1, P2Y2, P2Y4, P2Y6 [137, 138, 179]
Human P2X1, P2Y1, P2Y2, P2Y6 [128, 129]
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feature of CKD. [12] The NLRP3 inflammasome contributes 
to CKD development and P2X7 is a known activator of this 
inflammasome. [21, 37] Accordingly, a role for P2 receptors 
in the inflammatory aspects of CKD has been investigated. 
P2X7 knockout mice fed a high-fat diet had attenuated renal 
function, reduced inflammation, fibrosis, and oxidative stress 
compared to wild type (WT) animals. [38] In this study, WT 
mice fed a high-fat diet had significantly increased urinary 
protein/creatinine and albumin/creatinine, induced glomeru-
lar hypertrophy determined by periodic acid Schiff staining, 
increased glomerular cell apoptosis determined by active 
caspase-3 (2.5-fold), increased fibronectin and collagen IV 
staining, increased oxidative stress marked by upregulation 
of Nox4 expression, and increased NLRP3 and pro-IL-1β 
mRNA expression compared to WT mice fed a normal-fat 
diet (all P < 0.001). [38] All of these parameters were attenu-
ated in P2X7 knockout mice fed a high-fat diet, and this 
finding was attributed to attenuated NLRP3 inflammasome 
activation in the P2X7 knockout mice. [38] Others used flow 
cytometry to show that P2X7 mRNA expression is increased 
in peripheral blood mononuclear cells (PMBCs) from CKD 
patients (n = 15) compared to healthy volunteers (n = 15) 
(P < 0.05) and that P2X7 protein expression is increased 
specifically on B-lymphocyte (P < 0.05) and monocyte 
(P < 0.001) populations from patients in early-stage CKD. 
[39] P2X7 receptors are involved in the defective calcium 
signaling in PMBCs of patients with CKD by facilitating 
increased intracellular  Ca2+ in these cells. [40] Collectively, 

these data suggest that P2X7 facilitates CKD pathogenesis. 
Alternatively, studies indicate that the P2Y2 receptor might 
serve a protective function. Subtotal nephrectomy (SNX) 
was performed on P2Y2 knockout mice as a model of CKD. 
P2Y2 knockout mice had reduced survival after SNX com-
pared to after sham surgery (63.1%, n = 19 vs 100%, n = 9; 
P < 0.01, respectively), while WT mice had no statistical dif-
ference in survival rate (88.9% vs 100%). [41] P2Y2 knock-
out mice also had increased blood pressure (177 ± 2 mmHg) 
compared to WT mice (156 ± 7 mmHg) at day 56 post-SNX 
(P < 0.05). [41] Finally, P2Y2 knockout mice exhibited 
greater overall renal injury evidenced by increased serum 
urea (P < 0.05) and increased urine albumin-to-creatinine 
ratio (UACR) (2.5-fold, P < 0.05) after SNX compared to 
WT mice. [41]

Acute kidney injury (AKI) is associated with CKD and 
is a leading cause of mortality or morbidity in hospital-
ized patients. [42, 43] Patients with severe CKD (< 15 mL/
min/1.73  m2) had a dramatically increased risk of AKI (odds 
ratio = 47.17; CI: 39.22–56.74) compared to non-CKD 
patients (≥ 60 mL/min/1.73  m2). [44] Several meta-analy-
sis studies have associated AKI with later development of 
CKD. [43, 45] A major cause of AKI is renal ischemia and 
reperfusion (IR) resulting in renal tubular necrosis, inflam-
mation, and apoptosis. [42] Consequently, increased eATP 
after IR activates P2X4 or P2X7. Activation of P2X4 results 
in NLRP3 inflammasome induction in renal proximal tubule 
cells, which exacerbates ischemic AKI. [46] Activation of 

Fig. 2  P2 purinergic receptors in normal kidney function and dis-
ease. Activation of P2Y2, P2Y4, and P2X4 contributes to blood 
pressure maintenance. Ischemia and reperfusion result in increased 
extracellular nucleotides. Activation of P2X4, P2X7, and P2Y14 
initiates signaling cascades that promote chemokine induction, renal 
tubule necrosis and apoptosis, and neutrophil infiltration contributing 

to acute kidney injury. P2X7 activation contributes to chronic kidney 
disease pathogenesis via the NLRP3 inflammasome, while P2Y2 is 
protective against the same disease. P2X7 activation might also affect 
cystogenesis via the ERK1/2 pathway culminating in polycystic dis-
ease, a risk factor for kidney cancer. P2X6 activation increases kidney 
cancer cell invasiveness via ERK1/2 and MMP9 signaling
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P2X7 induces peptidyl arginine deiminases 4 (PAD4), which 
is known to exacerbate ischemic AKI, via PKC activation in 
human and mouse renal proximal tubule cells. [42] Excit-
edly, early P2X7 inhibition protected against IR-induced 
AKI in a mouse model.[47] Similarly, P2Y14 inhibition 
or genetic ablation inhibited IR injury–induced chemokine 
expression and reduced neutrophil renal infiltration, kidney 
dysfunction, and proximal tubule damage associated with 
AKI. [48] Concentrations of P2Y14 ligand, UDP-glucose, 
are elevated in urine samples from patients who develop 
AKI compared to patients without AKI. [48] These studies 
identify P2X7 and P2Y14 as potential therapeutic targets for 
the treatment of AKI.

Polycystic kidney disease

Polycystic kidney disease (PKD) is a genetic disorder that 
afflicts about 500,000 people in the USA [49] and over 10 
million people worldwide. [50] PKD is often characterized 
by hypertension, pain, hepatic fibrosis, and end-stage renal 
disease. [50] P2Y2, P2Y6, and P2X7 mRNA expression 
was increased in a rat model of autosomal dominant PKD 
(ADPKD), the most common form of the disease, compared 
to WT littermates. [51] Protein expression of each recep-
tor was confirmed by immunohistochemistry (IHC). [51] In 
a pkd2 morphant ADPKD zebrafish model, P2X7 mRNA 
expression was observed earlier and more strongly compared 
to control embryos. [52] Both P2X7 knockdown and inhibi-
tion significantly reduced the frequency of cyst formation 

via ERK-dependent pathways in pkd2 morphants (55.8%, 
P < 0.01 and 35.7%, P < 0.01, respectively). [52] Alterna-
tively, Hillman et al. report that P2X7 activation reduced 
cystogenesis from cell aggregates derived from an autosomal 
recessive PKD (ARPKD) mouse model. [53] Enhanced ATP 
release in human ADPKD is reported as well as in mouse 
and rat ARPKD cell models, compared to controls. [54, 55] 
Hillman et al. propose that this excess ATP might serve as 
a natural brake on cyst formation, while others report that 
P2X7 and other P2 purinergic receptors facilitate cystogene-
sis. [51–54, 56] The authors do not discuss this discrepancy. 
One consideration is the different P2 purinergic profiles 
observed between ADPKD and ARPKD or across species. 
For instance, Schwiebert et al. showed that human ADPKD 
primary cells lack P2Y1 but express P2Y2 and P2Y6 while 
mouse cpk ARPKD primary cells expressed P2Y1 and P2Y2 
but not P2Y6 (Table 2). [54] Further studies are necessary to 
differentiate P2 purinergic receptor profiles and functional-
ity between ADPKD and ARPKD and to determine which 
pathways are relevant in human PKD.

Kidney cancer

Renal cell carcinoma (RCC) accounts for about 90% of all 
kidney cancers. [18] RCC is further classified into subtypes 
including clear cell (~ 75% of cases), papillary (~ 15%), and 
chromophobe (~ 5%). [57] Transitional cell carcinoma, Wilms 
tumor, and renal sarcoma make up the remainder of kidney 
cancers. Altogether, the 5-year survival rate for kidney and 

Table 2  P2 purinergic receptor expression in urologic cells and cell lines

Tissue Cell line Receptor expressed Reference

Kidney SN12-PM6 cells P2X6 [63]
SW839 cells P2X6 [63]
A498 cells P2X6 [63]
ADPKD cells P2X2, P2X4, P2X5, P2X7 [54]
Human glomerular epithelial cells P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2X4—P2X7 [28]

Bladder T24 cells P2X3, P2Y2, P2Y6 [86, 181]
5637 P2Y2 [86]
HT-1376 P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11 [182]

Prostate PC3 cells P2X4, P2X5, P2X7, P2Y1, P2Y2 [105, 106, 108]
DU145 cells P2X4, P2X5, P2Y1, P2Y2, P2Y6, P2Y11, P2Y14 [106, 108]
LNCaP cells P2X4, P2X5, P2X7, P2Y2, P2Y4, P2Y6, P2Y12, P2Y13, P2Y14 [106–108]
CWR 22Rv1 P2X4 [108]
VCaP P2X4 [108]
LAPC4 P2X4 [108]
MD PCA 2b P2X4 [108]
C4-2 cells P2X4, P2X7, P2Y11, P2Y12, P2Y14 [107]
C4-2B cells P2X4, P2X7, P2Y1, P2Y4, P2Y11, P2Y12, P2Y13, P2Y14 [107]
PNT-2 cells P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11 [109]

Testicle Testicular peritubular cells P2X4, P2X7 [141]
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renal pelvis cancer is about 75%. [58] Currently, surgery is the 
main treatment for kidney cancer and targeted therapies are 
often adjuvant therapy after surgery or used to treat advanced 
disease, with minimal demonstrated benefit. [18]

Purinergic signaling has been studied for both causative 
and prognostic roles in cancer. Substantially greater eATP 
concentrations are measured in the tumor microenvironment 
(TME) of mice compared to healthy tissues and receptor 
overexpression correlates to poorer outcomes in multiple 
cancer types. [22, 59–62] In kidney cancer, the average 
IHC staining score of peritumoral P2X7 expression was 
significantly higher than intratumoral P2X7 expression 
(P < 0.001). [62] P2X7 expression was dichotomized into 
high expression (above median, n = 138) and low expression 
(below median, n = 135). Kaplan–Meier survival analysis 
showed that clear-cell renal carcinoma patients with high 
intratumoral P2X7 expression had worse cancer‐specific 
survival than those with low intratumoral P2X7 expres-
sion (P < 0.001). [62] Furthermore, prognostic accuracy of 
TNM stage; the University of California Integrated Stag-
ing System (UISS); and the stage, size, grade, and necrosis 
(SSIGN) scoring models was improved when intratumoral 
P2X7 expression was added. [62] Another study reported 
that P2X6 activation drives invasiveness of RCC cells via 
 Ca2+-mediated p-ERK1/2/MMP9 signaling. [63]

Interestingly, multiple P2 purinergic receptors are dys-
regulated in kidney cancer tissues in The Cancer Genome 
Atlas (TCGA) public gene datasets as assessed via Wan-
derer. [64–68] For instance, the majority of receptors—
P2X1, P2X3, P2X4, P2X7, P2Y1, P2Y4, P2Y6, P2Y13, 
and P2Y14—were significantly increased in clear cell 
RCC tumors compared to normal (Fig. 3). Patients with 
clear cell RCC had the worst survival and a higher expres-
sion of immune signature genes in their tumors compared 
to patients with papillary and chromophobe RCC. [57] 
Alternatively, the majority of receptors—P2X1, P2X2, 
P2X5, P2X6, P2Y2, P2Y6, and P2Y14 receptors—were 
significantly reduced in chromophobe RCC tumors com-
pared to normal (Fig. 3). Interestingly, papillary cell RCC 
which is described as the heterogenous subtype had a more 
balanced P2 receptor expression profile with P2X4, P2X7, 
and P2Y13 receptors increased and P2X2, P2X6, P2Y1, 
P2Y2, and P2Y14 receptors decreased in tumors com-
pared to normal (Fig. 3). Such profiles may be indicative 
of the phenotypes observed across the three types of RCC. 
Future studies are necessary to investigate the association 
between P2 purinergic receptor expression profiles and 
kidney cancer phenotypes and outcomes. There is a need 
to characterize the expression profiles of individual recep-
tor subtypes, determine their function, and assess whether 
there is any efficacy in targeting these receptors pharma-
ceutically for the treatment of kidney cancers.

Bladder, ureter, and urethra

Release of ATP by urothelium and consequent activation of 
P2 purinergic receptors are known to be involved in motor 
and sensory functions of the urinary bladder. [69] Blad-
der stretch from filling induces cytosolic  Ca2+ increase, 
promoting ATP release from the urothelium (Fig. 4). This 
eATP binds to P2 purinergic receptors to trigger nerve 
activation, the sensation of bladder fullness, and the urge 
to urinate. [69, 70] Purinergic signaling contributes to 
bladder contraction, voiding reflex, urinary urgency, and 
related pain. [71] P2X1-7, P2Y1, P2Y2, P2Y6, P2Y11, 
P2Y12, P2Y13, and P2Y14 receptor expressions have each 
been identified in the human bladder (Table 1). [14, 69, 

Fig. 3  P2 purinergic receptor mRNA expression in TCGA public 
datasets. P2 purinergic receptor expression is dysregulated in uro-
logic cancers. The heatmap shows significantly increased (yellow) 
and decreased (blue) P2 purinergic receptor mRNA expression in 
cancer compared to normal (P < 0.01) as assessed by the Wanderer 
tool. P2 purinergic receptors were assessed in the urothelial carci-
noma (n: normal (N) = 19; tumor (T) = 267), kidney chromophobe 
(n: normal (N) = 25; tumor (T) = 66), kidney clear cell (n: Normal 
(N) = 72; tumor (T) = 518), kidney papillary cell (n: normal (N) = 30; 
tumor (T) = 198), and prostate adenocarcinoma (n: normal (N) = 52; 
tumor (T) = 374) datasets
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72–76] Under physiologic conditions, P2 purinergic recep-
tor knockout mice appear to have no substantial differ-
ences in bladder function compared to WT. [70]However, 
under pathological conditions, inhibition of P2 purinergic 
receptors improves bladder hyperactivity. [70] We discuss 
the expression and function of P2 purinergic receptors in 
select bladder-related disorders (Fig. 4).

Interstitial cystitis

IC/BPS is a chronic, painful inflammatory bladder condi-
tion characterized by pelvic pain and urinary symptoms 
without an identifiable cause. [13] IC/BPS is often under-
diagnosed and mistreated, in part because the etiology of 
the disease is not well-understood. Tissue samples from 
feline IC urothelium showed reduced P2X1 and P2Y2 
expression compared to tissues from normal cats. [71] 
Alternatively in humans, western blotting analysis revealed 
significant upregulation of P2X1, P2X2, and P2X3 recep-
tor protein expression in urothelial cells isolated from IC 
patients (n = 8) compared to age-, race-, and sex-matched 
asymptomatic control subjects (n = 6) (P < 0.05). [77] Sim-
ilarly, P2Y1, P2Y2, and P2Y11 receptor mRNA expression 
was significantly upregulated in urothelium in IC patients 
(P < 0.05). [77] Stretch-activated release of ATP in cul-
tured bladder urothelial cells from IC patients was higher 
compared to cells from control patients. [77] In another 
study, P2X2 and P2X3 protein expression was increased 

in IC patients compared to control patients in spite of the 
comparable P2X2 and reduced P2X3 mRNA expression in 
IC patients. [73] The authors propose that potential nega-
tive feedback might account for this discrepancy. P2X3 
glycosylation in IC was demonstrated, but the functional 
significance has not yet been determined. [73] Another 
study used site-directed mutagenesis to determine that gly-
cosylation of P2X3 receptor can be necessary for assembly 
of the functional trimeric structure and the inability to 
do so might result in impaired P2X3 function. [78] The 
field evidently has its challenges with discrepant recep-
tor expression between human tissues and animal mod-
els. While these initial studies indicate involvement of P2 
purinergic signaling in IC, future studies are necessary to 
identify a suitable model and ascertain the direct func-
tional consequence of P2 purinergic receptor upregulation.

Urinary incontinence

Urinary incontinence, defined as loss of bladder control or 
unintentional voiding, is a common condition that is often 
unreported. Stress incontinence results from a weak or dys-
functional urinary sphincter, urge incontinence results from 
overactivity of the detrusor muscle, and overflow inconti-
nence results from bladder distention, for instance in men 
with BPH. [79] Studies in rats demonstrated that activation 
of P2Y6 increases the voiding frequency of anesthetized 
rats. [80] The authors also report that P2X3 activation is 
necessary for P2Y6-related increased voiding frequency 

Fig. 4  P2 purinergic receptors in bladder normal function and dis-
ease. Urothelial stretch releases ATP which activates P2X receptors 
to maintain micturition reflex for normal bladder emptying. Activa-
tion of P2Y6 results in ATP release, which activates P2X3, increas-
ing voiding frequency and promoting urinary incontinence. Hydrol-

ysis of ATP results in ADP which activates P2Y1 receptors, which 
decreases voiding frequency. P2Y12 inhibition of adenylyl cyclase 
results in bladder smooth muscle contraction which increases voiding 
frequency in overactive bladder syndrome
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while P2Y1 appeared to have an inhibitory effect. Further-
more, P2Y6-induced bladder hyperactivity requires intact 
bladder nervous circuitry since this effect was not observed 
in the isolated bladder in vitro. [80] Alternatively, another 
study found that P2Y6-deficient mice had more frequent 
micturition, smaller bladder capacity, and shorter bladder 
contraction duration than WT mice. [76] While the authors 
attribute this discrepancy to species differences, they also 
highlight that studies in rats identify P2Y6 in the bladder 
for its effect on voiding frequency, while the study in mice 
attributes the increase in voiding frequency to loss of P2Y6 
in the CNS, DRG, or both. [76] In humans, P2X3 and P2X5 
protein expression was notably absent in detrusors from 
patients with idiopathic detrusor instability when both recep-
tors are convincingly expressed in detrusors from control 
patients. [81] Functional roles for P2X3 and P2X5 have not 
been defined in the context of urinary incontinence.

Overactive bladder syndrome

Overactive bladder syndrome (OAB) is characterized by 
urinary urgency, usually accompanied by frequency and 
nocturia, with or without urgency urinary incontinence, 
in the absence of urinary tract infection or other obvious 
pathology. [82] Pyuria has been associated with worst OAB 
symptoms. [14] One study found that there was greater ATP 
release from urothelium from OAB patients with pyuria than 
from non-OAB patients or patients with OAB but not pyuria. 
[14] All P2 purinergic receptors mRNA except P2X4 and 
P2Y4 were identified in urothelium microdissected from 
control patients and patients with OAB with or without pyu-
ria (Table 1). Interestingly, compared to control patients, 
urothelium from OAB patients without pyuria had increased 
P2Y11 (200-fold) and P2Y13 (tenfold) mRNA expression, 
while urothelium from OAB patients with pyuria showed 
significantly increased P2Y2 (100-fold) and P2Y11 (50-fold) 
mRNA expression (n = 6; P < 0.01). [14] The suggestion is 
that the presence of bacteria and thereby inflammation elic-
its increased urothelial ATP release that plays a role in the 
heightened symptoms associated with pyuric OAB. Patients 
with OAB can have urodynamic detrusor overactivity (DO), 
which is the occurrence of involuntary detrusor contractions 
during bladder filling (phasic DO) or prior to inhibited det-
rusor contraction voiding at bladder capacity (terminal 
DO). [74, 82] P2X3 protein levels assessed by western blot-
ting were relatively higher in DO patients than in controls 
(P = 0.056) and were significantly increased in the phasic 
DO subgroup compared to controls (n = 58, P ≤ 0.05). [74] 
P2X3 expression positively correlated with multiple clini-
cal urodynamic parameters including urgency sensation and 
voided volume in phasic DO patients. [74] P2Y6 protein 
expression was more prominent in the urothelium of OAB 
patients compared to their age-matched male controls with 

BPH but no OAB symptoms. [83] P2Y6 mucosal expres-
sion positively correlated with incontinence severity (n = 28, 
P = 0.009), but not the International Consultation on Inconti-
nence Questionnaire (ICIQ) OAB symptom score. [83] Both 
ATP and ADP, a P2Y6 agonist, were positively correlated 
with the ICIQ OAB symptom score, corroborating a role 
for purinergic signaling and likely P2 purinergic receptors 
in OAB. [83] P2Y12 KO mice mimic an OAB phenotype, 
suggestive that P2Y12 agonists might serve as a therapeutic 
option for OAB while P2Y12 antagonists might be useful for 
the treatment of bladder underactivity. [84] Further studies 
are needed to distinguish P2 purinergic receptor involvement 
in the inflammation associated with OAB and the direct 
effect on detrusor dysfunction.

Bladder cancer

Bladder cancer is the fourth most common cancer in Ameri-
can men and is less common in women. Fortunately, the 
incidence rates of bladder cancer have decreased by 1.2% 
per year over the last decade, but the death rate (4.4 per 
100,000) has remained stable. [58] Inflammation is thought 
to play a role in bladder cancer development, progression, 
and response to treatment. [19] As previously mentioned, P2 
purinergic receptors play a critical sensory role in the normal 
bladder, and currently relatively little is known about how 
these receptors act in bladder cancer. One study sought to 
correlate P2X receptor expression to urothelial differentia-
tion. Western blotting and IHC analysis showed that P2X3 
receptor protein expression is similar in normal urothe-
lium (n = 13) and low-grade papillary carcinoma (n = 12), 
but decreased in high-grade papillary carcinoma (n = 6) of 
the human bladder. [85] In contrast, P2X5 receptor protein 
expression was present in normal urothelium and high-grade 
carcinoma but was diminished in low-grade carcinoma. [85] 
The authors propose that P2X3 correlates with urothelial 
differentiation and might be involved in high-grade papillary 
carcinoma pathogenesis, while P2X5 does not. In another 
study, P2Y2 enhancer RNA (P2Y2e) was overexpressed 
in 29 of 38 bladder cancer patient cancer tissues compared 
to paracancerous tissues. [86] Increased P2Y2e expression 
was positively correlated to high histological grade, tumor 
invasion, and late TNM stage. [86] Furthermore, CRISPR 
knockdown of P2Y2e inhibited cell proliferation, migration, 
and invasion and induced apoptosis in bladder cancer 5637 
and T24 cells. [86] Corroborating these studies, P2Y2 recep-
tor expression was significantly increased in urothelial car-
cinoma compared to normal (Fig. 3). P2Y6 receptor expres-
sion was also increased, but the majority of receptors were 
downregulated. P2X1, P2X2, P2X6, P2X7, P2Y1, P2Y13, 
and P2Y14 receptor expression was significantly decreased 
in tumor compared to normal in urothelial carcinoma data-
sets (Fig. 3).
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Prostate

The prostate is the major male reproductive gland that facili-
tates mixing of sperm with the other components that make 
up semen and aid in the ejaculation of complete semen. [87] 
Across all species, prostate contractility is mediated by both 
adrenergic and purinergic receptors. [88] One proposed role 
for P2 purinergic receptors in normal prostate function is in 
P2X1-mediated contractile response of the prostate (Fig. 5). 
[89] In their study, White et al. demonstrate impaired nerve-
mediated contractions in aged (12 months old) P2X1 knock-
out mice compared to aged WT mice. [89]

Another function of the prostate is likely to serve as a 
barrier to infection between the bladder and external envi-
ronment and the remainder of the male reproductive sys-
tem. [17] The urethra connects the bladder to the penis 
via the prostate. The testes, epididymis, seminal vesicles, 
and vas deferens also access the prostate for the passage 
of semen. Interestingly, prostate cancer is the second most 
common and bladder cancer the fourth most common cancer 
in men. [58] Meanwhile, primary cancers of the testicles, 
epididymis, seminal vesicle, and vas deferens are quite rare. 
[90–92] There is evidence that STIs contribute to prostatic 
inflammation and the urinary microbiome is thought to influ-
ence prostate health. [17, 93, 94] These observations likely 
contribute to the fact that the prostate is a site of very com-
mon diseases, all strongly associated with inflammation and 
also with aging. P2 purinergic receptors have been identified 
in prostates from rats, and this expression was reported to 
increase with aging (Table 1). [95] We review P2 purinergic 
receptor involvement in prostate diseases (Fig. 5).

Prostatitis

Prostatitis is a heterogeneous disease categorized into four 
syndromes: (i) acute bacterial prostatitis, (ii) chronic bacte-
rial prostatitis, (iii) chronic prostatitis/chronic pelvic pain 
syndrome (inflammatory or non-inflammatory), and (iv) 
asymptomatic inflammatory prostatitis. [96] Although the 

prevalence of prostatitis is high, reported as high as 9.7% 
of the US population [96], the precise etiology and mecha-
nism of disease are not always clear. Inflammation and pain 
are consistent characteristics in men with prostatitis. P2 
purinergic receptors have been studied primarily for their 
nociceptive functions in prostatitis. P2X3 receptors are 
critical for peripheral pain responses to inflammation and 
tissue damage. [97] In a rat model of chemically induced 
prostatic inflammation, P2X3 receptor protein expression 
was increased in the DRG compared to control groups and 
a P2X3-specific antagonist attenuated ATP-induced currents 
in the same region. [98] The authors postulate that pros-
tatic inflammation resulted in increased P2X3 expression, 
which might account for the neuronal hypersensitivity and 
subsequent pain associated with prostatitis. Similarly, in a 
mouse model of prostatitis, the percentage of thoracolumbar 
DRG neurons expressing P2X2 and P2X3 was significantly 
elevated with increasing inflammation compared to control 
mice (n = 4, P < 0.05). [99] In a rat model of chronic pros-
tatitis, increased P2X7 mRNA was detected in the posterior 
horn of the spinal cord. [100] Inhibition of P2X7 resulted 
in decreased IL-1β and TNF-α production (P < 0.01) and 
activation of P2X7 with agonist benzoyl ATP alone was suf-
ficient to significantly increase expression of both cytokines 
in the spinal cord (P < 0.01 and P < 0.05, respectively). [100] 
The authors propose that P2 purinergic receptor-mediated 
inflammation might contribute to the chronic pain associated 
with prostatitis.

BPH and lower urinary tract symptoms

BPH is described as the progressive enlargement of the pros-
tate gland resulting from nonmalignant proliferation. BPH 
is prevalent in aging men, with prevalence rates reported 
from 50 to 75% among men 50 years of age and older to 80% 
among men 70 years of age and older. [16] White et al. pro-
poses that a P2X1 purinergic contractile response to nerve 
stimulation develops in the mouse prostate gland with age. 

Fig. 5  P2 purinergic receptors in prostate normal function and dis-
ease. P2X1 receptors are involved in prostate contractility. Activation 
of P2X3 facilitates pain transmission, while P2X7 activation induces 

proinflammatory cytokines, both contributing to prostatitis. Activa-
tion of P2Y2 promotes prostate cancer cell migration and invasion via 
the p38, Akt, ERK1/2, MMP3, or MMP13 signaling
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[89] This might contribute to the increased muscular tone 
observed in BPH and highlights P2X1 as a target for the 
treatment of BPH. [89] BPH can be asymptomatic; how-
ever, about half of the men with BPH have lower urinary 
tract symptoms which include a range of etiologies that are 
poorly understood. [16] Detrusor underactivity, which leads 
to incomplete bladder emptying, is one potential symptom. 
Several studies have identified eATP as necessary for det-
rusor contractility and increased eATP is associated with 
increased bladder sensation and voiding frequency. [69, 70, 
80, 101, 102] One study identified P2Y6 as a potential chan-
nel for ATP release from mucosal urothelium. [72] A selec-
tive P2Y6 agonist significantly increased ATP release from 
stimulated mucosa of control bladder samples (P < 0.05) 
and this release was significantly attenuated (P < 0.05) by an 
irreversible P2Y6 antagonist. [72] The authors propose that 
eATP released via P2Y6 might activate P2X3 and/or P2X2/3 
receptors, which in turn release more ATP creating a feed-
forward loop. In the same study, urothelium/lamina propria 
(U/LP) strips from patients with BPH (n = 6) released sig-
nificantly more ATP than U/LP strips from control patients 
(n = 5) (P < 0.05). [72] Furthermore, they used high perfor-
mance liquid chromatography experiments to assess ATP 
catabolism and found a near doubling in the half degradation 
time of ATP (30 µM) in BPH patients (n = 4) compared to 
control men (n = 4) (P < 0.05). [72] The combined effects of 
increase ATP release and decreased ATP degradation might 
contribute to the high nucleotide levels observed in the blad-
der mucosa. P2Y6 was identified as the receptor responsible 
for this release, since P2Y6 agonist PSB0474 increased ATP 
release and P2Y6 antagonist MRS2578 significantly reduced 
ATP release in both BPH and control patients (P < 0.05). 
[72] Immunofluorescence confocal microscopy demon-
strated a dramatic reduction in P2X2 and P2X3 protein 
expression in tissues from patients with BPH compared to 
control tissues. [72]

Prostate cancer

Prostate cancer is the second leading cause of cancer-related 
deaths in American men. [58] Chronic inflammation might 
contribute to prostate carcinogenesis and is associated with 
aggressive prostate cancer. [17] Phagocytes, including mac-
rophages and neutrophils, respond to inflammatory stimuli 
by releasing reactive oxygen and nitrogen species that can 
cause DNA damage, cell injury, and cell death. [17] Con-
sequently, inflammation, cell injury, and cell death result in 
ATP release and increased eATP concentrations, which can 
activate P2 receptors on both immune and prostate cells. For 
instance, P2X4 receptors are involved in neutrophil recruit-
ment, macrophage activation, and differentiation. [103, 104] 
P2X4, P2X5, P2X7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, 
P2Y12, P2Y13, and P2Y14 receptor expression has been 

identified in prostate cancer cells (Table 2). [105–108] P2Y1 
activation induces apoptosis and inhibits proliferation of PC3 
cells. [105] Activation of P2X5 and/or P2Y11 is proposed to 
substantially inhibit growth of hormone refractory prostate 
cancer PC3 and DU145 cells and induce Ca [2]+-independ-
ent apoptosis. [109] Alternatively, another study suggests 
that eATP stimulates DU145 cell proliferation, but the recep-
tor subtype was not identified. [110] The authors propose 
that hypotonic stress results in ATP release from DU145 
cells via intracellular Ca [2]+ signaling, resulting in the 
activation of ERK1/2, p38, and PI3K, which can facilitate 
cell proliferation. [110] ATP treatment of PC3 sub-clones, 
1E8 (metastatic), and 2B4 (non-metastatic) cells stimulates 
cell invasion via the Erk1/2 and p38 pathways. [111, 112] 
ATP treatment alone was also shown to enhance cell motility 
and cell invasion of DU145, 1E8, and 2B4 cells and altered 
EMT-related genes, IL-8, Snail, E-cadherin, and Claudin-1. 
[106, 112] ATP treatment increases the number and length 
of lamellipodia and filopodia, which are necessary for cell 
motility as well as their associated Rho GTPases, Rac1 and 
Cdc42. [112] Furthermore, ATP induces MMP-3 or MMP-
13 in DU145, 1E8, and 2B4 cells via AKT and ERK1/2 
signaling. [112] P2Y2 siRNA-mediated knockdown identi-
fied P2Y2 as one receptor facilitating ATP-induced 1E8 and 
2B4 cell migration and invasion. [106] Stable clones of 1E8 
P2Y2 shRNA knockdown injected into nude mice did not 
result in liver metastasis while control cells resulted in liver 
metastases in 50% of mice. [106] Knockdown of P2Y2 also 
resulted in reduced tumor growth. [106]

P2X7 receptor protein expression was absent from nor-
mal prostate epithelium obtained at autopsy (n = 6) and tis-
sue collected from younger men by transurethral resection 
(n = 17). [11] Conversely, P2X7 receptor protein expression 
was detected in 100% of confirmed prostate cancer tissues 
obtained by biopsy (n = 116), regardless of Gleason score. 
[11] The authors note that P2X7 expression was detected in 
earlier biopsies from patients who were eventually diagnosed 
with prostate cancer, even though the biopsy tissues were 
considered normal by H&E staining. [11] The authors postu-
late this finding indicates that P2X7 is a potential diagnostic 
marker, even in cases where biopsies might initially miss 
the prostate cancer. In a later study, this group demonstrated 
that P2X7 expression correlates positively with PSA levels. 
[113] Specifically, biopsies that were negative for P2X7 
were from patients with PSA < 2 ng/mL. [113] The P2X7 
described in these studies is described as non-pore functional 
P2X7 (nfP2X7). It is proposed that high ATP concentrations 
in the TME drive higher expression of nfP2X7, as demon-
strated in vitro. This nfP2X7 was reported as necessary for 
PC3, DU145, and LNCaP prostate cancer cell survival. [114] 
Further evidence for P2X7 receptor involvement in prostate 
cancer is the significant association between the rs3751143 
SNP in the P2X7 gene and prostate cancer (odds ratio = 0.86, 
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P = 0.044) in the publicly available American Cancer Genetic 
Markers of Susceptibility study cohort. [115] The minor 
allele is a loss-of-function allele and was found to be asso-
ciated with less aggressive disease (Gleason < 7, n = 484) 
while the major allele was associate with more aggressive 
disease (Gleason ≥ 7, n = 688) (odds ratio = 0.77, P = 0.019). 
[115] In a separate study, survival dimensionality reduction 
(SDR) analysis revealed genetic interaction profile of P2X7 
receptor (rs3751143, rs208294) and VEGFR-2 (rs2071559, 
rs11133360) polymorphisms with a favorable prognostic pro-
file in prostate cancer patients. [116]

The P2X4 receptor has been identified as a potential thera-
peutic target for prostate cancer. [108, 117] Our group has 
demonstrated elevated P2X4 protein (n = 491) and mRNA 
(n = 120) expression in prostatic intraepithelial neoplasia 
(PIN) and prostate cancer compared to benign prostate tis-
sues .108 Interestingly, P2X4 receptor protein expression was 
significantly elevated in prostate cancer cases with PTEN 
loss (P = 0.0003, n = 389) compared to PTEN intact cases. 
PTEN is the most commonly inactivated tumor suppressor in 
prostate cancer and PTEN loss is associated with lethal PCa. 
[118] PTEN is a negative regulator of PI3K resulting in de-
phosphorylation of Akt. [119] Crosstalk between PTEN and 
PHLPP, another regulator of Akt, promotes prostate cancer 
cell invasion and is mediated by the P2X4 purinergic recep-
tor. [119] The P2X4 receptor was also shown to be neces-
sary for TGF-β-mediated PC3 cell invasiveness. [119] Cases 
with PTEN loss commonly exhibit ERG positivity which is 
observed in about half of prostate cancer cases and typically 
results from gene fusions between the androgen-regulated gene 
TMPRSS2 and transcription factor ERG. [120, 121] We also 
measured elevated P2X4 protein expression in prostate cancer 
with ERG positivity (P < 0.0001, n = 389) compared to ERG 
negative cases. [108] Furthermore, P2RY2 is identified among 
upregulated genes in TMPRSS2:ERG-expressing PC3 cells 
and was associated with PC3 cell motility and invasiveness. 
[122] These studies identify mechanistic roles for P2 puriner-
gic receptors in prostate cancer cell motility and invasiveness.

A specific role for P2X4 purinergic receptors in prostate 
cancer cell motility and invasiveness has been determined. 
[108, 117] Treatment with the P2X4-specific agonist cyti-
dine 5′-triphosphate (CTP) increased transwell migration 
and invasion of PC3, DU145, and CWR22Rv1 PCa cells. 
[108] The P2X4 antagonist5-(3-Bromophenyl)-1,3-dihy-
dro-2HBenzofuro [3, 2-e]-1,4-diazepin-2-one (5-BDBD) 
resulted in a dose-dependent decrease in viability of PC3, 
DU145, LNCaP, CWR22Rv1, TRAMP-C2, Myc-CaP, 
BMPC1, and BMPC2 cells and decreased DU145 cell 
migration and invasion. [108, 117] Knockdown of P2X4 
attenuated growth, migration, and invasion of PCa cells. 
[108] Knockdown of P2X4 also resulted in significantly 
attenuated allograft growth in mice [108] and treatment with 
5-BDBD delayed PCa xenograft growth in vivo [117].

Prostate cancer most often metastasizes to bone and bone 
metastases are associated with extreme pain that substan-
tially affects the patient’s quality of life. [25, 123] Multiple 
P2 purinergic receptors have been implicated in mediat-
ing cancer-induced bone pain (CIBP). [124] Specifically, 
pharmacologic blockade of P2X3 or P2X2/3 has analgesic 
efficacy in a rat model of CIBP. [27] P2X4 receptor expres-
sion in microglia was increased with treatment of chemokine 
monocyte chemoattractant protein-1 (MCP-1), an estab-
lished facilitator of CIBP. [125] The authors propose that 
MCP-1-induced P2X4 expression in microglia via PI3K/Akt 
signaling can contribute to mechanical allodynia in CIBP. 
[125] P2X4 mRNA and protein expression were increased 
in rat models of bone cancer pain and intrathecal injection 
of P2X4 siRNA attenuated CIBP. [126] The authors con-
cluded that nociceptive hypersensitivity in the CIBP model 
is dependent on P2X4 receptor signaling in microglia. [126]

The TCGA datasets corroborated elevated P2X4 receptor 
expression in prostate adenocarcinoma compared to normal 
(Fig. 3). P2X5 receptor expression was also increased, while 
P2X1, P2X2, P2X6, P2X7, P2Y2, P2Y13, and P2Y14 recep-
tor expression was decreased (Fig. 3).

Future studies are necessary to characterize the expres-
sion profiles of individual receptors, determine their func-
tion, and ultimately assess the feasibility of therapeutically 
targeting P2 purinergic receptors in prostate cancer.

Erectile dysfunction and infertility

Purinergic signaling is important for initiation and main-
tenance of penile erection. [127] As such, P2 purinergic 
receptors have been investigated for their role in erectile 
dysfunction (ED). Rabbit and human cavernosal smooth 
muscle (CSM) relaxation is mediated by P2Y1, P2Y2, 
P2Y4, or P2Y6 receptor activation. [127–129] Similarly, 
P2Y1 activation induced contractions in the internal 
pudental arteries (IPA), the major blood supply to the 
penis. [130] Meanwhile, P2X1 activation appeared to 
reduce CSM relaxation and induce IPA and vas defer-
ens contractions in rats. [130–132] P2 receptor-mediated 
CSM relaxation is attenuated in models of diabetes mel-
litus and bladder outlet obstruction, two conditions that 
predispose to ED, but is unchanged in rabbit models of 
chronic renal failure and hypothyroidism, other known 
risk factors for ED. [127–129, 133–135] As a proposed 
explanation for P2 purinergic receptor involvement in ED, 
a study demonstrated that human corpus cavernosum tis-
sues from men with ED exhibited slower ATP hydrolysis 
compared to controls resulting in prolonged exposure to 
endogenous ATP and likely P2 purinergic receptor desen-
sitization. [136] Another study reported reduced P2Y1, 
P2Y2, P2Y4, and P2Y6 mRNA and protein expression 
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in corpora cavernosum tissues from castrated rats and P2 
purinergic receptor expression was positively correlated 
with serum testosterone levels. [137] Further studies are 
necessary to deduce whether certain pathologies dysregu-
late P2 purinergic expression or function to contribute to 
ED. To date, P2X1 antagonism has been shown to inhibit 
IPA or vas deferens contraction, P2Y1 antagonism has 
been shown to inhibit IPA relaxation in rats, and intra-
cavernous injection of P2 purinergic agonist, suramin, 
improves recovery of ED in a rat model. [130, 132, 138] 
These data are promising for potential P2 purinergic 
receptor-based therapeutic options for men with ED.

P2X1-mediated vas deferens contraction has also been 
studied in the context of fertility. Mice lacking P2X1 have 
90% reduced fertility due to reduced sperm in the ejacu-
late. [139] Evidence suggests that the absence of P2X1 
affects sperm transport, but not sperm function in mice. 
[139, 140] There was also no effect on sexual behavior or 
function. [140] Consequently, P2X1 has been proposed as 
a pharmacological target for reversible male contracep-
tion, likely in concert with α1A-adrenoceptor antagonism. 
[140] Other P2 purinergic receptors are thought to con-
tribute to infertility. P2X4 and/or P2X7 protein expres-
sion is observed in human testicular peritubular cells and 
ATP treatment of these cells resulted in pro-inflammatory 
cytokine production and secretion. [141] These data sug-
gest that P2 purinergic receptors might promote sterile 
testicular inflammation, which is associated with infertil-
ity. ATP activation of peritubular cells via P2 purinergic 
receptors was shown to drive testicular sperm transport, 
suggesting a pharmacological target for male infertility 
and contraception. [142]

Ectonucleotidase control of P2 purinergic 
receptor agonists in urologic diseases

The regulation of P2 purinergic receptor signaling involves 
both the modulation of receptor expression as well as the 
control of agonist availability. Ectonucleotidases are key 
enzymes that hydrolyze nucleotides, which dictate the 
duration of activity of P2 purinergic receptor agonists. Of 
the four major ectonucleotidase families, ecto-nucleoside 
triphosphate diphosphohydrolases (NTPDases) and ecto-
nucleotide pyrophosphatase/phosphodiesterases (NPPs) 
hydrolyze ATP to ADP and ADP to AMP. [143] The eight 
NTPDases are generally expressed in all tissues and NTP-
Dase1/CD39, the best characterized ectonucleotidase, 
is widely expressed on immune cells. [143] Others have 
reviewed the roles of ectonucleotidases in inflammation, 
pain, and cancer. [143–146] Similarly, studies are ongo-
ing to investigate the role of ectonucleotidases in urologic 

systems. Specifically, Dwyer et al. provide a comprehen-
sive review of ectonucleotidases involved in normal kidney 
function and renal disease. [147] The authors discuss roles 
for CD39 in renal inflammation, immunomodulation, acute 
kidney injury, chronic kidney disease, diabetic nephropathy, 
polycystic kidney disease, transplantation, and renal cell 
carcinoma. [147] All eight NTPDases were detected in the 
mouse urinary bladder with different localizations. [148] 
Specifically, CD39 was detected primarily in endothelial 
cells of the detrusor and lamina propia which is consistent 
with its role in degrading ATP within vasculature aimed 
at modulating thrombotic events. [148] CD39 also tightly 
regulates ADP-induced P2Y12-mediated bladder smother 
muscle contraction. [149] Normal vas deferens contraction 
is also dependent on CD39. [150] CD39 knockout male 
mice had reduced fertility due to reduced sperm emission. 
[150] The authors demonstrated in vitro that P2X1 agonist-
mediated contraction was reduced in vas deferens isolated 
from CD39 knockout mice compared to control mice. [150]

High CD39 protein expression was detected in 43.8% 
of bladder cancer cases and was associated with non-
muscle-invasive phenotype (P < 0.001), and lower tumor 
stage (P < 0.001). [151] Interestingly, data from multiple 
datasets via ONCOMINE show that while overexpressed 
in most solid tumors, CD39 mRNA expression was sig-
nificantly decreased in bladder and prostate cancers. [146] 
Another study measured reduced CD39 protein expression 
on macrovesicles isolated from prostate cancer patients 
compared to healthy individuals. [152] However, there 
was increased ATP and ADP hydrolysis in prostate can-
cer patients compared to healthy individuals, suggesting 
involvement of alternative ectonucleotidases. [152] The 
likely candidate is the NPP family, since increased NPP 
activity was measured in serum and platelets from pros-
tate cancer patients compared to healthy volunteers. [153] 
Interestingly, there was significantly less ATP hydroly-
sis in patients with clinical stage IIB and III compared to 
IIA, suggesting increased availability of eATP in the tumor 
microenvironment of later stage prostate cancer patients. 
[152] Altogether, these data suggest that ectonucleotidases 
are integral in the P2 purinergic receptor signaling associ-
ated with tumorigenesis. As such, future investigations on 
P2 purinergic receptors in urologic cancers must include 
considerations for ectonucleotidases and their control of 
P2 purinergic receptor agonists.

Current state of P2 receptor therapies

We have discussed critical roles for P2 purinergic receptors 
in urologic disorders, highlighting the receptors as poten-
tial therapeutic targets. Since 1997, P2Y12 antagonists 
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have been FDA-approved as antiplatelet therapies [154].
Subsequently, multiple P2 purinergic receptor agonists and 
antagonists have entered clinical trials for various indica-
tions, including inflammation-related disorders and pain. 
Specifically, previous and current clinical trials have inves-
tigated the P2X3 antagonist gefapixant in treatment of IC/
BPS (NCT01569438) [155], pain (NCT01554579) [156], 
and stress urinary incontinence (NCT04193176) [157]. 
A phase 2, double-blind, placebo-controlled, randomized 
study to assess the efficacy of gefapixant in female subjects 
with moderate to severe pain associated with IC/BPS after 
4 weeks of treatment was conducted. Gefapixant-treated 
patients (n = 36) had a decrease in Numeric Pain Rate Scale 
(NPRS) score, Painful Bladder/Interstitial Cystitis Symp-
tom Diary (PBIC-SD) score, O’leary-Sant Interstitial Cys-
titis Symptom Index (ICSI), and Genitourinary Pain Index 
(GUPI) compared to patients treated with placebo (n = 38) 
[155]. There were no serious adverse events and only mild 
adverse events, primarily dysgeusia/hypogeusia [155]. 
Another phase 2 placebo-controlled, randomized study was 
conducted to assess the efficacy of a single dose level of 
gefapixant in subjects with moderate to severe pain associ-
ated with osteoarthritis of the knee 4 weeks after treatment. 
There was also a decrease in the primary outcome meas-
ure, NRPS, in gefapixant-treated patients (n = 85) compared 
to placebo-treated patients (n = 86) [156]. However, there 
was no improvement in the secondary outcomes, Western 
Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC), and walking pain scores [156]. Finally, a phase 
3 double-blind, placebo-controlled, randomized study to 
evaluate the efficacy and safety of gefapixant in improving 
symptoms of cough-induced stress urinary incontinence 
(SUI) in adult female participants with refractory or unex-
plained chronic cough is currently in progress [157]. These 
trials as well as other pre-clinical studies demonstrate that 
P2X3 antagonists show tremendous promise in pain manage-
ment across urologic diseases [5, 97].

P2X7 antagonists are in clinical trials for inflammation-
related depression (NCT04116606) [158], rheumatoid 
arthritis (NCT00628095 [159], NCT00520572 [160]), and 
inflammatory pain (NCT00849134 [161]). The phase 2 
study to evaluate the antidepressant efficacy of P2X7 antag-
onist JNJ-54175446 was suspended due to the COVID-19 
pandemic [158]. Both phase 2 studies evaluating the effi-
cacy of P2X7 antagonists, CE-224,535 [159] and AZD9056 
[160], in the treatment of patients with rheumatoid arthri-
tis showed no significant benefit of the drug compared to 
placebo. Both drugs were well-tolerated by patients [159, 
160]. The single-blind, placebo-controlled, randomized 
phase 1 study was a first-time-in-human trial for the P2X7 
antagonist GSK1482160 developed to treat inflammatory 

pain. Ali et al. used a model-based approach to predict that 
adequate pharmacological engagement of P2X7 could not 
be achieved in vivo using safe human exposures [162]. As 
such, development of the drug was discontinued. The thera-
peutic relevance of P2X7 receptors in patients with inflam-
matory pain remains to be tested. New P2X7 antagonists 
are currently in phase 1 trials to assess safety and tolerabil-
ity (NCT03151486) [163] (NCT02587819) [164] or P2X7 
receptor occupancy (NCT03437590) [165] in healthy indi-
viduals, which is exciting for the prospect of P2X7 antago-
nist therapeutics. As we have reviewed above, there is evi-
dence for P2X3- and P2X7-mediated inflammatory pain in 
prostatitis [98, 100], which provides rationale for pre-clinical 
studies to test the efficacy of P2X3 and P2X7 antagonists in 
this context. Pre-clinical studies are also warranted to inves-
tigate targeting P2X7 for the treatment of CKD.

P2X7 receptor expression profiles improved kidney can-
cer prognostic accuracy as described previously. [62] P2X7 
expression is also detected in prostate cancer, but never in 
benign prostate tissues [11] and a SNP in the P2X7 gene is 
significantly associated with prostate cancer aggressiveness 
(P = 0.019). [115] Consequently, P2X7 receptors should 
be investigated as potential biomarkers in these cancer 
types. Safety and tolerability studies have been completed 
for a P2X7 antagonist that has potential as a basal cell 
carcinoma therapeutic (NCT02587819) [164]. This anti-
nf-P2X7 antibody ointment proved safe and well-tolerated, 
with 65% of patients showing a reduction in lesion area 
(n = 21) [166].

A P2Y2 agonist, diquafosol tetrasodium oph-
thalmic solution, has completed phase 3 clinical tri-
als (NCT00403975 [167], NCT00600288 [168], 
NCT00404131 [169], NCT00037661 [170]) in the USA 
and is approved in Japan and Korea for the topical treat-
ment of dry eye disease [171]. One study demonstrated that 
3% diquafosol may be an effective and safe treatment for 
the management of dry eye resulting from cataract surgery 
in patients with preexisting dry eye (NCT02608489) [172]. 
Another P2Y2 agonist, denufosol tetrasodium, completed 
phase 3 clinical studies to assess its efficacy in patients with 
cystic fibrosis (NCT00625612) [173]. While the treatments 
were well-tolerated, there was no benefit to the treatment 
group (n = 233) compared to the placebo group (n = 233) 
with respect to pulmonary function or the incidence of pul-
monary exacerbations [174]. As new generation agonists 
progress from pre-clinical studies, we look forward to stud-
ies investigating blood pressure control by managing renal 
 Na+ excretion. Similarly, the blockade of P2X1 showed 
great promise as a reversible male contraceptive and treat-
ment for ED [140]. However, P2X1 antagonists have not 
progressed to the clinical testing phase.
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Conclusions

P2 purinergic receptors are involved in normal kidney, blad-
der, and prostate function. Cell injury, necrosis, or apoptosis 
increase eATP concentrations and, subsequently, P2 puriner-
gic receptor expression. The consequence is receptor dysregu-
lation that might (i) directly disrupt normal urologic functions 
facilitating pathogenesis, (ii) mediate inflammation associated 
with urologic diseases, or (iii) facilitate pain associated with 
urologic diseases. Perhaps all of these might occur simulta-
neously. While key receptors are identified in some diseases 
and mechanisms proposed for their function, substantial gaps 
of understanding remain. Thorough characterization of P2 
purinergic receptor expression profiles and function is neces-
sary to bolster the current optimism surrounding therapeutic 
targeting of P2 purinergic receptors in urologic disease.
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