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Abstract
Purinergic signaling plays a pivotal role in physiological processes and pathological conditions. Over the past decades, 
conventional pharmacological, biochemical, and molecular biology techniques have been utilized to investigate purinergic 
signaling cascades. However, none of them is capable of spatially and temporally manipulating purinergic signaling cas-
cades. Currently, optical approaches, including optopharmacology and optogenetic, enable controlling purinergic signaling 
with low invasiveness and high spatiotemporal precision. In this mini-review, we discuss optical approaches for controlling 
purinergic signaling and their applications in basic and translational science.
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Introduction

The concept of purinergic signaling was first proposed in 
1972 when Burnstock stated that adenosine triphosphate 
(ATP) not only participates in the intracellular storage of 
energy but is also an extracellular transmitter/signaling 
molecule [13]. Subsequently, a range of purinergic recep-
tors (Rs) was cloned and characterized: four types of P1Rs 

(G protein-coupled receptors,  A1,  A2A,  A2B,  A3) [21], seven 
types of P2XRs (ligand-gated cationic channels,  P2X1–7), 
and eight types of P2YRs (G protein-coupled receptors, 
 P2Y1, 2, 4, 6, 11–14) [1, 30, 31, 33] (Fig. 1A). Both P1Rs and 
P2YRs are G protein-coupled receptors and consist of seven 
transmembrane (TM) proteins. However, P1Rs are selec-
tively activated by extracellular adenosine, which is obtained 
by dephosphorylation of its precursor entities: ATP, adeno-
sine diphosphate (ADP), and adenosine monophosphate 
(AMP) [9], whereas P2YRs are activated by ATP, as well 
as by ADP [31]. In contrast with these G protein-coupled 
receptors, P2XRs are ligand-gating ion channels and char-
acterized by two transmembrane (TM1 and TM2) proteins. 
P2XRs are only sensitive to ATP and undergo a confor-
mational change in the channel upon ATP activation [30]. 
These purinergic receptors are widely distributed throughout 
the body and show great diversity in functions. If we want 
a high-resolution view of how individual purinergic recep-
tor carries out specific tasks, we need high-resolution tools 
for controlling the activity of these receptors. In the past, 
many pharmacological drugs selectively targeting puriner-
gic receptor subtypes have been developed, but they do not 
distinguish between the same purinergic receptors expressed 
in subtypes of neurons or different brain regions. Thus, the 
lack of tissue-specific selectivity may trigger undesirable 
side effects. For instance, therapeutic use of the  A2AR ago-
nist, regadenoson, is always associated with off-side effects, 
including headache, nausea, chest discomfort, or dizziness 
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(available at http:// clini caltr ials. gov). Moreover, the tempo-
ral precision of these drugs is limited by the diffusion, trans-
port, or metabolism of active compounds. Although genetic 
tools enable the knock-in or knock-out of purinergic recep-
tor subtype genes in defined subtypes of neurons or brain 
regions, they have inherent limitations due to the lack of spa-
tial precision. The lack of spatiotemporal precision prevents 
researchers from fully understanding the role of purinergic 
signaling in both physiological and pathological conditions 
and further designing effective therapies. Therefore, novel 
approaches with the ability of quickly and precisely control-
ling purinergic signaling are needed.

Recently, optical approaches to control receptor and 
channel activities by light are transforming neuroscience 
research [35, 50, 54]. The use of light can be advantageous 

as light is non-invasive, can be modulated in its intensity 
within femtoseconds, and can be delivered in a highly 
controlled manner in space and time, which can overcome 
some of the shortcomings of conventional techniques. Two 
main types of optical approaches have been used for the 
control of purinergic signaling: optopharmacology and 
optogenetics.

Optopharmacology, also known as photopharmacol-
ogy, refers to confer light sensitivity to a freely diffus-
ible ligand, rather than to a target protein [50]. Since it 
first emerged in the 1970s when several photoreactive 
ligands were synthesized [7, 36], optopharmacology 
has boomed in neuroscience in recent years. The sim-
plest and most widely used photosensitive chemicals are 
caged compounds, which are chemically modified with 
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Fig. 1  Three types of optical approaches may control purinergic sign-
aling. A The concept of purinergic signaling. ATP is sequentially 
degraded to ADP, AMP, ADP, and adenosine by ecto-ATPase (CD39) 
and 5′-nucleotidase (CD73). Purinergic receptors have been classified 
into three types: P1Rs  (A1,  A2A,  A2B,  A3) that are only sensitive to 
adenosine, P2XRs  (P2X1–7) which are selectively activated by ATP, 
and P2YRs  (P2Y1, 2, 4, 6, 11–14) which are activated by both ATP, ADP, 
and further nucleotides. P2XRs are characterized by two transmem-
brane spanning regions (TM1 and TM2) and a large extracellular 
loop, while P2Ys and P1Rs consist of seven transmembrane spanning 
regions. B Three types of optical approaches for controlling puriner-

gic signaling. a Caged compounds: Photolysis of caged ATP, caged 
agonist of P2Y1R and P2Y12R, and caged  A2AR antagonist enables 
the rapid control of purinergic receptors by light. b Photoswitchable 
compounds: P2XRs channels can be opened or closed by introducing 
photoswitches to a defined site of them. c Optogenetics: Optogenetic 
control of  A2AR and  P2Y1R can be achieved by the introduction of 
genetically encoded photosensitive opsin. A total of 593 nm light in 
NpHR-A2AR enables inhibiting  A2AR signaling while 473  nm light 
in ChR2-A2AR activates signaling of this receptor subtype. A total of 
473 nm light excitation of the  P2Y1R-ChR2 activates  P2Y1R signal-
ing
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photoremovable protecting groups and is biologically 
inert before photolysis. Irradiation breaks the chemical 
modifications and thus results in a concentration jump 
of biologically active molecules in a time-dependent 
manner. The first attempt to synthesized caged com-
pound dates back to 1978, when Kaplan and coworkers 
synthesized NPE (P3-1-(2-nitro)phenyl–ethyl), the first 
photoremovable protecting group, to modify ATP [32]. 
Subsequently, various photoremovable protecting groups, 
such as P3-3′,5′-dimethoxybenzoic acid (DMB) [58] and 
P3-[1-(4,5-dimethoxy-2-nitrophenyl)ethyl] (DMNPE) [8], 
have been synthesized. To date, many biomolecules or 
second messengers, including calcium [2], neurotrans-
mitters [47], nucleotides [8], and peptides [39], have 
been caged to control cellular chemistry and physiology. 
However, the process of photolysis is irreversible due to 
the light-induced break of chemical bonds. Conversely, 
photoswitchable compounds enable to light-control recep-
tors reversibly. When the target receptors are chemically 
attached with synthetic photoswitchable compounds, light 
can induce conformational changes between cis and trans 
isomer of the photoswitchable compounds and thereby 
trigger a reversible on–off control of these receptors [29, 
63]. These synthetic photoswitchable compounds allow 
for the spatiotemporal and reversible control of a wide 
range of biological targets, including ion channels [6], 
transporters [15], G protein-coupled receptors [23], and 
enzymes [43], and also show huge potential in clinical 
treatment [19, 59].

Optogenetics is another powerful optical technique. The 
term optogenetics was first introduced by Deisseroth and 
colleagues in 2006 when they reported that the expression of 
microbial opsin genes in mammalian neurons resulted in the 
precise control of neural activity in a millisecond timescale 
[10]. Over the past decade, optogenetics was rapidly adopted 
to photoactivation and photoinhibition of cellular activities 
and probe neuronal functions [16]. Optogenetics strategy 
relies on the genetical modification of endogenous proteins 
with microbial opsin, including light-driven ion pumps, such 
as bacteriorhodopsins (BRs) and halorhodopsins (HRs), and 
ion channels, such as channelrhodopsins (ChRs) [55]. This 
contrasts with optopharmacology, in which chemical synthe-
sis was necessary. In addition, a novel class of genetically 
encoded optogenetics tools, optoXRs, which are chimeric 
proteins coupled to different intracellular G protein–initiated 
signaling cascades, has been developed for selective control 
of Gs and Gq signaling [56].

Here, we provide a review which summarizes the applica-
tions of optical approaches in controlling purinergic signal-
ing and their applications in investigating purinergic signal-
ing and also discuss important considerations when applying 
to manipulate purinergic signaling.

Optopharmacology for controlling 
purinergic signaling

In the past few years, chemists have developed various pho-
tosensitive drugs for the control of purinergic receptors, 
including caged compounds and photoswitchable com-
pounds. Compared to conventional agonists or antagonists, 
such photochemicals offer great temporal and spatial pre-
cision. First, fast photolysis of caged compounds or light 
switching by photoswitchable compounds allows the control 
of purinergic receptors at a millisecond timescale, which is 
consistent with the temporal dynamics of endogenous cel-
lular activity. Second, light delivered by the illumination 
device can be focused onto targeted areas of interest. There-
fore, the spatiotemporal control of purinergic receptors by 
photosensitive chemicals permits a real-time link between 
the activity of purinergic receptors and a defined biological 
or physiological response in cells or living organisms.

Caged compounds

Caged ATP is widely utilized to control the activation of 
purinergic receptors (Fig. 1a). When added to the bath 
with a micropipette, caged ATP is biologically inert with 
the absence of light stimulation while it could produce free 
ATP within milliseconds [20]. With this strategy, Zemelman 
and coworkers found that photostimulation (26 mW∙mm−2 
of optical power at wavelengths < 400 nm) of DMNPE-
caged ATP could quickly activate heterologously expressed 
 P2X2Rs in hippocampal neurons and evoke membrane 
potentials of these neurons in a time-dependent manner 
[62]. DMNPE-caged ATP was also employed to control the 
activation of exogenous  P2X3Rs, which allows for assessing 
the fast activation kinetics of the whole-cell  P2X3R-current 
[25]. Further, Fischer et al. found that photolysis of NPE-
caged ATP with a 405 nm laser enabled the fast activation 
of  P2Y1Rs in mitral cells, thereby resulting in the increased 
neuronal network activity in the olfactory bulb, which con-
tributed to our understanding of the physiological role of 
 P2Y1Rs in the central nervous system [20].

Recently, caged purinergic receptor agonists and antag-
onists have also been developed, enabling the control of 
specific purinergic receptor subtypes. For example, Gao 
and coworkers synthesized MRS2703, a caged form of a 
potent dual agonist of  P2Y1Rs and  P2Y12Rs (2-methylthio-
ADP, (2-MeSADP)) [22] (Fig. 1a). It is inactive at both 
 P2Y1Rs and  P2Y12Rs prior to irradiation. However, upon 
irradiation at 360 nm for 5 s, photo-uncaging MRS2703 in 
washed human platelets could activate  P2Y1Rs and  P2Y12Rs 
expressed on the surface of platelets and facilitated the plate-
lets aggregation. Another example is the synthesis of caged 
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 A2AR antagonist MRS7145 [57] (Fig. 1a). In cultured cells 
transfecting with  A2ARs, photo-uncaging MRS7145 with 
405 nm light rapidly activated  A2ARs and preclude  A2ARs 
agonist-induced cyclic adenosine monophosphate (cAMP) 
accumulation. Further, after intraperitoneal injection of 
MRS7145 into mice, irradiation (405 nm) in the dorsal stria-
tum of mice could significantly induce hyperlocomotion and 
counteracted haloperidol-induced catalepsy and pilocarpine-
induced tremor [57]. These two examples also indicated that 
the photocontrol of purinergic receptors with caged com-
pounds could provide a new strategy for clinical treatment.

Although photolysis of caged compounds has proven use-
ful for controlling purinergic receptors and dissecting the 
functions of different purinergic receptors, it also has some 
limitations. First, as the synthesis of caged compounds is 
usually complex, biologists are restricted to the few caged 
compounds that are commercially available or they must 
collaborate with academic laboratories that synthesize caged 
compounds [17, 18]. Second, it is still unclear whether the 
by-products (the cleavage product of the photoremovable 
protecting group) generate unpredictable cellular or extra-
cellular responses. Considering this, it should be confirmed 
that these by-products are biologically inert and non-toxic 
before the experiments [34]. Third, the irreversible nature 
due to light-induced break of chemical bonds becomes the 
major limitation, for instance, when one seeks to investigate 
the opening and closing mechanism of P2XRs.

Photoswitchable compounds

The photolysis of caged compounds is an irreversible process. 
Photoswitchable compounds, in contrast, can be used to revers-
ibly manipulate a wide range of biological targets, including 
G protein-coupled receptors, ion channels, transporters, and 
enzymes [5, 54, 63]. Light induces conformational changes in 
these photoswitchable compounds and thereby controls tar-
geted receptors in a time-dependent manner.

Photoswitchable compounds have been successfully 
employed to optically control purinergic receptors. In two 
independent groups, photoswitchable compounds, named 
4,4′-bis(maleimido)azobenzene (BMA) and maleimide eth-
ylene azobenzene trimethyl ammonium (MEA-TMA), have 
been synthesized and then were covalently tethered into 
the outer ends of transmembrane helices of the  P2X2Rs at 
residue P329C and I328C, respectively [12, 35]. Light-con-
trolled toggling between cis and trans isomers of azobenzene 
acts to bring the subunits closer or further apart, thus closing 
or opening the channel. Importantly, they found that rapid 
opening of  P2X2R channels allowed permeation of small 
cations, such as sodium and calcium ions, but not to chloride 
ions, indicating that tethered photoswitchable compounds 
did not alter cation selectivity of the  P2X2R channel [35].

Similarly, photoswitching has also been applied to manip-
ulate  P2X3Rs and heteromeric  P2X2/3Rs. In  P2X3Rs with 
P320C mutation, after treatment with BMA, the light at 
440 nm rapidly evokes desensitizing currents while light 
at 360 nm switches off these currents (Fig. 1b) [12]. These 
light-activated currents are like that activated by a maximal 
concentration of ATP. The heteromeric  P2X2/3R channels, 
which is formed by two  P2X3R[P320C] subunits and one 
 P2X2R subunit, also can be opened and closed by light illu-
mination. This finding indicates that conformational change 
between only two  P2X3Rs subunits is sufficient for  P2X2/3R 
channel opening [12].

A recent study using photoswitchable tweezer to photo-
control  P2X2R has contributed to our understanding of the 
gating mechanism (Habermacher et al., 2016). These pho-
toswitchable tweezers hold strong ability to reveal details of 
how the subunits move to open or close the  P2X2R channel’s 
pore, which overcomes the shortcomings of X-ray crystal-
lography. This strategy entailed the use of a synthesized 
maleimide azobenzene maleimide (MAM), a photoswitch-
able azobenzene cross-linker carrying two sulfhydryl-reac-
tive maleimides known to cross-link pairs of an engineered 
cysteine residue. When attached between I328C from one 
subunit and S345C from another in  P2X2R, the cis isomer of 
MAM induced pore opening by a 525 nm light and the trans 
isomer induced a closing state by a 365 nm light (Fig. 1b). 
Combining the photoswitching with computational studies, 
they further found that the extent of the outer pore expan-
sion is significantly reduced compared to the ATP-bound 
structure, and the inner and outer ends of adjacent pore-
lining helices come closer during opening, likely through a 
hinge-bending motion.

Photoswitchable tweezers also provide useful molecular 
rulers to probe the permeation mechanism of P2XRs. Har-
kat et al. synthesized a shorter, however, more rigid photos-
witchable tweezer, named MAM-2 [26]. When this tweezer 
was covalently attached to residues I328 and S345 of  P2X2R, 
365 nm light at these  P2X2Rs permits the flow of large syn-
thetic cation, N-methyl-D-glucamine (NMDG +), as well as 
large natural cation, spermidine. As spermidine is known 
to modulate a number of ion channels, including synaptic 
N-methyl-D-aspartate (NMDA) receptors [44], the perme-
ability of the  P2X2Rs for large cations offers new insights 
into the physiological function of  P2X2Rs.

These photoswitchable compounds can be successfully 
employed to manipulate the opening and closing state of 
P2XRs and help boost our understanding of their permea-
tion and gating mechanisms. This is achieved by the pho-
toconversion of azobenzenes, which can reversibly switch 
between a cis form and a trans configuration using two 
different wavelengths of light, classically near-ultraviolet 
(360–400 nm) and blue-green light (480–550 nm) [54, 63]. 
However, the toxicity of azobenzenes, which may stem from 
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cleavage into carcinogenic aromatic amines and metabolic 
oxidation of amine-bearing azobenzenes to toxic species 
[41, 60], limits its application in vivo. In addition, the com-
plete recovery of conformational change is not possible 
due to incomplete cis to trans photoisomerization [11, 40]. 
However, the recent evidence that silver nanowire antennas 
enhance the conversion efficiency from around 20 to up to 
85% [61] may provide a new strategy to increase the yield 
of cis/trans isomers. Further, it is entirely possible that pho-
toswitchable compounds could be extended to photocontrol 
other P2XRs since these P2XRs share similar structures and 
gating mechanisms.

Optogenetics for controlling purinergic 
receptors signaling

Although optopharmacological strategies have proven use-
ful to control purinergic receptors, they have inherent limi-
tations to be used in vivo. Optogenetics overcomes these 
limitations and has been successfully utilized in vivo. Fur-
thermore, it also enables to control purinergic receptors 
signaling with spatial and temporal precision, which permits 
to investigate the behavioral responses upon the control of 
purinergic receptors signaling.

With the technical advance in opto-A2AR and transgenic 
strategy, optogenetics has been successfully applied to acti-
vate or inhibit  A2AR signaling by light. The opto-A2AR is 
synthesized by retaining the extracellular and transmem-
brane domains of rhodopsin (conferring light sensitivity 
and eliminating the binding pockets of adenosine) and 
replacing the intracellular domain of rhodopsin with that of 
the  A2AR (conferring specific  A2AR signaling) [37]. When 
opto-A2AR is cloned into a viral vector carrying with cell-
type-specific promoter, it can be typically introduced into 
specific subtype neurons in the targeted brain area by stere-
otaxic microinjection. After 2–3 weeks for the expression of 
opto-A2AR construct in the brain, 473 nm laser light could 
activate opto-A2AR and recruit  A2AR signaling. As for trans-
genic strategy,  A2AR-cre mice, in which the expression of 
cre recombinase is under the control of  A2AR gene regula-
tory elements, are constructed. The use of a cre-dependent 
viral vector carrying ChR2 into  A2AR-cre mice is capable of 
activating  A2AR signaling by 473 nm light, while the appli-
cation of a cre-dependent viral vector transforming NpHR 
into  A2AR-cre mice enables inhibiting  A2AR signaling by 
593 nm light [28] (Fig. 1c). With these strategies, Oishi and 
coworkers found that photoactivation of  A2AR signaling in 
the core region of the nucleus accumbens of  A2AR-cre mice 
induced slow-wave sleep, while such a reaction did not occur 
when photoactivation was targeted to the shell region of the 
nucleus accumbens [48]. Hong et al. showed that optoge-
netic activation of  A2AR-containing indirect medium spiny 

projection neurons in the dorsomedial striatum of  A2AR-cre 
mice reduced ethanol-containing reward-seeking behavior, 
whereas optogenetic inhibition of these  A2ARs neurons 
reversed this behavior [28]. Similarly, optogenetic activation 
of  A2AR signaling in the dorsomedial striatum selectively 
impairs the maintenance and retrieval of spatial working 
memory, but optogenetic activation of  A2AR signaling in 
the media prefrontal cortex improves memory maintenance 
[38]. In addition, optogenetics has also been used to manipu-
late  A2ARs signaling in the hippocampus and striatopallidal 
pathway, revealing their role in memory and instrumental 
learning, respectively [27, 37].

Optogenetics has also been utilized to photocontrol 
 P2Y1Rs in the vagal nerve. For remote control of  P2Y1R 
neurons in the vagal nerve, transgenic  P2Y1R-ChR2 mice 
are generated by crossing  P2Y1R-cre mice with reporter 
mice containing a cre-dependent ChR2 allele. Focal illu-
mination (473 nm laser) of the nerve trunk or particular 
nerve branches of  P2Y1R-ChR2 mice traps breathing in 
exhalation and does not impact heart rate (Fig. 1c) [14]. 
Further, Prescott et al. find that vagal  P2Y1R neurons also 
engage in an airway defense program. They show that pho-
tostimulation (473 nm laser) of  P2Y1R expressing neurons 
in the vagal nerve of  P2Y1R-ChR2 mice evokes a suite of 
protective reflexes, including apnea, vocal fold adduction, 
swallowing, and expiratory reflexes [53]. These outcomes 
suggest that optogenetics also enables a spatial and tem-
poral control of purinergic signaling in peripheral nervous 
systems.

Clearly, optogenetics is an effective and meaningful tool 
to control purinergic receptors signaling both in central and 
peripheral nervous systems. But there are still some issues 
that are worth mentioning. For instance, it was demonstrated 
that the introduction of a viral vector for opsin expression 
could influence the transduction efficiency, tropism, and 
axonal transport in targeted areas [4, 51]. Meanwhile, opsins 
in the cells themselves may produce the potential immune 
response and cause the death of cells [42]. Particularly, sur-
gical implantation of an optical fiber to deliver light to the 
targeted area produces tissue damage, which limits the appli-
cation of optogenetics to study large-scale neural networks 
distributed to different parts of the brain. Although wireless 
optical equipment has provided an alternative solution [3, 45], 
optogenetics with low immune response and less invasiveness 
will allow further control of purinergic signaling and investi-
gate their roles in physiological and pathological conditions.

Conclusion

As documented above, currently, two distinct types of 
optical approaches afford powerful and precise manipula-
tion of purinergic signaling (Fig. 1): optopharmacology, 
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which relies on the synthesis of photosensitive chemicals 
(including caged and photoswitchable compounds), and 
optogenetics, which requires the genetic modification of 
the purinergic receptors. With the use of light, these meth-
ods enable fast and precise control of targeted purinergic 
receptors, such as  P2X2Rs,  P2X3Rs,  P2X2/3Rs  P2Y1Rs, 
 P2Y12Rs, and  A2ARs. They are also employed to explore 
the permeation and gating mechanisms of P2XRs, and the 
role of adenosine receptors in distinct brain areas. They 
also offer the potential for defining pharmacological tar-
gets more precisely.

Although all three optical strategies have been proved 
powerful and helpful, there are still some problems that 
have to be solved. Firstly, the delivery of light to the region 
of interest often requires invasive surgery. Secondly, long-
term light stimulation generates heat that leads to perma-
nent tissue damage and affects cellular excitability [49, 
52]. In view of that, we suggest the following two con-
siderations when designing experiments: minimization of 
light power and duration and carefully planned control 
experiments that account for off-target effects of light 
delivery. Further, recent advances in magnetogenetics [46] 
and ultra-sensitive step-function opsin [24], which provide 
a minimally invasive approach to precisely manipulate 
neuronal activity in living animals, may overcome these 
limitations. Ultimately, we are convinced that the elucida-
tion of physiological function and therapeutic potential 
of purinergic signaling will be further advanced with the 
development of more intricate and subtle optical tools.
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