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Loss of apical monocilia on collecting duct principal cells
impairs ATP secretion across the apical cell surface
and ATP-dependent and flow-induced calcium signals
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Abstract Renal epithelial cells release ATP constitutively
under basal conditions and release higher quantities of

purine nucleotide in response to stimuli. ATP filtered at the
glomerulus, secreted by epithelial cells along the nephron,
and released serosally by macula densa cells for feedback
signaling to afferent arterioles within the glomerulus has
important physiological signaling roles within kidneys. In
autosomal recessive polycystic kidney disease (ARPKD)
mice and humans, collecting duct epithelial cells lack an
apical central cilium or express dysfunctional proteins
within that monocilium. Collecting duct principal cells
derived from an Oak Ridge polycystic kidney (orpkTg737)
mouse model of ARPKD lack a well-formed apical central
cilium, thought to be a sensory organelle. We compared
these cells grown as polarized cell monolayers on perme-
able supports to the same cells where the apical monocilium
was genetically rescued with the wild-type Tg737 gene that
encodes Polaris, a protein essential to cilia formation.
Constitutive ATP release under basal conditions was low
and not different in mutant versus rescued monolayers.
However, genetically rescued principal cell monolayers
released ATP three- to fivefold more robustly in response to
ionomycin. Principal cell monolayers with fully formed
apical monocilia responded three- to fivefold greater to
hypotonicity than mutant monolayers lacking monocilia. In
support of the idea that monocilia are sensory organelles,
intentionally harsh pipetting of medium directly onto the
center of the monolayer induced ATP release in genetically
rescued monolayers that possessed apical monocilia. Me-
chanical stimulation was much less effective, however, on
mutant orpk collecting duct principal cell monolayers that
lacked apical central monocilia. Our data also show that an
increase in cytosolic free Ca2+ primes the ATP pool that is
released in response to mechanical stimuli. It also appears
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that hypotonic cell swelling and mechanical pipetting
stimuli trigger release of a common ATP pool. Cilium-
competent monolayers responded to flow with an increase
in cell Ca2+ derived from both extracellular and intracellular
stores. This flow-induced Ca2+ signal was less robust in
cilium-deficient monolayers. Flow-induced Ca2+ signals in
both preparations were attenuated by extracellular gadolin-
ium and by extracellular apyrase, an ATPase/ADPase.
Taken together, these data suggest that apical monocilia
are sensory organelles and that their presence in the apical
membrane facilitates the formation of a mature ATP
secretion apparatus responsive to chemical, osmotic, and
mechanical stimuli. The cilium and autocrine ATP signaling
appear to work in concert to control cell Ca2+. Loss of a
cilium-dedicated autocrine purinergic signaling system may
be a critical underlying etiology for ARPKD and may lead to
disinhibition and/or upregulation of multiple sodium (Na+)
absorptive mechanisms and a resultant severe hypertensive
phenotype in ARPKD and, possibly, other diseases.
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Abbreviations
ATP adenosine 5’-triphosphate
Ca2+ calcium
orpk Oak Ridge polycystic kidney
ARPKD autosomal recessive polycystic

kidney disease
Na+ sodium
Tg737 gene Polaris gene
MDCK Madin-Darby canine kidney
CCD cortical collecting duct
PC principal cell
ER endoplasmic reticulum
ALU arbitrary light units
TRP transient receptor potential
RVD regulatory volume decrease
K+ potassium
Cl− chloride
DIDS 4,4’-diisothiocyanato-stilbene-2,

2’-disulfonic acid
NO nitric oxide

Introduction

Monociliated ductal epithelial cells are receiving much
attention due to their remodeling in polycystic kidney
diseases, role in other cystic diseases of the kidney and
other tissues, and in sensory physiology [1–12]. Cilia and
flagella from lower organisms have important roles in

sensory physiology in response to flow, touch, chemical
and osmotic stimuli [1–5, 15, 16]. MDCK cells and other
cell and tissue models of the renal collecting duct have
been essential in characterizing cilium-derived cell calcium
(Ca2+) signals [17–30]. It appears likely that this cilium-
affected Ca2+ signal is derived from Ca2+ entry from extra-
cellular stores and Ca2+ release from intracellular stores; the
latter, perhaps, an ER cisternae near the basal body
immediately beneath the monocilium [17–30]. Previously
thought to be a vestigial organelle [1–5] or morphological
marker for the cortical collecting duct (CCD) principal cell
(PC) [31], the apical central monocilium is likely a sensor
for ductal epithelia [5].

Recently, our laboratory has shown that epithelial
sodium channel (ENaC)-mediated sodium (Na+) absorption
is upregulated in mutant cilium-deficient orpk CCD PC
monolayers versus genetically rescued cilium-competent
controls [32]. ENaC activity is present under open-circuit
voltage and short-circuit current measurements in rescued
cell monolayers with a well-formed cilium, but the electrical
signals were three- to sixfold less than mutant monolayers
[32]. One of our working hypotheses is that an inhibitory
signal is lost (when the monocilium is not well formed) that
is responsible for tonic attenuation of ENaC function [32].
Indeed, flow-induced Ca2+ signals have been shown
recently by Praetorius and Leipziger not to be due to the
cilium of MDCK cells per se but to autocrine ATP signaling
that is stimulated by pressure pulses and responsible for
Ca2+ spark and wave signal formation [33]. Immature
MDCK cells without discernible cilia and mature MDCK
cells with cilia responded similarly [33]. Alternatively,
Satlin and coworkers have compelling data that monocilia
do confer flow-based Ca2+ signals in isolated perfused
CCDs from control mice versus mutant Tg737orpk mice
[20]. In multiple different preparations from tissue to renal
epithelia to heterologous cells, flow-induced Ca2+ signals
have been observed [17–30]. However, the concept that an
autacoid might mediate these cilium-specific effects has not
been addressed.

Herein, we show that the fully formed monocilium does
confer a more robust Ca2+ signal in rescued cell monolayers
versus mutant cell monolayers that are deficient in well-
formed cilia. This finding agrees with the majority of the
literature examining this phenotype [17–30]. However and
more importantly, we show that stimulated or regulated
ATP release is impaired when the monocilium is mal-
formed. Ionomycin-, hypotonicity-, and mechanically in-
duced ATP release are more robust in cilium-competent
monolayers versus cilium-deficient monolayers. Varying
the order of stimuli also revealed that cell Ca2+ influences
the mechanically induced secreted ATP pool and that
hypotonic cell swelling and other mechanical stimuli trigger
the release of the same ATP pool. Finally, the flow-induced

156 Purinergic Signalling (2008) 4:155–170



Ca2+ signal in this cell model requires autocrine ATP
release and signaling, as it was blocked by the ATPase/
ADPase scavenger, apyrase. These data may reconcile the
different conclusions within the Praetorius and Leipziger
study [33] and the study of Satlin and coworkers [20]. To
our knowledge, this is the first report linking the sensory
apical central and nonmotile cilium to ATP secretion.

Materials and methods

Cell culture The collecting duct principal cells derived
from an Oak Ridge polycystic kidney (orpk) mouse model
of autosomal recessive polycystic kidney disease (ARPKD)
and the genetically rescued cells with the wild-type
orpkTg737 gene were a generous gift from Dr. Bradley
Yoder (University of Alabama at Birmingham). The
“mutant 1” cell clone (94D pcDNA 3.1 cells), the “rescued
1” cell clone (94D BAP737-1 cells), and the “rescued 2”
cell clone (94D 737-2 cells) were handled identically and
were grown under G418 selection on 6.5-mm diameter
(Corning Costar) or 12-mm diameter filter supports (Milli-
cell CM) and bathed in Dulbecco’s modified Eagle’s
medium nutrient mixture F-12 HAM with L-glutamine and
15 mM hydroxyethylpiperazine ethanesulfonic acid
(HEPES) (Sigma) [32]. This medium was supplemented
with 5% fetal bovine serum (FBS) and contained (per
1,000 ml) dexamethasone (100 μl/l of 2 mg/ml stock),
interferon-γ (25 μl of 800 U/μl stock), T3 (10 μl/l of
13 mg/ml stock), G418 (500 μl of 400 μg/ul stock),
penicillin-streptomycin (10 ml of 100X stock), and ITS
(10 ml of 0.5 mg/ml insulin transferrin selenium concen-
trated stocks). The cells continued to be bathed on both
sides of the filter until a monolayer tight to fluid formed.
Measurement of the resistance of the filters was used as an
indicator of the formation of a mature monolayer. Once the
monolayers were formed for at least 12 h, the cells were
then acceptable for the experimental assay.

In addition to these original clones developed in the
Yoder laboratory, we also generated two new clonal lines
from the original 94D mixed mutant CCD cell cultures,
namely “mutant 2” and “mutant 3.” The only difference
between these two subsequent clones and the original
“mutant 1” clone is the fact that the “mutant 1” clone is
stably transfected with an “empty” pcDNA 3.1 vector that
confers G418 resistance. “Mutant 2,” “mutant 3,” and the
mixed mutant cultures are grown in a medium without
G418. We also studied a “rescued B2” clone that was stably
transfected and rescued with the wild-type Tg737 gene but
we derived from a different mutant CCD originally, 94E.
The generation of these additional clones was described in a
previous publication [32].

Bioluminescence detection of ATP released from epithelial
monolayers In every assay performed, there was an initial
basal ATP measurement followed by subsequent ATP
measurements in response to different stimuli added in
different sequences. ATP release assays were performed
mainly on well-polarized cell monolayers grown in clear
polyester 6.5-mm diameter filter supports. Mutant versus
rescued cell monolayers were studied side by side in each
ATP release protocol. The use of luciferase-luciferin to
indirectly measure the ATP concentration has been pub-
lished previously in detail [34]. Every drug prior to
experimentation was tested to ensure that they did not
interfere with the luciferase enzyme activity [34–37]. There
was also no change in cell viability with any of these
maneuvers as has also been reported previously [34–37].
Each experiment began with a basal ATP measurement or
the addition of Opti-MEM I medium (GIBCO-BRL) with
1 mg/ml luciferase-luciferin reagent (Sigma) being added to
the apical or basolateral side of the filter’s monolayer.
Basolateral ATP release was negligible; therefore, all data
reported are apical or luminal ATP secretion. Basal levels of
ATP release were measured for 6 min in 15-s, nonintegrated
photon collection periods in a TD-20/20 Luminometer
(Turner Designs) [34–37]. In different orders of addition,
we used the following stimuli: (1) ionomycin (2 μM) (to
increase the intracellular calcium concentration), (2) dis-
tilled water with 1 mg/ml luciferase-luciferin (to dilute the
osmotic strength of the Opti-MEM I medium), and (3)
intentionally harsh pipetting in the center of the apical
surface of the cell monolayer (to induce a mechanical
stimulus on the apical membrane). Normally, addition of
drug or distilled water (or the same volume of medium as a
volume addition control) is performed or dispensed very
slowly along the wall of the plastic support that holds the
permeable filter so as not to disrupt the tight, confluent
monolayer. Therefore, by quickly pipetting the medium up
and down onto the monolayers, a mechanical stimulation is
induced. Luminescence was measured for 6 min after each
stimulus. All experiments ended with the addition of
hexokinase to eliminate any ATP left in the medium. All
assays were performed at room temperature.

Fura-2/AM imaging of cytosolic free calcium in a cell
monolayer-based perfusion system Fura-2/AM imaging
was performed as described previously [38–40]. However,
to remain faithful to the study of polarized cell monolayers,
we designed a cell monolayer-based perfusion chamber
system where 12-mm diameter Snapwell Transwell filter
supports are inserted into a homemade perfusion chamber
designed to accommodate this special filter support. Apical
and basolateral perfusion are then performed separately
through independent injection ports and separate ejection
ports are subjected to vacuum. Response to changes in
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apical flow from 1 ml/min (a “slow” flow) to 5 ml/min
(“high” flow) were performed to induce a flow-induced
Ca2+ transient akin to that observed by many other labo-
ratories. We assessed mutant and rescued cell monolayers in
parallel during all protocols. We also assessed the flow-
induced Ca2+ transient signal in the absence of apical
extracellular Ca2+ and in the presence of gadolinium
chloride and apyrase. It was not possible to calibrate the
Fura-2 fluorescence signal to real free cytosolic Ca2+

values because of ionomycin contamination of the flow
chamber. As such, fluorescence ratio values are shown. We
give estimates of what the free Ca2+ may be based on
previous calibrations of the same cells grown as nonpo-
larized cells.

Materials All reagents and drugs were purchased from
Sigma. Larger 12-mm diameter filter supports were
obtained from Millipore. Smaller 6.5-mm diameter filter
supports were obtained from Corning Costar. It should be
noted that we are using less luciferase:luciferin detection
reagent than in past studies [34–37].

Results

Basal ATP release or secretion is not different between
mutant and rescued CCD PC monolayers Basolateral ATP
release was near background and was negligible in both
mutant and rescued cell monolayers. This result does not
mean that ATP is not released across the basolateral cell
surface. ATP may, in fact, be released but “trapped”
between the cell monolayer and the filter support and/or
the detection reagent may not gain sufficient access to this
“trapped” space. Therefore, only apical-directed ATP
release was studied exclusively in the detection experiments
below. Regardless of the filter support used to form cell
monolayers and the amount of detection reagent included in
the real-time experiments, basal or unstimulated or consti-
tutive ATP release was low and not different between the
panels of mutant and rescued cell monolayers studied.
There was agreement between all mutant clones and all
genetically rescued clones in all protocols below. As such,
the data are pooled for mutant cell monolayers and rescued
cell monolayers. Basal ATP release data are summarized in
the bar graph in Fig. 1 as bioluminescence in arbitrary light
units (ALU). In total, the amounts of ATP released were
below 50 nM. A standard curve was run with each series
of ATP release experiments. Thus, basal ATP secretion is
not different across the apical membrane of mutant and
rescued cell monolayers and the amount of ATP released
is barely sufficient to engage the most sensitive P2Y or
P2X cell surface receptors.

Ionomycin-stimulated ATP release is more robust in
rescued versus mutant cell monolayers We first assessed
the effect of an increase in intracellular free calcium (Ca2+)
on ATP release. This first study was done in part because of
the emerging role of the primary central monocilium in
mediating Ca2+ transients, sparks, and waves in cell
monolayers derived from extracellular and intracellular
stores [17–30]. This cilium-derived Ca2+ signal is triggered
by touch or flow across this organelle and is mediated, at
least in part, by the polycystin proteins, PC-1 and PC-2
[17–30]. Polycystin-2 is a part of the TRPP subfamily of
TRP genes and is a distant relative of the transient receptor
potential or TRPC gene family of Ca2+ entry channels [17–
30]. Ionomycin (2 μM) applied to the apical surface of
well-polarized cell monolayers triggered a slow, mono-
phasic rise in ATP release over 3–5 min (see typical time
courses below in Figs. 6 and 8). This response was a similar
phenotype to that observed in previous studies by our
laboratory in human vascular endothelial cell monolayers
[37]. In mutant monolayers deficient in monocilia, an
increase in cell Ca2+ increased extracellular ATP from
below 50 nM to 0.4 μM. Figure 2 shows data as biolu-
minescence in arbitrary light units (ALU) with correspond-
ing estimated ATP for each step of the protocol based upon
parallel standard curves with known amounts of ATP. In
sharp contrast, rescued monolayers responded to ionomycin
stimulation with a rise in secreted ATP from approximately
50 nM to 2 μM, three- to fivefold higher sustained amounts
on average than in mutant monolayers. The data in Fig. 2
also group the data from the panels of mutant and rescued
clones which were in agreement. Taken together, these data
show that cell Ca2+-stimulated ATP release is more robust
when a well-formed central monocilium is present. In fact,
the “releasable” pool of ATP that is sensitive to Ca2+

appears intact in cilium-competent monolayers and defi-
cient in cilium-deficient monolayers.

Hypotonicity-induced ATP release is more robust in rescued
versus mutant cell monolayers Hypotonic challenge and
resultant cell swelling and regulatory volume decrease
(RVD), a shared mechanism of cell volume regulation by
all cells [41–44], is a robust stimulus for ATP release [41–
46]. It is a shared sentiment by most that ATP release
precedes and triggers, at least in part, RVD mechanisms
such as opening of parallel K+ and Cl− channels to mediate
rapid KCl efflux and to lower cell volume back to basal
levels [41–46]. As such, we used hypotonic challenge to
assess ATP release in mutant cilium-deficient cell mono-
layers versus rescued cilium-competent cell monolayers.
Figure 3 summarizes these data. These stimuli followed
the ionomycin treatment. We show other typical real-time
courses below when hypotonic challenge was performed in
the absence of ionomycin (see Fig. 7). In all monolayers,
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hypotonic challenge of the apical surface (50% dilution of
the medium osmolality with distilled water containing
1 mg/ml detection reagent) triggered an increase in ATP
release that had transient and sustained components. In
mutant monolayers, hypotonic challenge increased ATP
detected in the medium from approximately 0.4 to 3 μM
during the peak of stimulation and to a slightly lesser value
at the end of the hypotonicity challenge phase. Addition of
the same volume of isotonic medium (a “volume addition”
control) increased ATP secretion slightly from 0.4 to 0.5 μM
(data not shown). Uniformly, rescued cilium-competent cell
monolayers responded more vigorously to the hypotonic
stimulus. This stimulus again followed the ionomycin
treatment. ATP release increased from approximately 2 to

5–10 μM at the peak of the response and to a lesser
sustained level at the end of the hypotonic challenge phase.
In volume addition control experiments, ATP release was
triggered that was only transient and increased from 2 to
4 μM on average (data not shown). Taken together, these
data show that rescued cell monolayers respond more
vigorously to hypotonic challenge than mutant cell mono-
layers with regard to ATP secretion, a signal required for
cell volume regulation. Moreover, increases in cell Ca2+

prime swelling-induced ATP release and allow a larger ATP
secretion signal to visualize.

Mechanically-induced ATP release is more robust in rescued
versus mutant cell monolayers Harsh and fast pipetting of
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Fig. 1 Basal ATP release across the apical cell surface is not different
between mutant cilium-deficient and genetically rescued cilium-
competent orpk kidney cell monolayers. In three separate preparations
of mutant versus rescued cell monolayers on different filter supports
and exposed to different concentrations of luciferase:luciferin detec-
tion reagent, ATP release was not different between the cilium-
deficient and cilium-competent cell monolayers (n=12 for left set of
bars; n=6 for center and right datasets). In this study, we had a
breakthrough with regard to what filter support to use for our ATP
release experiments studying cell monolayers on filter supports. We
found that the 6.5-mm diameter filter support (the same as used in
open-circuit and Ussing chamber experiments studying ENaC upreg-
ulation [32]) was ideal for these real-time ATP release assays into the
apical medium because the apical cell surface was as close as it could
be and fully exposed to the luminescence detector in the base of the
chamber. The left set of bars is data derived from this filter support
and procedure. All other data in subsequent figures derive from this
preparation. A diagram shows how the filter support was handled and
placed into the luminometer chamber. After washing of serum-
containing medium away from the monolayer, a small volume of
Opti-MEM 1 medium (15 μl) is added in a drop to the lid of a 35-mm
dish to hydrate the preparation and to promote adherence to the lid of
the dish; 200 μl of Opti-MEM 1 medium containing 1 mg/ml

lyophilized luciferase:luciferin reagent are placed within the cup in
contact with the apical surface of the cell monolayer. Detection is then
begun for bioluminescence due to secreted ATP from the cell
monolayer into the apical space in continuous 15-s collection periods
delayed only by the time to push the “start” button on the luminometer
and to record the luminescence to an Excel spreadsheet. The standard
curve with which approximations were made as to the secreted ATP
concentrations was performed with each dataset, was compiled, and is
as follows: 10−10 M ATP, 0.052±0.005 ALU...10−9 M ATP, 0.476±
0.042 ALU...10−8 M ATP, 4.95±0.51 ALU...10−7 M ATP, 51.2±4.8
ALU...10−6 M ATP, 455±23 ALU...10−5 M ATP, 3956±311
ALU...10−4 M ATP and 10−3 M ATP, >9999 ALU (exceeded limit
of detection of luminometer). It is important to note that these are
estimates of secreted ATP because we do not add inhibitors of ecto-
ATPases and it is likely that our ATP release signal is diminished
significantly by ATP degradation before detection. The left set of bars
show basal ATP secretion from the 6.5-mm diameter clear polyester
filter support without feet that is immediately above the light sensor
and bathed in 15 μl of serosal medium. The middle set of bars show
ATP secretion from a 12-mm polyester clear filter support with feet
and bathed in 200 μl of serosal medium. The third set of bars at right
show ATP secretion from a polycarbonate filter support with feet and
bathed in 200 μl of serosal medium
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Fig. 2 Ionomycin-induced ATP release across the apical cell surface
is markedly attenuated in mutant cilium-deficient versus genetically
rescued cilium-competent orpk kidney cell monolayers. Six to nine
cell monolayers were assessed at left for the summary data derived
from the 6.5-mm diameter filter support preparation. The fold
difference in ionomycin (2 μM, added in a 2-μl bolus along the side
of the plastic wall into the apical medium)-induced ATP release in
rescued cell monolayers over mutant monolayers is graphed for the

dataset at left along with three additional datasets. Although the filter
supports, amount of detection reagent, and magnitude of luminescence
measured differed between preparation to preparation (n=6 each), the
fold difference in the ionomycin effect was constant. The asterisk
reflects P<0.05 by paired Student’s t-test; the cross reflects P<0.05
significance by analysis of variance (ANOVA) and Tukey’s ad hoc
test. The statistical analysis and results are given similarly in all other
figures
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an 50 μl volume of isotonic medium directly down on the
center of the cilium-competent monolayers (the “mechan-
ical stimulus”) in three repetitions triggered an immediate
ATP secretion that had transient and sustained phases like
the swelling-induced ATP release from 2 to 3–4 μM in
rescued monolayers. This response was greatly attenuated
in the mutant monolayers where ATP release was augment-
ed only slightly from 0.4 to 0.5 μM. These experiments
were performed after ionomycin challenge and the sum-
mary data are presented in Fig. 4b. In the absence of
ionomycin pretreatment (Fig. 4a), mutant monolayers failed
to respond to this stimulus altogether, whereas rescued
monolayers responded significantly with an ATP release
transient. Again, it is noted that increases in cell Ca2+ also
appear to prime this mechanically sensitive ATP release
mechanism. Taken together, these data suggest that the
presence of a well-formed apical central monocilium is a

prerequisite for robust ATP secretion to provide a mean-
ingful autocrine ATP signal on the luminal surface of
cortical collecting duct principal cells.

Figures 5, 6, 7, and 8 provide typical real-time courses
showing the luminescence data (in arbitrary light units) for
mutant and rescued monolayers illustrating the summary
data presented in Figs. 1, 2, 3, and 4. With the exception of
basal ATP release, all phases of ATP secretion are
markedly more robust in cilium-competent models versus
cilium-deficient models across the apical cell surface. These
data also revealed that there may be shared and different
pools of “releasable” ATP within the cell. These data also
began to reveal that increases in cell Ca2+ influence ATP
secretion markedly.

An original physiological role for the apical central
monocilium was that of a “mechanosensor.” Figure 5
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Fig. 4 Mechanically induced ATP release across the apical cell
surface is markedly attenuated in mutant cilium-deficient versus
genetically rescued cilium-competent orpk kidney cell monolayers.
In a where no ionomycin pretreatment was performed, four mutant
and four rescued cell monolayers were compared. In b where
mechanical stimulation was performed after ionomycin challenge,
six mutant and six rescued cell monolayers were compared. Without
ionomycin, there was no response from the mutant cell monolayers.
With ionomycin, there was a response from mutant monolayers that

was barely significant. In contrast, rescued cell monolayers responded
robustly to the addition of 50 μl of Opti-MEM 1 medium with
detection reagent pipetted vigorously onto the center of the monolayer.
In two additional repetitions, 50 μl of apical medium was drawn up
and ejected onto the center of the monolayer before luminescence
readings continued. Figure 5 shows the nature of the response versus
the hypotonic challenge and the ionomycin stimulation. Statistics are
shown like in Fig. 2
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validates this idea using ATP secretion as the biological
endpoint. Repeated pipetting of isotonic medium containing
the same amount of detection reagent revealed repeated
stimulation of ATP release transients in cilium-competent

monolayers. The responses in mutant cilium-deficient cell
monolayers were greatly attenuated. This comparison was
performed on the same day with the same preparation of
luciferase:luciferin detection reagent. Figure 6 shows a
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Fig. 5 Typical real-time course
of mechanically induced ATP
release across the apical cell sur-
face in mutant versus rescued cell
monolayers. In this and three
subsequent figures, the green
(closed or solid) balls reflect data
from cilium-competent cell
monolayers and the white (open)
balls reflect data from cilium-
deficient cell monolayers. Lines
do not connect the points be-
cause there are delays of a few
seconds between readings. One
can observe that there are clear
ATP release transients induced in
rescued cell monolayers by the
mechanical insults. The signals
observed from mutant cell
monolayers are greatly
attenuated
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monophasic sustained increase
in ATP secretion that is three- to
fivefold more robust in rescued
cell monolayers. In the presence
of ionomycin stimulation, the
mechanical insults produce even
more pronounced ATP secretion
that is more sustained in nature
when cell Ca2+ is elevated.
Nevertheless, the signals ob-
served from mutant cell mono-
layers remain greatly attenuated
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similar experiment but with ionomycin pretreatment. Here,
the classic ionomycin-induced ATP secretion phenotype is
shown. It is a slow and monophasic increase in secreted
ATP that is robust; however, the response of rescued
monolayers is fourfold greater than mutant monolayers.
Subsequent mechanical stimulation via repeated pipetting
showed a more vigorous response in the cilium-competent
monolayers versus the cilium-deficient monolayers. Figure 7
provides multiple compelling illustrations. First, the re-
sponse to hypotonic challenge is shown and it is much
more robust in rescued versus mutant cell monolayers. In-
terestingly, however, the repeated harsh pipetting stimulus
is without effect in both rescued and mutant cells after the
hypotonic challenge. In fact, the luminescence decreases
modestly. These data suggest that these two mechanical
stimuli may mobilize the same “releasable” pool of ATP.
Figure 8 shows the relative effects of the three stimuli used
in this study on rescued cilium-competent cell monolayers
and on mutant cilium-deficient cell monolayers. Although
greatly diminished because of the Y-axis scale, the mechan-
ical stimulus triggered a fourfold greater ATP secretion

transient in the rescued cell monolayers versus the mutant
cell monolayers. Ionomycin also produced a fourfold greater
sustained ATP release in rescued versus mutant monolayers.
Hypotonic challenge also triggered a more robust response
in the mutant cell monolayers. A large degree of the
stimulated ATP release was inhibited by the broad speci-
ficity anion transport inhibitor, DIDS, suggesting that an
ATP transport process may be mediating the release of ATP
from intracellular pools. In the presence of DIDS inhibi-
tion, release is inhibited while degradation of released ATP
proceeds unabated, leading to a sharp decline in the signal.
In contrast, ionomycin-stimulated ATP release is attenuated
by performing the luminescence experiment at 4°C (data
not shown), suggesting a vesicular mechanism of release.
Hexokinase is added at the end of every protocol to scav-
enge the ATP and abolish the luminescence signal.

Taken together, these data suggest that cell Ca2+ is
critically important for priming the ATP release machinery.
These data also suggest that the “releasable” pools of ATP
are present in cilium-competent cell monolayers beneath
the apical cell surface, while they may be impaired or
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Fig. 7 Typical real-time course of hypotonic challenge-induced ATP
release across the apical cell surface in mutant versus rescued cell
monolayers. Hypotonicity induced a marked increase in ATP release
that was fivefold more robust in rescued cell monolayers versus
mutant cell monolayers. Of interest, however, mechanical stimulation
via repeated pipetting near the center of the cell monolayers had no
effect on ATP release after hypotonic cell swelling. These data suggest

that both stimuli are indeed mechanical in nature and that the same
pool of “releasable” ATP is being affected by each stimulus. The slight
drop in signal with the pipetting stimulus is the addition of 50 μl of
isotonic medium to the 400 μl of 50% diluted medium and the
resultant change in osmotic strength at the apical cell surface. The
hypotonicity-induced signal observed from mutant cell monolayers is
again greatly attenuated
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missing in cilium-deficient cell monolayers. These ideas
will be revisited and discussed below.

Flow-induced calcium signals are attenuated in cilium-
deficient mutant monolayers versus cilium-competent
monolayers An original physiological role for the apical
central monocilium was that of a mediator of flow- or
touch-induced Ca2+ signals in MDCK cells by Praetorius
and Spring [17–19]. Subsequent studies in heterologous
cells, renal collecting duct cell models, and renal collecting
ducts showed that an intact cilium is required for the flow-
induced Ca2+ signal [20–30]. To be faithful to a polarized
epithelial cell monolayer system used routinely for this
study and other studies [32, 34–40], we devised a flow
chamber where the apical versus basolateral sides of the
monolayer could be perfused independently and at different
flow rates. The 12-mm diameter Snapwell transwell filter
can then be inserted into this chamber for selective
perfusion and fluorescence imaging. With a constant low
rate of perfusion of the basolateral surface of the mono-
layers, low versus high rates of perfusion were performed
on the apical surface in rescued versus mutant monolayers.

Figure 9 shows the response to modifications in saline
Na and Mg and to high flow (5 ml/min) versus low flow
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Fig. 8 Typical real-time course of all three stimuli given in an order
where each stimulation can be observed in mutant versus rescued cell
monolayers. Although the large scale diminished the mechanically
induced signal and data, an ATP release transient is observed in
rescued cell monolayers and not in mutant cell monolayers. The
monophasic ionomycin response is then observed, again more robust
in rescued cell monolayers. Then, hypotonic challenge is performed in
the presence of ionomycin. Here, the largest values of secreted ATP

are observed that approach ∼15–20 μM in the apical medium bathing
cilium-competent cell monolayers. In these plots, the effects of the
broad specificity anion transport inhibitor, DIDS, are shown. DIDS
diminishes ATP release in both types of monolayers and in other
epithelial cell monolayer preparations to different degrees. The
inhibition is partial and DIDS does not affect the detection reagent.
Hexokinase is added at the end of each experiment to eliminate
secreted ATP and to diminish the luminescence signal to low levels
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Fig. 9 Typical real-time courses of flow-induced Ca2+ transient
signals across the apical cell surface in mutant versus rescued cell
monolayers. Fluorescence ratio values were shown for Fura-2. It was
very difficult to perform ionomycin-based calibrations to derive real
cytosolic free Ca2+ values in this monolayer preparation that could be
trusted. Moreover, the ionomycin used contaminated the perfusion
lines for subsequent experiments. The flow-induced responses are
observed in the center of each trace and the flow effect was reversed
by returning to low flow. The use of the low Na+, low Mg2+ Ringer
allowed us to view this transient more easily; it was more robust and
long-lived under these ionic conditions where the Ca2+ entry channel
inhibitors, Na+ and Mg2+, were minimized
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(1 ml/min). When Na and Mg are lowered to mimic the
amount left in collecting duct tubular fluid after the bulk of
each cation is reabsorbed along the nephron (10 and
0.1 mM, respectively), an increase in cell Ca2+ is observed
that is due to Ca2+ entry from extracellular stores. The
modifications in extracellular saline have augmented Ca2+

entry and cytosolic free Ca2+ in previous experience [39,
40, 47]. Ca2+ competes with Na+ through all Ca2+ entry
channels that are, by definition, Ca2+-permeable nonselec-
tive cation channels [39, 40, 47]. Mg2+ blocks or impedes
the pore of many different Ca2+ entry channels [39, 40, 47].
The response was greater in cilium-competent cell mono-
layers versus cilium-deficient cell monolayers to this Na+

and Mg2+ removal. When flow is increased, a flow-induced
calcium signal is observed in cilium-competent monolayers
that is reminiscent of such signals seen in isolated perfused
renal collecting duct [20] and in other systems [21–29]. In
cilium-deficient monolayers, this signal is present but
impaired markedly. Taken together, these data show that
cilium-competent cell monolayers are more able to respond
to flow stimuli than cilium-deficient cell monolayers.

Summary data are also shown in Fig. 10 that shows the
responses under different saline conditions alone and
responses to high flow in different conditions. Several
nuances emerge from these data that agree with previous
work in which our laboratory and our collaborators have
been involved [20, 38]. It is important to note that our main
intent was not to reproduce previously published data but to
link cilium-derived Ca2+ signals to ATP secretion studied
above. First, basal cell Ca2+ is indeed significantly higher in
mutant cells versus rescued cells in this monolayer imaging
preparation (Fig. 10a). These results agree with those
performed by another collaborator in a study by Siroky et
al. [38]. Second and curiously, however, the basal cell Ca2+

phenotype switches in experiments performed in the
absence of extracellular Ca2+ (Fig. 10b). In nominally Ca2
+-free solutions, mutant cell Ca2+ is driven quite low, while
rescued cell Ca2+ is maintained if not slightly augmented.
These data with regard to resting cell Ca2+ indeed suggest
that Ca2+ entry under basal or unstimulated conditions is
actually heightened in mutant cell monolayers versus
rescued cell monolayers due to a deregulated Ca2+ entry
pathway [38]. A valid explanation for the reversal in
phenotype under Ca2+-free conditions may result from the
loss of ER cisternae immediately beneath apical central
monocilia, causing mutant cell Ca2+ to decrease markedly
under these conditions. In contrast, cilium-competent
monolayers may have robust intracellular Ca2+ stores tied
immediately beneath the monocilia to maintain basal cell
Ca2+ in the absence of Ca2+ entry.

In the presence of extracellular Ca2+, modification of the
Ringer to mimic collecting duct tubular fluid and to
disinhibit Ca2+ entry channels augmented cell Ca2+ signifi-

cantly only in cilium-competent cell monolayers (Fig. 10a).
A change in the flow rate from 1 ml/min to 5 ml/min again
only augmented cell Ca2+ in the form of a brief Ca2+

transient with a “spike” and a “shoulder” (Fig. 10a). A
typical phenotype is shown in Fig. 9. Mutant cell mono-
layers failed to respond to flow with a significant change in
cell Ca2+ (Fig. 9 shows the typical degree of response to
flow). In the absence of extracellular Ca2+, the same
magnitude and type of Ca2+ entry “spike” was observed in
rescued cilium-competent cell monolayers (Fig. 10b). How-
ever, the sustained “shoulder” of this response was missing
in the absence of extracellular Ca2+. Any response from the
mutant cell monolayers was insignificant and sluggish. In
this light, the rescued cell monolayers showed a complete
reversal when flow was slowed; however, the mutant cell
monolayers did not. The reason for this lack of reversal is
unclear, but we speculate that the cells can no longer “sense”
flow and, therefore, display deregulation with regard to cell
Ca2+ in this manner as well. In Fig. 10c, responses in the
rescued cell monolayers were assessed in the presence of
apical gadolinium chloride, a broad spectrum inhibitor of
mechanosensitive ion channels and Ca2+ entry channels [30,
38]. Infusion of gadolinium chloride during the course of
the apical perfusion in the presence of extracellular calcium
and in low and high flow also quieted the flow-induced
calcium signal (Fig. 10c). The rise in cell Ca2+ in response
to the reduction of Na+ and Mg2+ was not blocked,
suggesting that this Ca2+ entry mechanism is insensitive to
gadolinium. These data suggest that a mechanosensitive
Ca2+ entry channel is sensitive to gadolinium and plays a
role in flow-induced Ca2+ entry. These data agree with the
literature [17–30].

Many studies, however, have also implicated autocrine
and paracrine purinergic signaling as a major player in
mechanically induced Ca2+ sparks and waves in monolayer
and tissue preparations [33, 48–54]. Indeed, in immature
and mature MDCK cells lacking or bearing monocilia, a
pressure pulse-induced Ca2+ signal was observed in each
preparation and the signal was abolished by antagonists to
purinergic signaling [33]. To test whether cilium-conferred
autocrine ATP release and signaling was important for the
cilium-dependent Ca2+ signal, we performed a similar
apical flow protocol in the presence of the ATPase/ADPase,
apyrase (Fig. 10c). Apyrase blocked the flow-induced Ca2+

signal. Apyrase also attenuated the rise in cell Ca2+ induced
by lowering apical Na+ and Mg2+. Taken together, these
data suggest that an autocrine ATP signal, released by the
monolayer itself, contributes directly to the flow-induced
and cilium-derived Ca2+ signal. With the more robust
stimulated ATP release phenotypes and the flow-induced
Ca2+ signals in the rescued monolayers versus mutant
monolayers, we speculate that each may require the apical
central monocilium as an integrating sensory organelle.
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Fig. 10 Summary data under different experimental conditions for
flow-induced Ca2+ transient signals across the apical cell surface in
mutant versus rescued cell monolayers: requirement for autocrine
secreted nucleotides. a Summary data from the experiments shown in
Fig. 9. b Responses to flow in the absence of extracellular calcium. A
flow-induced Ca2+ signal is still present in the cilium-competent cell
monolayers. It is as robust in the peak values of Ca2+ increase (the tip
of the spike is used for the summary data); however, the shoulder is
absent from the transient in the absence of extracellular Ca2+. In the
cilium-deficient cell monolayers, there is a slow increase in Ca2+ that

is not significant and appears unrelated to flow. The asterisks in a and
b refer to a P<0.05 significant change from the previous stage of the
experiment by paired Student’s t-test. The crosses show significant
difference by ANOVA between mutant and rescued cell monolayer
Ca2+ levels. c The asterisks refer to a P<0.05 significant change from
the previous stage of the experiment by paired Student’s t-test. Only
data from rescued cell monolayers are shown where the Ca2+ signal is
much more robust. Gadolinium and apyrase blocked the flow-induced
Ca2+ transient signal, suggesting that Ca2+ entry channels and an
autocrine extracellular ATP signal are required to observe the Ca2+ signal
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Discussion

Figure 11 provides a cartoon that illustrates our current
working hypothesis concerning the requirement of an
autocrine ATP signal for monocilium-specific signaling.
Our data suggest that the secreted ATP near the apical
surface of principal cells of the renal collecting duct with
well-formed monocilia is robust enough to engage cell
surface P2X receptor channels or P2Y G protein-coupled
receptors. In cilium-deficient mutant cell monolayers, the
amount of ATP secreted under basal conditions or in
response to stimuli may be insufficient. P2Y and P2X
receptors may be present on or near the monocilium to
transduce this autocrine ATP signal. Recently, in a P2X4-
deficient mouse [55], flow- or shear stress-induced Ca2+

signals and resultant nitric oxide production were attenu-
ated markedly in vascular endothelial cells versus wild-type
controls. These transgenic mice also have blood pressure
regulation problems [55]. Ando and colleagues had
implicated ATP release and P2X4 previously in endothelial
cell Ca2+ entry signaling [56–58]. Our laboratory has
emerging data that P2X4 is expressed on the basal half or
just beneath motile respiratory cilia in human respiratory
tissues (L. Liang, Z. Bebok, and EM Schwiebert, unpub-
lished observations). Silberberg and colleagues have long
postulated that a “P2X cilia” is critical in mediating
extracellular ATP regulation of ciliary beat in freshly
isolated epithelial cells from airway and esophagus [59–
61]. Our laboratory has found that P2X4, P2X5, and P2X6

have shared and robust expression in epithelia from the
respiratory tract, gastrointestinal (GI) tract and renal system
[35, 36], and from vascular endothelia from multiple blood
vessels [37]. Work in progress is examining the expression
of P2X and P2Y purinergic receptors on cilia.

As introduced, it is becoming abundantly clear that the
monocilium in particular and cilia and flagella in general
are sensory organelles [1–5]. In tissues where high flow is
present (large airways, proximal tubule, arteries, arterioles,
etc.), the monocilium or cilia may be flow sensors for the
cell on which they are present. In tissues where low flow is
present (bile duct, pancreatic duct, renal collecting duct,

small airways, capillaries, venules, veins, etc.), the mono-
cilium may be a chemosensor or an osmosensor. Our data
suggest that it may both influence ATP secretion as well as
be a chemosensor for the secreted ATP. Arguably, secreted
nucleotides and nucleosides are most potent in a local
microenvironment within a cellular or tissue microenviron-
ment. Burnstock and colleagues have described this concept
elegantly in past review where they described purinergic
signaling as being potent and essential in the lumen of
tubules and ducts of kidney and gut [62, 63]. A semiclosed
system such as the lumen of a renal tubule or duct is ideal
in this regard.

Along these lines, the effect of changes in flow has been
studied extensively and elegantly. Touch, flow, shear stress,
and cell swelling are potent regulators of ion transport
[64–67]. Ca2+ entry as well as Na+, K+, and Cl− transport
are governed by mechanical stimuli [17–30, 64–67].
Mechanical stimuli are also well-known to trigger ATP
release in many cell and tissue systems [48–54, 68]. The
propagation of Ca2+ sparks and waves triggered by
mechanical stimuli are thought to be mediated by at least
two cellular mechanisms: (1) Ca2+-permeable gap junctions
that link the cells together and (2) paracrine extracellular
purinergic signaling that allows cells to communicate in a
local environment [68]. In fact, our data show that an
increase in cell Ca2+ primes the “releasable” pools of ATP
that are mobilized by hypotonic cell swelling and other
mechanical stimuli. However, one can still observe both
pipetting- and hypotonicity-induced ATP release without
ionomycin pretreatment that is more robust in cilium-
competent versus cilium-deficient cell monolayers. Moreover,
we also found that we could not observe a mechanically
induced ATP release signal after hypotonic cell swelling.
This finding suggests that these two “mechanical” stimuli
(albeit different) affect the same pool of releasable ATP.
Unfortunately, we still need better tools to define each ATP
release mechanism and pool. However, our work with low
temperature inhibition of vesicle traffic and inhibition of
anion transport properties with the broad specificity
inhibitor, DIDS, suggests that both ATP transport mecha-
nisms and exocytosis of ATP-filled vesicles contribute to

Fig. 11 Working model: the
monocilium is required for a
mature ATP secretion apparatus
at the apical cell surface and
both the monocilium and an
autocrine ATP signal are re-
quired for flow-induced Ca2+

signals
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secreted ATP phenotypes (EM Schwiebert et al., unpub-
lished observations).

Recently, we found that ENaC-mediated Na+ absorption
is upregulated markedly in cilium-deficient CCD PC
monolayers derived from the Tg737orpk mouse [32]. Of
many hypotheses put forward to explain this pathophy-
siological phenotype, one prominent postulate was that the
malformed cilium caused the loss of key inhibitory signals
that are normally cilium-derived that limit ENaC activity.
Indeed, in several different cellular systems, there is agree-
ment that purinergic signaling inhibits ENaC function
[69–74]. Modulation of purinergic receptor-driven cell Ca2+

signaling may be a future putative therapeutic target (along
with ENaC itself) to control hypertension that occurs in the
majority of human ARPKD patients, especially the children
that escape respiratory insufficiency soon after birth [6].

Finally, it is our hope that this work connects the
seemingly disparate conclusions of Satlin and coworkers
[20] and those of Leipziger, Praetorius, and colleagues [33].
Taken together, our data suggest that a well-formed
monocilium central to the apical membrane of a collecting
duct principal cell is essential for a mature ATP secretion
apparatus. One could conceive of this apparatus as a well-
formed pool of ATP poised to be secreted in response to
different stimuli or the appropriate presence of ATP release
machinery (ATP-filled vesicles and/or ATP transport mech-
anisms). Our studies also suggest that the cilium-derived
Ca2+ transient, induced by flow in our study or by other
modes in other studies, requires an underlying autocrine
ATP signal that is likely transduced by P2X and P2Y ATP
receptors on or near the monocilium. Without a well-formed
cilium at the apical surface, autocrine purinergic signaling,
cilium-derived signaling, and modulation of downstream
effectors become disrupted.
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