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Abstract
Obesity is a growing worldwide health problem, with an alarming increasing prevalence in developed countries, caused by a
dysregulation of energy balance. Currently, no wholly successful pharmacological treatments are available for obesity and related
adverse consequences. In recent years, hints obtained from several experimental animal models support the notion that purinergic
signalling, acting through ATP-gated ion channels (P2X), G protein-coupled receptors (P2Y) and adenosine receptors (P1), is
involved in obesity, both at peripheral and central levels. This review has drawn together, for the first time, the evidence for a
promising, much needed novel therapeutic purinergic signalling approach for the treatment of obesity with a ‘proof of concept’
that hopefully could lead to further investigations and clinical trials for the management of obesity.
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Introduction

Obesity, defined as abnormal or excessive fat accumulation,
represents a major health issue, with an alarmingly increasing
prevalence in developed countries, caused by the dysregulation
of energy balance. The World Health Organization in 2016
reported that more than 1.9 billion adults aged 18 years and
older were overweight [body mass index (BMI) > 25 kg/m2],
and of these, over 650 million adults were obese (BMI > 30 kg/
m2) (http://www.who.int/mediacentre/factsheets/fs311/en/).
The imbalance of energy underlying obesity is due to several
factors, including genetic predisposition, individual
metabolism, excessive caloric and food intake and insufficient
physical activity, leading to an increase in adipose tissue. In

recent years, the crucial role of adipose tissue in the
regulation of energy metabolism has been recognised, which
not only dynamically accumulates and releases lipids but also
acts as an endocrine organ [1]. Indeed, adipose tissue produces
a variety of humoral factors known as adipocytokines (i.e.
leptin, adiponectin, resistin and visfatin) that contribute to the
regulation of appetite and satiety, fat distribution, insulin
secretion and sensitivity, energy expenditure, endothelial
function, inflammation and blood pressure [2, 3].

In mammals, adipose tissue can be divided into brown
and white adipose tissues [2]. White adipose tissue repre-
sents the vast majority of adipose tissue in the organism
and is the site of energy storage, whereas brown adipose
tissue burns energy for thermogenesis [2]. Adipocytes are
the main components of adipose tissue, and adipogenesis
has two distinct phases: early differentiation of the adipo-
cytes from a multipotent stem cell and terminal differen-
tiation of preadipocytes into mature adipocytes [4].
Epidemiologic studies have suggested that the number of
adipocytes in an adult are approximately constant whether
they are lean or obese [5]. Moreover, significant weight
gain or loss in adults is not accompanied by respective
increases or decreases in the number of adipocytes, rather
adipocyte size is correlated with adult adiposity. These
observations support the notion that the number of adipo-
cytes a person will have is determined during childhood
and adolescence. Indeed, in line with this evidence, envi-
ronmental exposure in early life can influence adipocyte
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number and has the potential to greatly increase the total
body fat mass and may contribute to the development of
obesity in adults [5].

Regulation of energy homeostasis is highly controlled
by the central nervous system (CNS). Indeed, it receives
and integrates signals conveying energy status from the
periphery, such as leptin and insulin, leading to modula-
tion of food intake [6]. The autonomic nervous system
(ANS) plays an important role in the response to such
signals, innervating peripheral metabolic tissues, includ-
ing brown and white adipose tissues [7]. The ANS con-
sists of two parts: the sympathetic and parasympathetic
nervous systems. Since the ANS is involved in the regu-
lation of the cardiovascular system, hormonal secretion
and energy balance, it is plausible that altered regulation
of either the parasympathetic or sympathetic branches, or
both, may contribute to the development of obesity and
related metabolic comorbidities [8]. Depression of sympa-
thetic and parasympathetic activity has been associated
with increasing body fat, but whether this is causal or
consequential was not resolved. Moreover, sympathetic
denervation has been reported to lead to an increase in
white adipocyte cell number and fat pad mass [9].

Currently, therapeutic strategies against obesity have been
largely ineffective, such as 5-hydroxytryptamine modulators,
β3 adrenoceptor agonists, lipase inhibitors, melanocortin 4
inhibitors, leptin agonists and ghrelin antagonists [10]. The
development of novel anti-obesity drugs based on our current
understanding of energy homeostasis is required. The present
review explores the possible involvement of purinergic sig-
nalling in obesity.

Purinergic signalling [i.e. adenosine 5′-triphosphate
(ATP) acting as an extracellular signalling molecule] was
proposed in 1972 (see [11]). After early resistance to the
concept, when receptors for ATP and adenosine were
cloned and characterised in the early 1990s, it was gener-
ally accepted and there has been an explosion of interest
in the physiology and pathophysiology of purinergic sig-
nalling (see [12]). Selective agonists and antagonists to
both adenosine (P1) receptor subtypes (A1, A2A, A2B,
A3) and P2X ion channel receptor subtypes for ATP
(P2X1–7) and P2Y G protein-coupled receptor subtypes
to ATP, adenosine 5′-diphosphate (ADP), uridine 5′-tri-
phosphate (UTP) and uridine 5′-diphosphate (UDP)
(P2Y1, P2Y2, P2Y4, P2Y6, P2Y11–14) have been devel-
oped and clinical trials initiated that have led to the use
of purinergic agents for the treatment of several diseases,
including clopidogrel, a P2Y12 receptor antagonist for the
treatment of stroke and thrombosis, a P2Y2 long-term ag-
onist for the treatment of dry eye and adenosine A1 ago-
nists for the treatment of tachycardia. Clinical trials are
currently in progress to explore purinergic agents for the
treatment of osteoporosis, chronic cough, visceral pain,

bladder incontinence, cancer and neurodegenerative dis-
eases (see [13]).

Purinergic control of brown adipocytes

Brown adipocytes, located in specific areas of the body, ex-
press constitutively high levels of thermogenic genes making
them specialised in energy expenditure and therefore a poten-
tial target for anti-obesity therapies [14]. There are also beige
cells, which are inducible ‘brown-like’ adipocytes that devel-
op in white fat in response to various activators. The activities
of brown and beige fat cells reduced obesity in mice, an effect
similar to that seen in lean humans [14], in addition to causing
antidiabetic effects [15]. Lipid synthesis by brown adipocytes
in rats was increased by sympathetic nerve stimulation, and it
was recognised that this was not solely attributable to the
action of noradrenaline but included some non-adrenergic
mechanisms [16]. The thermogenic function and growth of
brown tissue is also controlled by the sympathetic nervous
system in rats, but antidromic activity by sensory nerves
may also be involved [17]. High-fat diet (HFD) in rats has
been associated with a reduction in sympathetic activity to
brown adipose tissue [18].

ATP, released as a cotransmitter from sympathetic nerves,
was reported to elicit substantial increases in total membrane
capacitance of rat brown fat cells, probably via P2Y receptors
[19]. ATP mobilises Ca2+ from intracellular stores, supporting
the view that P2Y receptors were involved [20]. ATP was also
shown by these authors to exert a potent inhibitory effect on
the influx of Ca2+ in cultured adult brown adipocytes [20].
Evidence was presented to suggest that modulation of
voltage-gated potassium currents in rat brown adipocytes by
ATP might be important in controlling adipocyte growth and
development [21]. Ca2+-ATPase (SERCA), a family of
membrane-bound ATPases that are able to translocate Ca2+

ions across the membrane using the chemical energy derived
from ATP hydrolysis, was shown to generate heat in the pres-
ence of Ca2+ concentrations similar to those occurring during
adrenergic stimulation in rat brown adipocyte mitochondria
[22].

Multiple P2 receptor subtype mRNAwas later identified in
rat brown fat cells: P2Y2, P2Y6 and P2Y12 metabotropic re-
ceptors and P2X1, P2X2, P2X3, P2X4, P2X5 and P2X7 recep-
tors; ATP, ADP, UTP and UDP increased intracellular Ca2+

[23].
Adenosine is present in adipose tissue after breakdown by

ectoenzymes of ATP released as a cotransmitter from sympa-
thetic nerves and from adipocytes. Adenosine was shown to
regulate hamster brown adipose tissue respiration at an early
metabolic step of the stimulus-thermogenesis sequence [24].
Adenosine increased lipolysis and induced thermogenesis in
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brown adipocytes via A2A receptors, and A2A agonists were
shown to counteract HFD-induced obesity in mice [25].

Purinergic control of white adipocytes

White adipocytes are the major energy reservoir in mammals,
and they play a crucial role in the maintenance of energy
homeostasis [26].

ATP increased cell membrane capacitance in rat white ad-
ipocytes, similar to that produced in brown adipocytes, indi-
cating that the electrophysiology of both kinds of adipocytes is
very similar in their response to ATP [27].

Rat white adipocytes express at least two P2Y receptor
subtypes, and activation of P2Y11 receptors may mediate in-
hibition of leptin production and stimulation of lipolysis, sug-
gesting an important role of purinergic transmission in white
adipocyte physiology [28]. A combination of ATP and Ca2+

has been reported to augment human white adipocyte vesicu-
lar release of adiponectin [29]. This study also investigated the
cellular mechanisms involved in the regulation of human
white adipocyte exocytosis/secretion by monitoring the mem-
brane capacitance. The authors showed that protein kinase A-
independent mechanisms could be correlated with a release of
adiponectin vesicles, elucidating previously unknown cellular
mechanisms involved in the regulation of white adipocyte
exocytosis/secretion [29]. Disturbance of adiponectin secre-
tion in individuals with obesity highlights the control of
adipokinase release by ATP. Reduction in the plasma level
of adiponectin in subjects with obesity precedes the reduction
in insulin sensitivity and onset of diabetes [30].

Adenosine monophosphate (AMP) kinase, a cellular ener-
gy sensor activated by cellular stresses and also by leptin and
adiponectin, has fat-reducing effects in mammalian white ad-
ipose tissue and is a potential target for obesity treatment [31].
The authors suggested that chronic AMP kinase activation
acts by remodelling adipocyte glucose and lipid metabolism,
which then enhances the ability of adipose tissue to remove
energy and reduce adiposity [31].

In isolated rat white adipocytes, adenosine, produced fol-
lowing breakdown of ATP, acts as a positive regulator for
insulin in the release of leptin via an activation of A1 receptors
that involves the phospholipase C-protein kinase C pathway
[32].

Hypothalamic purinergic nervous control
of obesity

In the last decade, many studies have highlighted a fun-
damental role of the CNS, in particular the arcuate nucle-
us of the hypothalamus (ARH), in the regulation of food
intake and energy balance in mammals [33]. In mammals,

the ARH is accessible to circulating signals of energy
balance, via the underlying median eminence, as this re-
gion of the brain is not protected by the blood-brain bar-
rier [34]. They showed, in particular, that the ARH inte-
grates neurohormonal signalling from the gut and adipose
tissue, communicating nutrient availability, including
ghrelin, insulin, glucose, leptin and UDP. The ARH con-
tains two primary neuron populations that integrate sig-
nals of nutritional status and influence energy homeostasis
[35]. One neuronal circuit inhibits food intake, via α-
melanocyte-stimulating hormone, and cocaine- and
amphetamine-regulated transcripts [36]. The other neuro-
nal circuit stimulates food intake, via the expression of
neuropeptide Y and agouti-related peptide (AgRP) [37].
Several studies aimed at finding novel approaches for
the management of obesity have focused on the critical
role of AgRP neurons in the regulation of appetite,
reporting that their direct activation rapidly increases food
intake. In contrast, AgRP neuron inhibition [38] or abla-
tion dramatically decreases feeding [39] in mice.

Of the regulators of the central control of feeding be-
haviour, the family of G protein-coupled receptors has
significant therapeutic potential, due to their involvement
in the regulation of physiological responses to hormones,
neurotransmitters and environmental stimulants [40]. It
was shown in mice that the UDP-selective P2Y6 receptor,
a P2Y G protein-coupled receptor, is highly expressed in
the ARH, particularly in AgRP neurons [41]. The authors
provided the first evidence that the activation of P2Y6

receptor signalling, by UDP, increases firing rate and
feeding in lean mice [41]. Pharmacological blocking of
P2Y6 receptor activation in the CNS, with the selective
P2Y6 receptor antagonist MRS 2578, inhibits feeding in
mice. These authors showed in a more recent study that
the ability of centrally applied UDP to acutely promote
feeding is retained in diet-induced obese mice [42]. In
contrast, pharmacological blocking of P2Y6 receptor acti-
vation in the CNS via intracerebroventricular application
of MRS 2578 inhibits food intake in obese mice (see
Fig. 1). Moreover, both conventional and AgRP-
restricted P2Y6-deficient animals exhibit reduced obesity
as well as improved whole-body insulin sensitivity when
exposed to long-term HFD feeding. Thus, although fur-
ther investigations are needed, P2Y6 receptors could rep-
resent a potential therapeutic target for the prevention and
treatment of obesity and related insulin resistance.
Furthermore, since P2Y6 receptors are also expressed on
activated microglia in the hippocampus of rats [43] and
considering that obesity promotes hypothalamic inflam-
mation, including the activation of microglia [44], this
purinergic receptor could hold a potential pathophysiolog-
ical role in inflammatory processes within the CNS in-
duced by HFD.

Purinergic Signalling (2018) 14:97–108 99



Regulatory roles of ATP and P2 receptors
in obesity

In a review entitled ‘Leptin and the control of obesity’, it was
stated that ‘ATP is a major stimulus for leptin production and
secretion’ [10, 45, 46] (see Fig. 2). Bullock and Daly reviewed
the evidence for sympathetic nerve innervation of perivascular
adipocytes and the function of ATP, released as a sympathetic
cotransmitter with noradrenaline, which inhibits lipolysis
[47]. In addition, there is strong evidence that the vagus nerve
is involved in the development of diet-induced obesity (see
[48]) and, since ATP is also a cotransmitter with acetylcholine
in vagal nerves, it may be involved in its mechanisms. The
likely source of the ATP is sympathetic nerves, and ATP was
reported to inhibit insulin-stimulated glucose transport and
glycogen synthase in rat fat cells [49].

In a later study also performed on rats, ATP was shown
to have a strong effect, while adenosine a mild inhibitory
effect, on insulin-stimulated glucose transport [50]. It is
possible that ATP, released as a cotransmitter from sym-
pathetic nerves, mediates the long-term effects of leptin
on blood pressure involved in obesity hypertension [51].
ATP has antihyperlipidaemic activity by decreasing serum
triglyceride levels in rabbits fed a HFD and in hyperlip-
idaemic patients, suggesting that ATP supplementation
could provide an effective approach to control triglyceride
levels in obesity [52]. A later paper provided evidence
that ATP stimulated lipogenesis in rat adipocytes via a

P2 receptor (probably a P2X receptor), defining a signal-
ling system involved in the regulation of fat stores in
these cells independent from established hormones [53].
ATP increased the membrane area, which was correlated
with the increase in membrane current in single rat adipo-
cytes [54]. High concentrations of ATP have been report-
ed to induce inflammatory responses and insulin resis-
tance generation in rat adipocytes [55]. In line with this
concept, reduced hepatic ATP stores have been found to
be more common in overweight and obese than in lean
subjects [56].

P2X receptors

Of the P2X receptors, an involvement of both P2X2 and
P2X7 receptors has been identified. Obesity promoted a
decrease in the expression of P2X2 receptors on enteric
neurons of obese male mice [57]. Human adipocytes from
metabolic patients express functionally active P2X7 recep-
tors, which modulate the release of inflammatory mole-
cules such as interleukin-6, tumour necrosis factor-α and
p lasminogen ac t iva to r inh ib i to r -1 , in pa r t v ia
inflammasome activation [58]. Moreover, these cells also
exhibited enhanced P2X7 receptor expression, which
might contribute to the subclinical inflammatory status
characterising these patients and conferring on them an
increased cardiovascular risk [58]. In addition, Rossi and
colleagues, in line with this evidence, demonstrated that

Fig. 1 The UDP-selective P2Y6 receptor controls orexigenic AgRP
neurons and food intake regulation. The central nervous system (CNS),
in particular the arcuate nucleus of the hypothalamus (ARH), integrates
neurohormonal signalling from the periphery, such as uridine 5′-
diphosphate (UDP). The P2Y6 receptor, a member of the P2Y G
protein-coupled receptor family, is highly expressed in the ARH,
particularly in AgRP neurons. The P2Y6 receptor is selective for the

nucleotide UDP, whose synthesis in the CNS depends on the salvage
pathway, which is directly controlled by the peripheral supply of the
precursor metabolite uridine, typically increased in obesity/diabetes.
Pharmacological blocking of P2Y6 receptor activation in the CNS, with
the selective P2Y6 receptor antagonist MRS 2578, inhibits feeding in
mice (modified from [41] and reproduced with permission from Elsevier)
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patients affected by metabolic syndrome showed an en-
h an c emen t o f P2X7 r e c ep t o r e xp r e s s i o n and
inflammasome activation compared to control patients
[59]. However, it was claimed in another study on mice
that ATP activation of P2X7 receptors was not involved in
inflammasome activation in adipose tissue [60]. The P2X7

receptor has been reported to be the primary mediator of
oxidative stress-induced exacerbation of inflammatory liv-
er injury in obese mice [61]. Moreover, the fact that P2X7

receptor antagonists significantly decreased carbon tetra-
chloride exacerbation of liver injury in obesity paved the
way for future investigations using the antagonists as po-
tential therapeutic molecules in treating steatohepatitis in
obesity in its early phase [61]. Of note, in metabolically
unhealthy obese subjects, stromal vascular cells showed
upregulation of P2X7 receptors, which are involved in the
chronic inflammation of visceral adipose tissue underly-
ing the metabolic changes in obesity [62]. In P2X7 knock-
out mice, there is abnormal fat distribution, suggesting
that P2X7 receptors mediate regulation of adipogenesis
and lipid metabolism in age- and sex-dependent manners
[63]. ATP-induced inflammation, via P2X7 receptors,
drives tissue-resident Th17 cells in metabolically un-
healthy obese subjects, and it was suggested that the ma-
nipulation of purinergic signalling might represent a new
therapeutic target to shift the CD4+ T cell balance under
inflammatory conditions [64]. Sulphur-containing AMP

and guanosine monophosphate analogues can be hydro-
lysed to hydrogen sulphide by rat perivascular adipose
tissue when P2X7 receptors are activated [65].

P2Y receptors

ATP, acting via P2Y receptors, enhanced the migration of
preadipocytes and increased adipocyte differentiation in a
mouse cell line [66]. P2Y1 receptors mediate regulation of
leptin secretion from adipocytes in lean, but not in obese mice
[67]. ATP, acting via P2Y1 receptors, contributes to the cell
surface F1F0-ATP synthase-mediated intracellular triacyl-
glycerol accumulation in mouse adipocytes [68]. Mouse
P2Y4 receptors are negative regulators of cardiac adipose-
derived stem cell differentiation and cardiac fat formation
[69]. Therefore, these receptors could be a potential therapeu-
tic target in the regulation of the cardioprotective function of
cardiac fat. Myenteric neurons from P2Y13 receptor knockout
mice or treatment with P2Y13 receptor antagonists are resis-
tant to HFD- and palmitic acid-induced neuronal loss; conse-
quently, P2Y13 receptor antagonism might constitute a novel
therapeutic strategy in patients affected by intestinal
dysmotility involving neuropathy [70]. P2Y6 receptor ago-
nists enhance glucose uptake in mouse adipocytes and skeletal
muscle cells [71]. As previously described, the activation of
P2Y6 receptor signalling, by UDP, increases firing rate and
feeding in lean mice [41].

Fig. 2 Factors influencing leptin synthesis and secretion. Insulin-
mediated glucose uptake determines the rate of glucose metabolism in
adipose tissue, and the subsequent generation of ATP is a major stimulus
for leptin production and secretion. Some fatty acids may also have an
effect (indicated with question mark). Hormones such as glucocorticoids,
oestrogen and growth hormone also stimulate leptin secretion.
Catecholamines, via the β3 adrenoceptor, tend to inhibit leptin

production. The antidiabetic thiazolidinedione drugs also inhibit leptin
production, but the mechanism is not known. ATP acts on P2Y1

receptors to mediate regulation of leptin secretion from adipocytes in
lean, but not obese mice, and adenosine acts on A1 receptors to increase
leptin secretion (modified from [46] and reproduced with permission
from Elsevier)
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ATP-sensitive K+ channels

Extracellular ATP modulates several ionic channels, such as
K+ channels. Modulation of ATP-sensitive K+ (KATP) channel
activity has been the basis of numerous pharmacological stud-
ies since these channels are abundant in a variety of tissues
and species. KATP channel activity is coupled with insulin
resistance in obesity and type 2 diabetes in mammals [72].
Indeed, insulin activates KATP channels in hypothalamic neu-
rons of lean but not obese rats, suggesting that hypothalamic
KATP channels have a crucial role in the physiological regula-
tion of food intake and body weight [73]. KATP function was
decreased in obese rats, along with impaired vasodilation in
response to exercise [74]. This evidence suggested that the
decreased sensitivity of KATP channels could potentially limit
muscle blood flow during exercise, a treatment option known
to improve glucose, lipid and weight control [74]. Evidence
suggested that KATP channel-deficient mice exhibit hyperpha-
gia but are resistant to the induction of obesity by a HFD [75].

ATP-binding cassette transporters

ATP-binding cassette (ABC) transporters (ABCA1, ABCG1,
ABCG5 and ABCG8) are examples of ATP-dependent pumps
involved in mediating macrophage cholesterol efflux in ani-
mal models and in vitro experiments [76, 77]. The ABC trans-
porter A1 R230C variant was reported to affect high-density
lipoprotein cholesterol levels and to be associated with obesity
and obesity-related comorbidities in the Mexican population
[78]. The ABC transporter G8 gene was shown to be a deter-
minant of apolipoprotein B-100 kinetics in a study of
Australian overweight/obese men [76]. The R219K polymor-
phism of ABC transporter A1 is related to low high-density
lipoprotein level in overweight/obese Thai males [79]. The
expression of ABC transporter A1 in monocytes was reduced
in Chinese overweight and obese patients, and this was asso-
ciated with the impairment of cholesterol efflux from
monocyte-derived macrophages [80]. Since adipocyte ABC
transporter G1 promoted triglyceride storage and fat mass
growth, it might represent a potential therapeutic target in
the control of fat accumulation [81].

Other purinergic therapeutic possibilities

Cell surface H+-ATP synthase has been claimed to be a po-
tential molecular target for anti-obesity drugs. Of note, treat-
ment with small molecule inhibitors of H+-ATP synthase or
antibodies against H+-ATP synthase subunits leads to a de-
crease in cytosolic lipid droplet accumulation in differentiated
adipocytes [82].

Transcriptional regulation of the gene for ATP citrate lyase
(one of the lipogenic enzymes) by glucose/insulin and leptin
was investigated in hepatocytes and adipocytes of normal and

genetically obese rats. In the presence of glucose/insulin, the
chloramphenicol acetyltransferase activities were markedly
increased in hepatocytes of lean rats but were not significantly
increased in those of obese rats [83].

It has been suggested that animal and human obesity is
associated with reduction of tissue Na+/K+-ATPase, linked to
hyperinsulinemia, influencing thermogenesis and energy bal-
ance [84].

Typical signs of Cushing’s syndrome and side effects of
prolonged glucocorticoid treatment are features of the meta-
bolic syndrome, such as central obesity with insulin resistance
and dyslipidaemia. Changes in AMP-activated protein kinase
have been proposed as a novel mechanism to explain the
deposition of visceral adipose tissue and the consequent cen-
tral obesity in individuals with Cushing’s syndrome [85].

Regulatory role of adenosine and P1
receptors in obesity

In early studies on rat adipocytes, adenosine was shown to
inhibit lipolysis elicited by noradrenaline [86] due to its inhi-
bition of adenylate cyclase and cyclic AMP production by a
guanosine triphosphate-dependent process [87]. Adenosine
was shown to be rapidly taken up by isolated fat cells and
incorporated into ATP, which, after release, was broken down
by ectoenzymes to adenosine [88]. Theophylline, an adeno-
sine antagonist, and dipyridamole, an inhibitor of adenosine
uptake, were shown to enhance lipolysis [89]. Sites on adipo-
cyte membranes that bind [3H]adenosine were demonstrated
and identified as adenosine (P1) receptors [90]. Three sub-
types of P1 receptors were described on adipocytes obtained
from epididymal and perirenal fat pads [91]. A1 receptors
were shown to be present on human adipocytes [92], and in
rats, white adipocytes were more responsive than brown adi-
pocytes to inhibition of lipolysis by activation of A1 receptors
[93]. Cloning, expression and characterisation of the A1 re-
ceptor on mouse and human adipose tissues were reported
[94]. A1 receptor activation results in an increase of adipocyte
leptin secretion in rats [95]. A1 receptors are highly expressed
in adipose tissue, and their contribution to the regulation of
lipolysis in pathological conditions like insulin resistance, di-
abetes and dyslipidemia, where free fatty acids play an impor-
tant role, has been examined [96]. Agonists to A1 receptors are
in clinical trials for obesity. The A2 adenosine receptor sub-
type, which is positively coupled to adenylate cyclase, was
shown to be expressed by preadipocytes, but not activated
adipocytes, suggesting that adenosine might play as a bimodal
regulatory signal in adipose tissue development in rats [97].
There were contrasting effects of transfected human A1 and
A2B receptors into a murine osteoblast precursor cell line, 7F2.
A1 receptors mediated adipocyte differentiation, whereas A2B

receptors mediated inhibition of adipogenesis and stimulated
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an osteoblastic phenotype [98]. Activated transfected human
A1 receptors initiated differentiation of mouse preadipocyte
cells [99]. Deletion of adenosine A1 receptors in knockout
mice should increase lipolysis and decrease lipogenesis, but
an increased fat mass was observed, indicating that there are
other actions mediated by A1 receptors [100]. Differentiation
of rat mesenchymal stem cells to adipocytes was accompanied
by significant increases in the expression of A1 and A2A, and
their activation was associated with increased adipogenesis
[101]. There is impaired glucose tolerance in A1 receptor
knockout mice [102].

Insulin, as well as adenosine, is antilipolytic in rats [103].
Also in rats, adenosinemodulation of the stimulation of glucose
metabolism in adipocytes by insulin was shown to be mediated
by different mechanisms from that mediated by oxytocin [104].
Adenosine, via A1 receptors, increased insulin sensitivity and
inhibited lipolysis in adipocytes. After prolonged incubation of
rat adipocytes with an A1 adenosine receptor agonist, N6-
phenylisopropyl adenosine, there was downregulation of the
receptor and insulin resistance [105]. Over-expression of A1

receptors in adipose tissue protects mice from obesity-related
insulin resistance, and it was suggested that A1 receptor activa-
tion should be considered as a potential therapeutic target for
the treatment of obesity-related insulin resistance and type 2
diabetes [106]. Insulin resistance in obese Zucker rats is tissue
specific, and BWA1433, an adenosine receptor antagonist, im-
proved glucose tolerance by increasing glucose uptake in skel-
etal muscle, while decreasing glucose uptake by adipose tissue
[107]. There was enhanced sensitivity to both lipolytic stimuli
and adenosine suppression of lipolysis in isolated fat cells from
streptozotocin-diabetic rats [108].

Adipocytes from hypothyroid rats respond to adenosine,
but not to adrenaline, with increased glycerol release [109].
Short-term hyperthyroidism modulates adenosine receptors
and adenylate cyclase in rat adipocytes [110]. Studies of mem-
branes from hyperthyroid rats showed no significant alteration
on the expression of A1 receptors [111]. Adenosine increases
blood flow and glucose uptake in adipose tissue of dogs [112]
and in brown adipose tissue of rats [113].

In brown subcutaneous abdominal fat cells from subjects
with obesity, the antilipolytic effect of an adenosine analogue
was markedly attenuated as compared to that in fat cells from
normal-weight subjects [114]. A reduction in the P1 receptor
number in adipocyte plasma membranes and reduced adeno-
sine sensitivity in human obesity were reported [115].
Inhibition of isoprenaline-stimulated lipolysis by an adenosine
receptor agonist was much attenuated in cells from patients
that were massively obese, compared to normal-weight con-
trol subjects [116]. Obese rats show reduced adenosinergic
modulation of ventilatory responses to acute and sustained
hypoxia [117]. It was concluded that this was due to depressed
peripheral excitatory mechanisms and to enhanced
adenosinergic central depression mechanisms. An adenosine

deaminase polymorphism was shown to be associated with
obesity, and adenosine receptor agonists were recommended
as therapeutic targets for obesity and dyslipidemia [118]. Data
was presented to suggest that inhibition of lipolysis by aden-
osine appears to be greater in African-American women with
obesity and that this might possibly be one explanation for the
observation that African-American women with obesity have
more difficulty in losing weight than Caucasian women with
obesity [118].

A HFD induced changes in glucose homeostasis, inflam-
mation and obesity. A2B receptors were upregulated in lean
mice by a HFD, while A2B receptor knockout mice under this
diet developed greater obesity and signs of type 2 diabetes
[119]. The authors showed further that in human subjects with
obesity, A2B receptor expression correlated strongly with ex-
pression of the insulin receptor substrate 2, and suggested that
A2B receptor agonists have potential for the treatment of type
2 diabetes and obesity. A recent study by Antonioli and co-
workers reported that A2B receptors participate to obesity-
related enteric dysmotility, modulating the activity of excitato-
ry tachykininergic nerves in HFD mice [120]. A review about
adenosine and adipogenesis is available [121]. High plasma
levels of adenosine were found in children with obesity [122]
and in overweight pregnant women [123]. Non-alcoholic fatty
liver disease is an obesity-related condition. A study provided
insight into the lipolytic actions of caffeine (a P1 receptor
antagonist) through autophagy in mammalian liver and its
potential beneficial effects in non-alcoholic fatty liver disease
[124]. Obesity causes macrophage activation, which, in turn,
causes insulin resistance in target organs. Adenosine, acting
via A2B receptors, prevented adipose tissue inflammation and
insulin resistance; therefore, it suggests a possible therapeutic
strategy for inhibiting adipose tissue inflammation [125].
Evidence was presented that there may be a role for the
ectonucleotidase CD73 and A2A receptors in inflammation
observed in patients with type 2 diabetes and obesity mediated
via apoptosis [126]. Adenosine protects rats from a HFD by
reducing glucose and insulin levels, suppressing elevation of
corticosterone and attenuating intestinal inflammation [127].

Concluding comments

Several important conclusions can be drawn from this review:

1. P2Y6 receptors influence hypothalamic control of feed-
ing, and the P2Y6 receptor antagonistMRS 2578 inhibits
food intake in obese mice. Therefore, P2Y6 receptors are
a potential therapeutic target for the prevention and treat-
ment of obesity.

2. A2A receptor agonists, acting on adipocytes, counteract
HFD-induced obesity in mice, indicating A2A receptors
as a potential drug target for anti-obesity therapies.
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3. P2Y11 receptors have stimulatory effects on lipolysis in
adipocytes. Therefore, these receptors deserve further
explorations.

4. Both P2X7 receptors, which mediate inflammation, and
KATP are beginning to be explored for the treatment of
obesity.

5. Growing lines of evidence suggest that a subtle balance
of adipogenic and osteogenic differentiation of mesen-
chymal stem cells is crucial in tissue homeostasis and a
loss of adipo-osteogenic balance leads to pathophysio-
logical conditions, such as obesity.

6. P2Y1 receptors are responsible for the extracellular ATP-
mediated intracellular triglyceride accumulation in adi-
pocytes. The P2Y1 receptor antagonist MRS 2500 sig-
nificantly inhibited triacylglycerol accumulation, sug-
gesting the P2Y1 receptor as a novel therapeutic target
for the treatment of lipid disorders.

7. P2Y4 receptors are negative regulators of cardiac
adipose-derived stem cell differentiation and cardiac fat
formation. Therefore, these receptors could be potential
therapeut ic targets in the regula t ion of the
cardioprotective function of cardiac fat.

8. Activation of P2Y13 receptors mediates HFD- and
palmitic acid-induced myenteric neuronal loss in mice.
Myenteric neurons from mice lacking the P2Y13 recep-
tors or treated with a selective P2Y13 receptor antagonist
are resistant to HFD- and palmitic acid-induced loss.
Antagonism of P2Y13 receptors might constitute a novel
therapeutic strategy in patients with obesity affected by
intestinal dysmotility.

9. Adipocyte ABC transporter G1 promoted triglyceride
storage and fat mass growth. Thus, it might represent a
potential therapeutic target in the control of fat
accumulation.

10. A1 receptor agonists are in clinical trials for obesity.
Over-expression of A1 receptors in adipose tissue pro-
tects mice from obesity-related insulin resistance.

11. A2B receptors prevent HFD-induced hallmarks of type 2
diabetes, adipose tissue inflammation and insulin resis-
tance. Therefore, the A2B receptor might represent a pos-
sible therapeutic strategy.

Purinergic signalling offers proof-of-concept potential for
the development of novel therapeutic approaches to treat obe-
sity, mostly from studies in animal models. Currently, phar-
macological obesity treatment options are palliative and lim-
ited. An excess of body fat is associated with cardiovascular
disorders and metabolic syndromes, including insulin-
independent diabetes and dyslipidemia; therefore, a combina-
tion of lifestyle changes and new drugs may be the most effi-
cacious approach to achieving sustained weight loss for the
majority of patients with obesity. In particular, strategies to
combat obesity may include drugs that regulate bodyweight

acting through CNS pathways or via peripheral adiposity sig-
nals and the gastrointestinal tract.

There are a number of promising studies on several animal
models and systems that could be translated to human appli-
cations. Current data obtained with experimental models sup-
port the notion that the purinergic system consists of adeno-
sine receptors, metabotropic P2Y receptors and ionotropic
P2X7 receptors, which are all thought to contribute to the
pathology of obesity. The enormous flexibility and diversity
of the purinergic system can be exploited in drug design for
therapeutic intervention and the development of anti-obesity
drugs, although further understanding is needed. Indeed, the
development of selective agonists and antagonists for the dif-
ferent purinergic receptor subtypes could be combined with
the investigation of the interactions of purinergic signalling
with other established signalling systems in relation to obesity.
Hopefully, the potential use of purinergic compounds that are
orally bioavailable and stable in vivo for the treatment of
obesity will soon be prepared by medicinal chemists that can
be used in clinical trials.
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