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Abstract
Atherosclerosis is the main pathological basis of cardiovascular disease and involves damage to vascular endothelial cells 
(ECs) that results in endothelial dysfunction (ED). The vascular endothelium is the key to maintaining blood vessel health 
and homeostasis. ED is a complex pathological process involving inflammation, shear stress, vascular tone, adhesion of 
leukocytes to ECs, and platelet aggregation. The activation of P2X4, P2X7, and P2Y2 receptors regulates vascular tone in 
response to shear stress, while activation of the A2A, P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y12 receptors promotes the 
secretion of inflammatory cytokines. Finally, P2X1, P2Y1, and P2Y12 receptor activation regulates platelet activity. These 
purinergic receptors mediate ED and participate in atherosclerosis. In short, P2X4, P2X7, P2Y1, and P2Y12 receptors are 
potential therapeutic targets for atherosclerosis.
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Introduction

Atherosclerosis is a chronic vascular disease and is the main 
pathological basis of cardiovascular disease (CVD) [1, 2]. 
Globally, CVD caused by atherosclerosis is spreading [3], 
leading to a heavy worldwide disease and economic burden 
[4]. Its pathogenesis involves lipid infiltration, endothelial 
injury, inflammation, and plaque formation [4], with endothe-
lial injury and an abnormal inflammatory response being the 
keys to its occurrence [5]. As the physical barrier between 
the blood and blood vessel wall, the vascular endothelium 
is essential for maintaining blood vessel homeostasis [6]. 
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Endothelial cells (ECs) bridge the blood and blood vessel 
walls and play a critical role in cardiovascular homeostasis by 
regulating shear stress, vascular tone, monocyte or leukocyte 
adhesion, and platelet aggregation [7]. Healthy ECs regulate 
the secretion and balance of vasodilating, vasoconstricting, 
anti-inflammatory, pro-inflammatory, oxidative, and antioxi-
dant factors. A properly functioning vascular endothelium 
is regarded as the gatekeeper to cardiovascular health [8]. 
ECs are the first barrier in protecting blood vessels. Accord-
ingly, atherosclerosis begins with their injury and dysfunc-
tion, which leads to plasma lipids invading the endothelium, 
monocyte or macrophage infiltration, vascular smooth mus-
cle cell migration to the intima, and the formation of foam 
cells via the engulfment of lipids by macrophage. Moreover, 
ECs secrete a variety of pro-inflammatory factors, which 
eventually evolve into atherosclerosis [9].

A normally functioning endothelium regulates vascular 
tone by balancing the secretion of vasodilators and vasocon-
strictors [10]. The decreased expression of vasodilatory factors 
such as nitric oxide (NO), prostacyclin I2 (PGI2), or endothe-
lial-derived hyperpolarizing factor (EDHF) or the increased 
expression of vasoconstrictor factors such as endothelin 1 
(ET-1), angiotensin II, or thromboxane A2 (TxA2) will imbal-
ance vascular homeostasis and cause ED. As a semiperme-
able membrane, the vascular endothelium forms a biological 
barrier between the intravascular and extravascular spaces to 
regulate the transportation and exchange of molecules [11]. 
An incomplete endothelial barrier leads to vascular hyper-
permeability, vascular swelling and edema, and eventually 
EC damage. ED is key in the occurrence and development of 
cardiovascular and cerebrovascular diseases. The main causes 
of ED are lipid metabolism disorders, inflammation, oxida-
tive stress, and shear stress [12]. Under the action of these 
factors, ECs reduce the synthesis or activity of NO, PGI2, 
EDHF, and other vasodilators and increase the synthesis of 
vasoconstrictors such as endothelin (ET). Consequently, this 
perturbation of the balance between vasodilation and vaso-
constriction induces the production of reactive oxygen spe-
cies (ROS) and the release of the pro-inflammatory cytokines 
interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis 
factor-α. Furthermore, the bioavailability of NO is reduced, 
which ultimately leads to ED [13].

Endothelial injury causes the abnormal expression of 
intercellular adhesion molecule-1 (ICAM-1), vascular cell 
adhesion molecule-1 (VCAM-1), and platelet-endothelial 
cell adhesion molecule-1 (PECAM-1); it also promotes 
the adhesion of leukocytes to ECs. ICAM-1, VCAM-1, 
and PECAM-1 are specific indicators of vascular endothe-
lial injury. Shear stress acts on ECs, causing leukocytes to 
migrate to adhesion molecules and chemokines in the arterial 
wall, leading to atherosclerosis [14]. The evaluation of EC 
function is an important tool for predicting the occurrence 
of CVD [15]. The improvement of EC function reduces the 

occurrence of CVD events, which include atherosclerosis 
[16, 17]. Interestingly, purinergic signaling is critical in reg-
ulating vascular tone and remodeling [18]. Increasing stud-
ies have reported that purinergic signaling mediates ED and 
participates in the formation of atherosclerosis [19].

In 1972, Burnstock introduced the concept of puriner-
gic signaling, whereby he identified adenosine triphosphate 
(ATP) as an extracellular signaling molecule and called it a 
purinergic neurotransmitter [20]. In 1976, he suggested that 
extracellular purinergic signaling acts via purinergic recep-
tors, thus first proposing the purinergic receptors [21]. The 
purinergic signaling system includes purinergic substances 
and their receptors. These purinergic substances include 
ATP, adenosine diphosphate (ADP), adenosine monophos-
phate (AMP), and adenosine. Almost all cells release ATP; 
it is the main universal energy currency in the cell, and it is 
released outside the cell as a signal molecule [22]. Intracel-
lularly, ATP, ADP, and AMP are converted into adenosine 
via cytoplasmic 5′-nucleosidase activity. ATP can also be 
converted to cyclic adenosine monophosphate (cAMP) by 
adenylyl cyclase, which is then subsequently converted to 
AMP by phosphodiesterase. Cytoplasmic 5′-nucleotidase 
then converts AMP to adenosine. Additionally, adenosine is 
converted into inosine by adenosine deaminase, and adeno-
sine can be converted back into AMP by adenosine kinase 
[23]. Extracellularly, ATP is released to the extracellular 
space via transporter-mediated or ATP-permeable ion chan-
nels, such as the pannexin 1 channel [24]. ATP is hydrolyzed 
to ADP and AMP mainly via the continuous action of ecto-
nucleoside diphosphohydrolase triphosphate (CD39), while 
ecto-5′-nucleotidase (CD73) converts the AMP produced by 
the ATP and cAMP pathway into adenosine [25].

Purinergic receptors can be subdivided into two catego-
ries: P1 and P2. P1 receptors are G protein-coupled and con-
sist of the A1, A2A, A2B, and A3 receptor subtypes [26]; 
they are also known as adenosine receptors [27]. P2 receptors 
consist of two types, P2X and P2Y. P2X are ligand-gated 
cationic channel receptors and can be subdivided into the 
P2X1-7 receptor subtypes [28]. They mediate rapid responses 
to ATP [29]. By contrast, P2Y receptors are G protein-cou-
pled and can be divided into the P2Y1, P2Y2, P2Y4, P2Y6, 
and P2Y11-14 receptor subtypes [28]; they respond to ATP 
and ADP [29]. Notably, the role of purinergic substances and 
their receptors in physiological and pathological processes 
has recently received more attention [30–32].

Purinergic receptors and endothelial 
dysfunction

Purinergic receptors are distributed throughout most tissues 
or cells and are the basis of endothelial-mediated vasodila-
tion [33], inflammation [34], cell differentiation, migration, 
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and proliferation [35]. Adenosine and ATP mediate the 
migration, growth, and proliferation of ECs [35]. During 
vascular remodeling, ATP and adenosine act on ECs via 
P1 and P2Y receptors to promote proliferation [19]. The 
purinergic activation of ECs leads to the release of NO, 
PGI2, and EDHF, thereby causing vasodilation [36, 37]. 
More specifically, endothelial P2Y receptors mediate vaso-
dilation by releasing NO and EDHF [33].

Reductions in NO bioavailability and increases in ROS 
release can cause ED [38]. Damage to the barrier function 
of the vascular endothelium promotes the deposition of 
low-density lipoprotein under the vascular intima, which 
is then modified into oxidized low-density lipoprotein 
(ox-LDL). As a key molecule in atherosclerosis, ox-LDL 
can bind to receptors and trigger a series of intracellu-
lar changes that cause vascular EC injury and dysfunc-
tion. The stimulation of monocyte macrophages to exces-
sively engulf ox-LDL accelerates the transformation of 
macrophages into foam cells and forms plaques under the 
vascular endothelium, thereby promoting atherosclerosis 
development [39]. Notably, ox-LDL stimulates ECs to 
release ATP, thereby activating P2Y2 receptor. On one 
hand, it increases caspase-1 activity and interleukin-1β 
(IL-1β) secretion and activates the inflammasome [40]. 
On the other hand, it promotes ROS release, increases 
ICAM-1 and VCAM-1 content, promotes monocyte migra-
tion and EC adhesion, and participates in the pathogenesis 
of atherosclerosis [34]. P2Y2 receptors are an important 
medium for ox-LDL-mediated monocyte adhesion to ECs 
[34]. Table 1 summarizes the ED caused by purinergic 
receptors activation or inhibition, and Fig. 1 summarizes 
the role of purinergic receptors in atherosclerosis via their 
regulation of vascular tone, inflammation, and platelet 
aggregation.

Table 1   Purinergic receptor activation or inhibition leads to endothe-
lial dysfunction

 + , activation; − , inhibition
Activation or inhibition of different purinergic receptors leads to 
endothelial dysfunction by regulating vascular tone, inflammation, 
and platelet activity, thereby indicating their participation in athero-
sclerosis

P1 P2X P2Y

Increased vascular tone P2X4 (-) P2Y2 (-)
Inflammation P2X7 (-)

A2A (-) P2X4 ( +) P2Y1 ( +)
A1 ( +) P2X7 ( +) P2Y2 ( +)

P2Y6 ( +)
P2Y12 ( +)

Platelet activation P2X1 ( +) P2Y1 ( +)
P2Y12 ( +)

Fig. 1   Purinergic receptors mediate ED and participate in athero-
sclerosis. A2A, A2B, A3, P2X1, P2X4, P2X7, P2Y1, P2Y2, P2Y6, 
P2Y11, and P2Y12 receptors mediate endothelial cell dysfunction 
and participate in atherosclerosis. The activation of P2X4, P2X7, and 
P2Y2 receptors regulates vascular tone in response to shear stress. 
The activation of A2A, P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y12 

receptors promotes the secretion of inflammatory cytokine interleu-
kin (IL)-1β, 1L-6, IL-8, IL-1, intercellular adhesion molecule-1 and 
vascular cell adhesion molecule-1. P2X1, P2Y1, and P2Y12 receptor 
activation regulates platelet activity (platelet aggregation), mediates 
ED, and participates in atherosclerosis. R, receptors
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P1 receptors in endothelial dysfunction

A1, A2A, A2B, and A3 receptors are expressed on ECs 
[41], among which the A2A and A2B receptors are the main 
purinergic receptors on ECs [42]. A2A receptor knockout 
in apolipoprotein E-deficient mice prevents the formation 
of atherosclerotic lesions [43]. Under hypoxic conditions, 
adenosine activates A3 and A2B receptors, increases vas-
cular endothelial growth factor (VEGF) secretion, and pro-
motes foam cell formation [44]. A2A and A2B receptors 
activation will increase cAMP levels, leading to vasodilation 
[45]. The subcutaneous injection of A2A receptor agonist in 
mice decreases VCAM-1, ICAM-1, and P-selectin expres-
sion. Adenosine inhibits early inflammation by activating 
the A2A receptors of ECs [46]. The knockout or inhibition 
of A1 receptor also reduces the concentration of pro-inflam-
matory cytokines, thereby reducing atherosclerotic lesions in 
apolipoprotein E-deficient mice [47]. In short, P1 receptors 
mediate ED and participate in atherosclerosis.

P2 receptors in endothelial dysfunction

P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y11 receptors are 
the most highly expressed P2 receptors in ECs and may be 
related to the release of ATP, NO, and EDHF [48]. P2X 
receptors are also expressed on ECs and are related to cell 
adhesion and permeability. The stimulation of human ECs 
via P2Y1 receptors activate VEGF-2 and leads to angiogen-
esis [49]. P2Y2 receptors in ECs regulate angiopoietin-2 and 
VEGFR-2 expression and play a crucial role in angiogen-
esis [50]. Endothelial P2Y2 receptor knockout will reduce 
endothelial nitric oxide synthase (eNOS) activity, resulting 
in reduced NO production, causing vasoconstriction, and 
ultimately leading to ED [51]. Ticagrelor, a P2Y12 inhibi-
tor, improves endothelial function by activating endothelial 
eNOS in the vascular endothelium, thereby reducing circu-
lating epidermal growth factor [52].

Shear stress is the frictional resistance acting on the 
vascular cavity surface [53]. It can regulate the structure 
and function of the endothelium [54, 55] and is closely 
related to the development, physiology, and pathology of 
the blood vessel. ECs transduce fluid shear stress into bio-
chemical signals to regulate endothelial function [56]. That 
is, in response to shear stress or hypoxia, ECs release ATP, 
which then act on P2X and P2Y receptors on the endothe-
lium to release NO, PGI2, and EDHF, causing vasodilation 
[19, 57]. When the endothelium is injured, it promotes the 
release of vasoconstrictors, resulting in vasospasm [58]. 
Ca2+ plays an important role in the EC response to shear 
stress. As the P2X4 receptors of ECs participate in shear 
stress-mediated Ca2+ transmission, they may have shear 

sensor properties [59]. The ECs of mice with knockout 
P2X4 receptors respond to shear stress, and as the amount of 
released NO decreases, vascular tone increases [60]. Under 
the action of shear stress, ATP acts on ECs via P2X7 recep-
tors, which induces E-selectin and IL-1β secretion and pro-
motes endothelial inflammation in atherosclerotic sites [61]. 
In response to shear stress, ECs also release ATP, which 
acts on the P2Y2 receptor of ECs to induce NO release, and 
regulate vascular tone [62]. Correspondingly, deletion of the 
P2Y2 gene reduces shear stress-induced vasodilation [63].

Purinergic signaling mediating ED is involved in ath-
erosclerosis, mainly via P2 receptor-mediated EC inflam-
mation. ATP is released into the extracellular space and 
binds to P2 receptors to mediate inflammation [64]. During 
inflammation, ECs release ATP via the pannexin 1 chan-
nels to promote leukocyte adhesion and migration [24]. 
Notably, the release of ATP also involves the connexin 
43 channels [65]. High glucose and palmitate upregulated 
the expression of P2X4 and P2X7 in human umbilical vein 
ECs, as well as increased the release of the inflammatory 
factors IL-1β, 1L-6, IL-8, ICAM-1, and VCAM-1. These 
results indicate that P2X4 and P2X7 receptors regulate 
high-glycemic inflammation in ECs. Hyperglycemia and 
hyperlipidemia cause ED, leading to oxidative stress and 
inflammation [66]. ATP acts on the P2X7 receptor, acti-
vates the inflammasome, and induces the release of inflam-
matory cytokines IL-1β and IL-18 as well as the produc-
tion of ROS [67]. It promotes inflammation and ED and 
ultimately leads to atherosclerosis. Vascular traction injury 
has been reported to promote ATP release, which inhib-
its the production of NO via EC P2X7 receptors, leading 
to ED [68]. P2X7 receptors are highly expressed in mice 
with atherosclerotic lesions, and the realization of clinical 
patients is also consistent. P2X7-deficient mice exhibit 
reduced inflammasome activation and reduced leukocyte 
rolling and adhesion. These results indicate that P2X7 
underactivity reduces atherosclerotic lesions by inhibiting 
the inflammatory response [69]. P2X7 receptor antago-
nists reduce IL-1β levels in atherosclerotic blood vessels 
[70]. As a ligand-gated ion channel, P2X7 receptor binds 
to extracellular ATP and promotes IL-1β release via the 
pannexin-1 channel [71].

P2Y1 receptor knockout in apolipoprotein E-deficient 
mice decreases macrophage infiltration and VCAM-1 levels, 
indicating that atherosclerosis is related to the P2Y1 recep-
tors on ECs [72]. P2Y2 receptor causes vascular inflamma-
tion by increasing VCAM-1 expression in ECs, which even-
tually causes atherosclerosis [51]. In P2Y2 receptor-deficient 
mice, ATP-induced leukocyte adhesion is reduced. In addi-
tion, VCAM-1 and ICAM-1 RNA levels are decreased, indi-
cating that extracellular ATP induces vascular inflamma-
tion and atherosclerosis by activating P2Y2 receptor [73]. 
In P2Y6-deficient mice, leukocyte adhesion to the vessel 
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wall is reduced, as are ox-LDL and lipid content and RNA 
expression of ICAM-1 and IL-6. These reductions indicate 
that P2Y6 deficiency reduces inflammation and inhibits ath-
erosclerosis [74]. During lipopolysaccharide-induced vas-
cular inflammation, P2Y6 receptor knockout or injection 
of P2Y6 antagonists weakens the inflammatory response, 
indicating that P2Y6 receptor are closely related to vascular 
inflammation [75]. Inhibition P2Y12 receptor expression 
protects EC barrier function by increasing the concentra-
tion of cAMP in ECs [76]. Notably, P2Y11 receptor is also 
closely related to inflammation, as their stimulation reduces 
oxidative stress and improves ED [77].

Interestingly, purinergic signaling is also involved in ath-
erosclerosis by regulating platelet activity. Platelets adhere 
and fuse into the vascular endothelium, thereby maintain-
ing its integrity. P2X1, P2Y1, and P2Y12 receptors are 
expressed on platelets and mediate their aggregation [58]. 
ADP is a platelet agonist; it causes platelet shape change 
and aggregation via the P2X1, P2Y1, and P2Y12 receptors 
and generates TxA2 [78]. ATP diphosphohydrolase hydro-
lyzes extracellular ATP and ADP to AMP, and ADP inhib-
its platelet aggregation via ATP diphosphohydrolase. ATP 
diphosphohydrolase has the same functionality as CD39 
[79]. CD39 is expressed on the surface of ECs, inhibits 
ADP-induced platelet aggregation, and is the main regula-
tor of platelet activation [80]. Moreover, it protects against 
atherosclerosis [81]. Aspirin or clopidogrel, P2Y12 receptor 
antagonists that mediate platelet aggregation, is widely used 
to treat stroke and thrombosis [82, 83].

Conclusion

Although a review of purinergic signaling in the cardiovas-
cular system has been previously published [58], this review 
focuses on purinergic signaling mediating ED caused by ath-
erosclerosis. Atherosclerosis begins with vascular ED, and 
ED involves purinergic signaling. ATP and its degradation 
products ADP, AMP, adenosine, uridine diphosphate, and 
cAMP stimulate a series of receptors and affect endothelial 
function. So far, the A2A, A2B, A3, P2X1, P2X4, P2X7, 
P2Y1, P2Y2, P2Y6, P2Y11, and P2Y12 receptors have been 
demonstrated to mediate EC dysfunction and participate in 
atherosclerosis.

This review reports that purinergic signaling mediates EC 
dysfunction and participates in atherosclerosis in different 
ways. Purinergic signaling plays an important role in regu-
lating endothelial structure and function in response to shear 
stress. ECs release ATP in response to shear stress, which 
acts on P2X4 [60], P2X7 [61], and P2Y2 receptors [62] to 
regulate vascular tone. Disturbances in vascular tone will 
result in ED. Purinergic signaling also plays an important 

role in the inflammatory response, particularly by activating 
the A2A [46], P2X4 [66], P2X7 [69], and P2Y1 receptors 
[73] to induce the release of inflammatory factors and to pro-
mote the adhesion of leukocytes to ECs. Purinergic signaling 
also activates the P2X1, P2Y1, and P2Y12 receptors [78], 
causing platelet shape changes and aggregation and mediat-
ing ED to contribute to atherosclerosis.

In combination with the current understanding of the 
pathogenesis underlying atherosclerosis caused by ED and 
the in-depth understanding of purinergic signaling, further 
study is needed to determine the specific P2 receptors that 
mediate ED. Since different purinergic receptor subtypes can 
mediate similar functional effects, it is challenging to selec-
tively target specific receptor subtypes. From this review, 
P2X4, P2X7, P2Y1, and P2Y12 receptors may be potential 
therapeutic targets for atherosclerosis. While few studies 
have been published on the involvement of P1 receptor-
mediated ED in atherosclerosis, we will pay more atten-
tion to the relationship between P1 receptors and ED in the 
future. Therefore, purinergic receptors may become potential 
therapeutic targets for atherosclerosis.
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