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Abstract  
Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation 
in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. 
Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly 
elevated from the  1st to  3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats 
significantly reduced from the  2nd to  3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG 
of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence 
revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the  2nd 
and  3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce 
mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and 
P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved 
in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for 
DNP management.
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Abbreviations
BW  Body weight
CaMKIIα  Calcium/calmodulin-dependent protein kinase 

II α

DRG  Dorsal root ganglion
DNP  Diabetic neuropathic pain
FBG  Fasting blood glucose
PWT  Paw withdrawal threshold
PWL  Paw withdrawal latency
STZ  Streptozotocin

Introduction

Diabetes patients often develop diabetic neuropathic pain 
(DNP) [1, 2]. DNP symptoms include paresthesia, hyper-
algesia, allodynia, and spontaneous pain [3, 4]. A pain-
ful sensation is transmitted by dorsal root ganglia (DRG) 
from peripheral afferents to the central nervous system [5]. 
Sensitization of DRG neurons and associated nerve fibers 
is suggested as a major cause of DNP [6, 7]. DNP mark-
edly reduces patients’ quality of life, which may cause 
withdrawal from social events and depression [8–10]. Since 
DNP pathogenesis is not well understood, DNP treatment 
is a challenging.
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Streptozotocin (STZ), a glucosamine-nitrosourea com-
pound obtained from Streptomyces achromogenes, has been 
applied in research to establish animal models diabetes to 
explore diabetes and its complications, including DNP. STZ-
induced hyperglycemia is reported to contribute to hyperal-
gesia development [11, 12].

P2X receptors are abundant in DRG neurons [13, 14]. 
P2X3 sensitization is reported to cause inflammatory pain 
and neuropathic pain [11, 15]. Previously, we have shown 
that P2X3 upregulation in DRG influences STZ-induced 
DNP [12, 16], but the mechanisms underlying P2X3 upregu-
lation in DRG during DNP are unclear.

Calcium/calmodulin-dependent protein kinase II 
(CaMKII) is encoded by one of four genes (α, β, γ, and 
δ)[17]. The γ and δ isoforms are ubiquitously expressed 
whereas α and β isoforms are expressed abundantly in 
nerve cells [18]. CaMKIIα is the most abundant iso-
form of neuronal CaMKII [19]. CaMKII participates 
in processing of nociceptive signals in primary sensory 
neurons of the DRG [20, 21]. CaMKII is activated by 
calcium/calmodulin binding, which frees the catalytic 
domain to auto-phosphorylate the kinase domain on 
Thr286 or Thr287 [22, 23]. Phosphorylated CaMKIIα 
levels are elevated in type 1 diabetic animals and are 
accompanied by pain-related behaviors [24]. CaMKII is 
reported to regulate purinergic signaling via an intracel-
lular pathway, that modulates the efficiency and stability 
of P2X3 [25]. Suggesting that p-CaMKIIα may mediate 
P2X3 upregulation in DRG undering DNP.

Here, we used a STZ-induced rat model of DNP to 
assess mechanical allodynia, thermal hyperalgesia, and 
p-CaMKIIα expression in DRG. We find that p-CaMKIIα 
and P2X3 are co-expressed in DRG during DNP. The 
effects of KN93, a CaMKII inhibitor, on pain-related 
behavior and p-CaMKIIα and P2X3 receptor expression 
in DRG were also studied.

Materials and methods

Animals

Adult male Sprague–Dawley rats (180–220 g) were  
purchased from Shanghai Laboratory Animal Center  
of Chinese Academy of Sciences (SCXK (hu) 2018– 
0006). All animals were housed in a temperature- 
controlled environment at 25 ± 2 °C with 12 h light/dark  
cycles and 55% ± 5% humidity with ad libitum access 
to food and water. The study was approved by the 

Animal Welfare Committee of Zhejiang Chinese Medi-
cal University (IACUC – 20180723–08).

Induction of type 1 diabetic neuropathic pain

To induce diabetes, the rats were fasted for 16  h and 
then administered with a single dose of STZ (Sigma, 
USA) at 65 mg/kg body weight in 0.1 mol/L sodium cit-
rate (pH = 4.5) [26, 27]. Rats with fasting blood glucose 
(FBG) > 13.9 mmol/L [28, 29] and exhibiting pain behav-
ior two weeks after injection were considered as successful 
DNP models.

Experimental design and animal grouping

Our study was divided into 2 parts. In Part 1, we assessed the 
development of DNP after STZ injection using behavioral 
assays and evaluated the role of CaMKIIα and p-CaMKIIα in 
L4-L6 DRGs of DNP rats. Experimental rats were randomly 
allocated to Control group (12 rats) sacrificed 3 weeks after 
sodium citrate buffer injection for tissues, and DNP group 
(36 rats). Of the DNP rats, 9 were sacrificed 1 week after 
STZ injection, 9 were sacrificed 2 weeks after STZ injec-
tion, 12 were sacrificed 3 weeks after STZ injection and 
tissues harvested, and 6 rats died or failed to successfully 
model DNP. Paw withdrawal thresholds (PWT) and paw 
withdrawal latency (PWL) were recorded according to the 
schedule (Fig. 1a).

In Part 2, we examined the involvement of p-CaMKIIα 
in DNP through treating with KN93, a CaMKII inhibi- 
tor. To this end, rats were randomly divided into 4 groups: 
(1) Control + vehicle group, (2) DNP + vehicle group, (3) 
DNP + 25 nmol KN93 group, (4) DNP + 50 nmol KN93 
group. Pain behavioral tests were then performed accord-
ing to the schedule (Fig. 7a). Out of 36 rats injected with 
STZ, 30 successfully modeled DNP while 3 died and 3 were 
unsuccessfully modeled.

Fasting blood glucose and body weight 
measurements

Fasting blood glucose (FBG) and body weight (BW) were 
recorded at the beginning of the study and monitored 
weekly. Rats were fasted for 8 h, blood samples drawn from 
the tail vein, and FBG measured using a glucometer (Roche, 
Germany).
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Measurement of paw withdrawal threshold

The (PWT) was determined before STZ injection and 1, 2, 
and 3 weeks after STZ injection. The PWT was determined 
using a dynamic plantar aesthesiometer (37450, Ugo Basile, 
Italy) as detailed previously [16]. Briefly, rats were placed 
in Plexiglas cubicles on a wire mesh platform for a 15-min 

adaptation. A stimulating probe was then positioned under 
their left hind paw and an increasing vertical force (continu-
ous increase from 0 to 50 g in 20 s) applied. The instrument 
recorded the force that triggers limb withdrawal and the 
tolerance threshold was given by the mean of 3 readings. 
Experimenters were blinded to the experimental design.

Fig. 1  STZ induces diabetic 
neuropathic pain in rats. (a) 
Schematic of protocol for 
establishing the DNP model. 
(b) Effects of STZ on FBG at 
various time-points. (c) Effects 
of STZ on BW at various time-
points. (d) Effects of STZ on 
PWT at various time-points. (e) 
Normalized AUC analysis of 
(d). (f) Effects of STZ on PWL 
at various time-points. (g) Nor-
malized area under the curve 
(AUC) analysis of (f). **P < 0.01 
vs. Control group. n = 6
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Measurement of the paw withdrawal latency

The paw withdrawal latency (PWL) was determined before 
STZ injection and 1, 2, and 3 weeks after STZ injection, 
respectively. PWL was determined using noxious thermal 
stimulation (37370, Ugo Basile, Italy) as described before 
[30]. After adaptation, radiant heat was applied under 
the left hind paw and the time to paw withdraw recorded 
immediately to the nearest 0.1 s. Tolerance latency was 
given by the 3 measurements. The cut-off time for heat 
stimulation was 20  s. Hind paws were tested at 5-min 
intervals. Experimenters were blinded to the experimen-
tal design.

Western blot analysis

L4-L6 DRGs were harvested, lysed in RIPA buffer and  
cleared by centrifugation at 12,000 rpm for 20 min. After  
quantification, the protein samples (25 ug) were resolved  
by 8% SDS-PAGE before transfer onto PVDF membranes. 
Membranes were blocked with 5% milk-TBST for 1 h at 37 
℃ and then incubated with rabbit anti-p-CaMKIIα (ab5683, 
1:1000, Abcam, USA),  mouse anti-CaMKIIα (50049,  
1:1000, CST, USA), and mouse anti-β-actin (12262,1:5000, 
CST, USA) at 4 °C overnight. Membranes were washed with  
TBST for 5–10 min and then incubated with HRP-conjugated  
anti-rabbit (7074, 1:5000, CST, USA) or anti-mouse 

(7076,1:5000, CST, USA) IgG for 2 h at 37 °C. Signal was  
then developed by enhanced chemiluminescence (Beyotime, 
Shanghai, China) following manufacturer instructions. The 
protein bands were analyzed using ImageJ software and  
normalized to β-actin.

Immunofluorescence

Rats were anaesthetized by intraperitoneal injection of  
sodium pentobarbital (80 mg/kg) and perfused with saline  
followed by 4% paraformaldehyde respectively. L4-L6  
DRGs were then quickly collected from sacrificed rats and  
fixed in 4% formaldehyde for 4  h. The collected tissues  
were then cryoprotected overnight in 15% and 30% sucrose  
solution at 4  °C until they had sunk to the bottom. They  
were then frozen embedded in optimum cutter temperature 
(OCT)-compound (SAKURA, Torrance, CA, USA), serially  
sectioned at 10  μm using a cryomicrotome (NX50 HOP, 
Thermo, Germany) and mounted onto gelatin-coated glass 
slides.

To assess p-CaMKII α expression in L4-L6 DRG neu- 
rons, sections were permeabilized with 0.1% TBST and  
blocked with 10% normal donkey serum for 1  h before  
incubation with rabbit anti-p-CaMKIIα (ab5683, 1:800, Abcam, 
USA) and mouse anti-NeuN (ab104224, 1:500, Abcam, USA) at 
4 °C, overnight. They were then incubated with Alexa Fluor 488 
donkey anti-rabbit IgG (711–545-152, 1:800, Jackson, USA) 

Fig. 2  Western blot analysis of CaMK II α and p-CaMK IIα levels in 
DRGs of STZ-induced diabetic rats. (a) Representative western blot 
image of CaMK IIα levels. (b) Relative protein levels of CaMK IIα 
in rat L4-6 DRGs. Data are presented as mean ± SEM, n = 6. (c) Rep-

resentative western blot images of p-CaMK IIα levels. (d) Relative 
p-CaMK IIα protein levels in rat L4-6 DRGs. ∗∗P < 0.01, vs. Control 
group. Data are presented as mean ± SEM. n = 6
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and Alexa Fluor 647 donkey anti-mouse IgG (715–605-150, 
1:800, Jackson, USA) at 37 °C for 1 h and imaged on a fluores-
cence microscope (Zeiss Imager M2, Germany). Fluorescence 
intensity was then analyzed on ImageJ software (3 to 5 images 
were measured for each DRG).

To assess co-expression between P2X3 and p-CaMKII  
α in L4-L6 DRGs, sections were permeabilized with 0.1%  
TBST and blocked with 10% normal goat serum for 1 h.  
They were then incubated with anti-p-CaMKIIα (phospho 
T286, ab5683, 1:800, Abcam, USA) and guinea pig anti- 
P2X3 (GTX10267, 1:500, GeneTex, USA) at 4  °C, over- 
night. Next, they were incubated with Alexa Fluor 488  
goat anti-rabbit IgG (ab150077, 1:800, abcam, USA) and  

Alexa Fluor 647 goat anti-guinea pig IgG (ab150187, 1:800, 
Abcam, USA) secondary antibodies at 37 °C for 1 h and imaged 
on a fluorescence microscope.

Drug administration

KN93 (422708-5MG, Sigma-Aldrich, USA), a specific  
CaMKII inhibitor, was dissolved in sterile 0.9% saline and 
diluted to specific concentrations immediately before each 
experiment. Rats were then injected with KN93 (25 nmol  
or 50 nmol) in the ventral surface of each hind paw. The  
control + vehicle and DNP + vehicle groups were injected  
with the same volumes of 0.9% saline.

Fig. 3  (a) Representative IF 
images of p-CaMK II α (green) 
expression in neurons (red, 
NeuN) in L4 DRG of DNP rats. 
Scale bar 100 µm. (b) p-CaMK 
II α/NeuN ratio in L4 DRGs 
in Control, 1 W, 2 W, and 3 W 
group. **P < 0.01 vs. Control 
group. Data are presented as 
mean ± SEM. n = 3
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Statistical analysis

Data were analyzed using SPSS version 21.0 and were  
expressed as mean ± SEM. Independent-sample t-test was  
used to compare 2 groups. One-way ANOVA with least sig- 
nificant difference (LSD) as post hoc test was used to com-
pare > 2 groups. For the behavioral tests, two-way repeated-
measures ANOVA, followed by Bonferroni’s post hoc test,  
was used. P < 0.05 was considered statistically significant.

Result

STZ induces diabetic neuropathic pain in rats

In STZ-induced diabetic rats, FBG levels were markedly 
elevated in the 1st week of STZ (65 mg/kg) injection and 

persisted until the  3rd week when compared to control rats  
(p < 0.01) whose FBG remained at baseline levels 
(Fig. 1b). Relative to control rats whose body weight con-
tinued to rise, growth rate was significantly slowed in DNP 
rats (p =  < 0.01, Fig. 1c). Relative to the control group, 
DNP rats had significantly lower PWTs and PWLs in the 
2nd week and this persisted until the 3rd week (P < 0.01, 
respectively, Fig. 1d–g). These results indicated that DNP 
model was successfully established on the 2nd week after 
STZ injection.

CaMKII α and p‑CaMKII α protein levels in L4‑L6 
DRGs after STZ injection

Western blot analysis of the CaMKIIα and p-CaMKIIα 
levels in L4-L6 DRGs revealed that p-CaMKII α lev-
els significantly increased in STZ-induced diabetic rats 

Fig. 4  (a) Representative IF 
images of p-CaMK IIα (green) 
expression in neurons (red) in 
L5 DRG of DNP rats. Scale 
bar 100 µm. (b) p-CaMK IIα/
NeuN ratio in L5 DRGs in 
Control, 1 W, 2 W, and 3 W 
group. **P < 0.01 vs. Control 
group. Data are presented as 
mean ± SEM. n = 3
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(Fig. 2c, d), while CaMKII α level did not change sig-
nificantly (Fig. 2a, b). Indicating that p-CaMKIIα was 
upregulated in DRG, which is consistent with DNP 
model establishment upon STZ injection.

Co‑expression of p‑CaMKII α/NeuN in L4‑L6 DRGs

IF analysis of co-expression between p-CaMKII α and 
NeuN in L4-L6 DRGs revealed that relative to controls, 
the proportion of p-CaMKII α-positive L4-L6 DRG 
neurons (stained with NeuN) in DNP rats was mark-
edly increased in week 2 and 3 of STZ-induced diabetes 
(representative IF images: Figs. 3a, 4a, and 5a, analysis: 
Figs. 3b, 4b, and 5b).

Co‑expression of P2X3/p‑CaMKII α in L4‑L6 DRGs

IF analysis (Fig. 6) of L4-L6 DRGs from DNP rats revealed 
P2X3/p-CaMKII α co-expression, implying that p-CaMKII 
α may interact and modulate P2X3 expression in DRG neu-
rons during DNP.

Effect of the CaMKII inhibitor KN93 on DNP rats

Next, we evaluated the effect of KN93 on DNP rats by exam-
ining their PWTs and PWLs. Diabetic rats had significantly 
higher FBG relative to controls after 1 week, and this differ-
ence persisted throughout the experiment (P < 0.01, respec-
tively; Fig. 7c), while their PWTs and PWLs decreased 

Fig. 5  (a) Representative IF 
images of p-CaMK IIα positive 
(green) expression in neurons 
(red) in L6 DRG of DNP rats. 
Scale bar 100 µm. (b) p-CaMK 
IIα/NeuN ratio in L6 DRGs in 
Control, 1 W, 2 W, and 3 W 
group. **P < 0.01 vs. Control 
group. Data are presented as 
mean ± SEM. n = 3
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significantly decreased on 2  W (Fig.  7d–g), indicating 
successful establishment of the DNP model. To assess if 
CaMKIIα phosphorylation contributes to DNP, rats were 
treated with KN93 or vehicle (0.9% saline) via intraplan-
tar injection on the 2nd week after STZ injection and their 
PWTs and PWLs evaluated 0.5, 1, 2, and 4 h after KN93 
injection. This analysis revealed that relative to the control 
(vehicle), 50 nmol KN93, but not 25 nmol, significantly 
reduced mechanical allodynia and thermal hyperalgesia 
0.5 h after KN93 injection. This effect on PWT and PWL 
lasted 4 and 2 h after treatment, respectively (Fig. 7d, e). 
Relative to control treatment (DNP + vehicle), daily KN93 
injection for 7 days (25 and 50 nmol) significantly increased 
PWT and PWL on week 3 (Fig. 7f, g).

KN93 reduced CaMKIIα phosphorylation and P2X3 
overexpression in the DRGs of DNP rats

IF analysis of the DRG levels of p-CaMKIIα and 
P2X3 revealed that they were significantly elevated 
in the DNP + vehicle group (P < 0.01, Figs. 8 and 9). 
Moreover, treatment with KN93 (50  nmol) signifi-
cantly reduced p-CaMKIIα and P2X3 levels relative to 
DNP rats treated with vehicle (P < 0.01, Figs. 8 and 9). 
However, 25 nmol KN93 did not significantly affect 
p-CaMKIIα and P2X3 levels (P > 0.05). These results 
indicate that CaMKIIα inhibition by KN93 suppressed 

CaMKIIα phosphorylation and P2X3 upregulation in 
the DRGs of DNP rats.

Discussion

There are two types of diabetes based on underlying 
causes. In general, type 1 diabetes may be directly or 
indirectly caused by damage to insulin-producing pan-
creatic β cells due to immune destruction [31, 32]. On 
the other hand, type 2 diabetes results from insulin 
resistance [33]. Both types of diabetes are associated 
with neuropathic pain. STZ is commonly used to induce 
DNP in experimental animals [34–36] and causes 
peripheral neuropathy and hyperalgesia when admin-
istered at high doses or multiple small doses. Here, we 
successfully established a rat model of DNP using a 
single, high dose of STZ. We observed that p-CaMKII α 
levels were upregulated in the DRG of the DNP rats and 
that it was co-expressed with P2X3. Treating the DNP 
rats by intraplantar injection of KN93 [37, 38] at 25 and 
50 nmol revealed that the higher dose, but not the lower 
one, relieved DNP and downregulated p-CaMKIIα and 
P2X3 levels.

The role of CaMKII in nociceptive processing has 
been intensively studied. CaMKII is the foundation of 
synaptic plasticity [39, 40] and plays a key role in pain 

Fig. 6  Representative IF images 
of p-CaMK IIα (red) expres-
sion in P2X3 positive (green) 
in lumbar L4-L6 DRGs of DNP 
rats. Scale bar 100 µm
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modulation. CaMKII is expressed in about 50% of rat 
DRG neurons which regulate pain [20]. Inflammatory 
pain upregulates CaMKII in DRGs [21] and the spinal 
cord in a rat model of type 2 DNP [41, 42]. In rodent 
models of diabetes, increased calcium currents and cyto-
solic calcium release from internal storage have been 
observed in peripheral sensory neurons and DRGs [43]. 

Upon binding to  Ca2+, CaMKII is activated by auto-phos-
phorylation. Intrathecal administration of KN93 reduces 
neuropathic pain [44, 45] and pain-related behavior in 
DNP rats [41, 42]. Furthermore, silencing CaMKIIα 
expression effectively relieves both the evoked pain 
and persistent spontaneous pain [46]. In hyperglycemia, 
KN93 partially suppresses increased CaMKII phospho-
rylation [47]. In the present study, western blot analysis 

Fig. 7  Effects of the CaMKII 
inhibitor, KN93, on DNP rats. 
(a) Schedule of treatment 
with KN93. (b) A schematic 
illustration of the injection site. 
(c) Time course effect of STZ 
injection on FBG. (d) Effect 
of 25 and 50 nmol KN93 on 
PWT at 0.5, 1, 2, and 4 h after 
injection. (e) Effect of 25 and 
50 nmol KN93 on PWL at 0.5, 
1, 2 and 4 h after injection. 
(f) Effect of 25 and 50 nmol 
KN93 on PWT at 3W. (g) Effect 
of 25 and 50 nmol KN93 
on PWL at 3W. *P < 0.05, 
**P < 0.01 vs. Control + vehicle 
group. #P < 0.05, ##P < 0.01 vs. 
DNP + vehicle group. n = 5

107Purinergic Signalling (2023) 19:99–111



1 3

revealed elevated p-CaMKIIα levels in L4, L5, and L6 
DRGs but CaMKIIα levels did not change significantly. 
Colocalization IF revealed elevated p-CaMKIIα levels 
in DRG neurons. Both single and repeated injections of 
high-dose (50 nmol) KN93, but not low-dose (25 nmol) 
KN93, significantly relieved DNP and reduced DRG lev-
els of p-CaMKIIα levels. A previous study also showed 
that KN93 inhibits CaMKII activity dose-dependently 
[48], which is consistent with our findings that elevated 
p-CaMKIIα plays a critical role in mediating DNP.

In addition to p-CaMKIIα, P2X3 also contributes to 
DNP. Our data show that P2X3 expression was increased 
in the DRG of STZ-induced DNP rats, which is consistent 
with previous reports [11, 12]. P2X3 is known to mediate 

neuropathic pain and A-317491, a P2X3 antagonist, 
suppresses pain signal transmission on primary affer-
ents in the DRGs of a rat model of chronic neuropathic 
pain [49–51]. A past study found that CaMKII regulates 
purinergic signaling via intracellular signaling pathway, 
which in turn modulates P2X3 [25]. Here, based on our 
previous findings that P2X3 was upregulated in the L4-L6 
DRGs of DNP rats [12], we examined the effect of CaM-
KII on P2X3 in L4-L6 DRGs. Colocalization IF revealed 
p-CaMKIIα co-expression with P2X3 in DNP rats. High-
dose KN93 (50 nmol) reduced p-CaMKIIα and P2X3 
levels in DRGs. The latter is widely implicated in neu-
ropathic pain [52–54] and DNP. Thus, p-CaMKIIα may 
influence DNP by modulating P2X3 expression in DRGs.

Fig. 8  Effect of different KN93 
doses on p-CaMKIIα levels in 
L4-6 DRGs. (a) Representative 
IF images of L4-6 DRGs in 
Control + vehicle, DNP + vehi-
cle, DNP + KN93 25 nmol, and 
DNP + KN93 50 nmol groups. 
Scale bars = 200 μm. (b) Pro-
portion of p-CaMKIIα positive 
cells in L4-L6 DRGs. **P < 0.01 
vs. Control + vehicle group. 
##P < 0.01 vs. DNP + vehicle 
group. Data are presented as 
mean ± SEM. n = 3
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Conclusions

These results revealed that the p-CaMKIIα upregulation in 
DRG is involved in DNP, which possibly mediated P2X3 
upregulation, indicating CaMKIIα may be an effective phar-
macological target for DNP management.

Author contribution Yongliang Jiang and Jianqiao Fang conceived the 
study. Xueyu Fei, Xiaofen He, Hanzhi Wang, and Siying Qu performed 
the animal experiments. Xueyu Fei, Hanzhi Wang, and Siying Qu per-
formed immunofluorescence. Luhang Chen, Yiqi Ma, and Qunqi Hu 
performed western blot experiments. Boyi Liu, Yi Liang, JunYing Du, 
and Xiaomei Shao analyzed data. Xiaofen He, Xueyu Fei, and Yurong 
Kang wrote the manuscript. Yurong Kang and Xiang Li participated  
in figures preparation. All authors read and approved the final manu- 
script.

Funding This research was supported by the National Natural Science 
Foundation of China (81774389 to Y.L.J. and 81804181 to X.F.H) 
and the Key Laboratory of Acupuncture and Neurology of Zhejiang 

Province (2019E10011), the National Undergraduate Innovation and 
Entrepreneurship Training Program (202110344013).

Data availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Declarations 

Conflict of interest The authors declare no competing interests.

Ethics approval The study was approved by the ethics committee of 
Zhejiang Chinese Medical University, Hangzhou, China (Approval No. 
IACUC—20180723—08).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 

Fig. 9  Effect of different KN93 
doses on P2X3 levels in L4-6 
DRGs. (a) Representative 
IF images of L4-6 DRGs in 
Control + vehicle, DNP + vehi-
cle, DNP + KN93 25 nmol, 
and DNP + KN93 50 nmol 
groups. Scale bars = 200 μm. 
(b) The ratio proportion of 
P2X3 positive cells in L4-L6 
DRGs. *P < 0.05, **P < 0.01 
vs. Control + vehicle group. 
#P < 0.05, ##P < 0.01 vs. 
DNP + vehicle group. Data are 
presented as mean ± SEM. n = 3
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