
Vol.:(0123456789)

Mind & Society (2022) 21:183–193
https://doi.org/10.1007/s11299-022-00290-y

1 3

Learning with insufficient data: a multi‑armed bandit 
perspective on covid‑19 interventions

Jean Czerlinski Whitmore Ortega1 

Received: 8 March 2021 / Accepted: 11 October 2022 / Published online: 24 November 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In February 2020, as covid-19 infections spread to more than fifty countries, public 
health officials needed to recommend how the public could protect themselves, bal-
ancing safety and urgency. But there was very little data since this novel virus had 
only been identified three  months prior. How could public health officials decide 
with insufficient data? The multi-armed bandit problem of computer science offers 
adaptive decision-making procedures that can achieve both safety and urgency. 
These adaptive methods balance learning information (exploring) with using infor-
mation (exploiting), adjusting the balance toward learning when uncertainty is high 
(March 1991; Kaelbling et  al. 1996). Related methods are already used in adap-
tive clinical trials for pharmaceuticals (Pallmann et al. 2018). But we still need to 
develop these methods for non-pharmaceutical interventions, as I will illustrate with 
a case study of public mask-wearing to reduce the spread of covid-19. Public health 
pronouncements impact future learning.

Keywords Covid-19 · Decision-making · Public health policy · Reinforcement 
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1 Introduction

On February 28, 2020, as covid-19 infections spread to more than fifty countries, 
the World Health Organization (WHO) increased the global risk level of covid-19 to 
“very high” (World Health Organization 2020). Public health officials needed to rec-
ommend how the public could protect themselves, balancing safety and urgency. But 
there was very little data since this novel virus had only been identified three months 
prior. How could public health officials decide with insufficient data?

The multi-armed bandit problem of computer science offers adaptive deci-
sion-making procedures that can achieve both safety and urgency. These adaptive 
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methods balance learning information (exploring) with using information (exploit-
ing), adjusting the balance toward learning when uncertainty is high (March 1991; 
Kaelbling et al. 1996). Related methods are already used in adaptive clinical trials 
for pharmaceuticals (Pallmann et al. 2018).

But we still need to develop these methods for non-pharmaceutical interven-
tions, as I will illustrate with a case study of public mask-wearing to reduce the 
spread of covid-19. Public health officials recommended against face masks in 
February of 2020, which should have halted learning aside from randomized 
controlled trials. But rogue mask mandates in cities like Jena, Germany, enabled 
learning about the safety and efficacy of masks, leading officials to reverse course 
in support of face masks in June 2020. There was a randomized controlled trial of 
face masks, but it did not complete until September of 2021, fifteen months later. 
We need better methods of addressing public health emergencies than relying on 
rogue experiments like the one in Jena, Germany.

Let me begin by reviewing public health’s historical tension between safety 
and urgency and then explain how adaptive methods help resolve this tension.

2  The evolution of safety vs. urgency

Public health officials have wrestled with balancing safety and urgency for dec-
ades. The thalidomide disaster of the 1950s spurred the requirement for rand-
omized controlled trials, the gold standard of safety. But the AIDS crisis of the 
1980s led to increasing use of exceptions to randomized clinical trials for desper-
ately ill patients needing more urgent solutions.

2.1  Safety

Pharmaceutical safety grew in importance in public health. The essential rules of 
randomized controlled trials (RCTs) were established in the 1950’s (Junod 2016). 
The rules included having both treatment and control groups, randomly assigning 
patients to groups, and assigning double blind (meaning neither patient nor physi-
cian knew whether the patient was in the treatment or control group). The ethics of 
randomized controlled trials are complicated but include a requirement of “clini-
cal equipoise,” defined as a state of genuine uncertainty in the medical community 
regarding the therapeutic merits of a proposed treatment (Freedman 1987).

Despite this gold standard quality, randomized controlled trials were rarely used 
because they were expensive and time-consuming (Junod 2016). The thalidomide 
disaster—which  has been called the largest human-made medical disaster in his-
tory (Vargesson 2015)—changed that attitude. In the 1950’s, pregnant women with 
morning sickness were prescribed the drug thalidomide for its antiemetic effects. 
Unfortunately, within a few years, doctors noticed that thalidomide was associated 
with a high rate of birth defects. After the dangerous side-effects of thalidomide 
were recognized, resistance to randomized controlled trials “suddenly melted away,” 
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(Junod 2016). The U.S. passed regulations requiring randomized controlled trials for 
pharmaceuticals in 1962.

2.2  Urgency

Then the AIDS epidemic of the 1980s presented a new problem: urgency. Young 
and healthy people suddenly fell ill and died. These patients demanded access to 
potentially life-saving new treatments now. They did not have years to wait for the 
results of randomized controlled trials (Jansen and Stryker 1993).

There was in fact a precedent for quicker access: If a patient had a life-threatening 
disease and had exhausted all licensed therapeutic options, the patient’s doctor could 
request a “compassionate use” exception to treat the patient with a therapeutic agent 
that was already under investigation. But obtaining authorization for compassionate 
use was a slow, ad hoc, per-patient process. AIDS activists successfully pushed the 
U.S. Food and Drug Administration (FDA) to streamline the process with the 1987 
“investigational new drug” (IND) regulations (Jansen and Stryker 1993). These 
regulations sped up AIDS patients’ access to drugs. However, many AIDS activists 
wanted more and faster approval of drugs, so the tension between safety and urgency 
was not settled.

In the 2020s, the covid-19 pandemic also created urgency, and compassionate use 
regulations were often invoked to speed access to new treatments. For example, as 
early as the spring of 2020, the anti-viral remdesivir was administered to patients 
with severe covid-19 under the U.S. IND compassionate use regulations (Grein et al. 
2020). Different countries leveraged a variety of compassionate use regulations dur-
ing the covid-19 pandemic, and internationally standardized “managed access pro-
grams” have been proposed (Aliu et al. 2021).

2.3  Controversy

However, a 2020 editorial in the Journal of the American Medical Association 
argued that such widespread “compassionate use” risks patient safety and has many 
societal downsides (Kalil 2020). In particular, compassionate use harms learning: 
“The administration of off-label drug use, compassionate drug use, and uncontrolled 
studies during a pandemic also could discourage patients and clinicians from partici-
pating in RCTs, hampering any knowledge that could be gained” (Kalil 2020). That 
is, a desperate patient may prefer to receive a new drug under compassionate use 
rather than enroll in a randomized controlled trial, since a trial provides only a 50/50 
chance of actually receiving the new drug rather than a placebo. (Note that urgency 
does not justify unscientific treatments for covid-19, like drinking bleach.)

In summary, public health historically had two extremes of decision-making 
procedures: the safety of randomized controlled trials or the urgency of exceptions 
made for compassionate use.
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3  Balancing learning and using information

Computer science can shed some light on these decision-making procedures. 
Randomized controlled trials and compassionate use are algorithms in the “learn-
by-doing” or “reinforcement learning” paradigm because we do not have the full 
data set up-front—we must also decide how to gather more data. In reinforcement 
learning, the core tradeoff is between learning information and using information, 
or “exploration” and “exploitation” (March 1991; Kaelbling et al. 1996). Rand-
omized controlled trials can be seen as first focusing 100% on learning (explor-
ing), and then, when the study is complete, focusing 100% on using (exploiting) 
the statistically validated treatment. In contrast, in reinforcement learning, an 
optimal algorithm would adaptively adjust the balance between learning infor-
mation and using information based on uncertainty and trials remaining. And 
when there are no trials remaining, compassionate use would be optimal—doing 
no learning, just using (exploiting) the treatment that currently seems most 
promising.

Of course, public health is concerned with more than just optimality. But the 
tradeoff between learning and using information has already motivated the use of 
adaptive clinical trials of pharmaceuticals, so it is useful to understand this perspec-
tive to help us apply it to the non-pharmaceutical realm.

3.1  The two‑armed bandit problem

Let me illustrate the tradeoff between learning and using information with a generic 
reinforcement learning problem. A “two-armed bandit” has two options that must be 
tried to assess success. An algorithm sequentially selects which option to try, based 
on past successes and failures. The goal is to design an algorithm that maximizes 
the total reward over time. This paper will sketch only a simple bandit algorithm. 
For a recent survey of the huge variety of bandit algorithms, including using mul-
tiple arms, adjusting for context, and applying behavioral or ethical constraints, see 
(Bouneffouf and Rish 2019).

Suppose the options are two advertisements for a video camera, one with a cat 
and one with a dog, and we want to know which ad garners more clicks. The adver-
tiser assesses success by showing users an ad and measuring how many users click 
on the ad.

Suppose the dog ad has been shown to 500 users and garnered 5 clicks, which is a 
click-through rate of 5/500 = 1%. Meanwhile, the cat ad is new and has been shown 
to only 10 users and garnered zero clicks, which is a 0% click-through rate. If you 
had to recommend an ad at this point, which would it be? The dog ad has been more 
successful, so that seems to be the obvious choice. In computer science parlance, 
choosing the current front-runner is called the “greedy” algorithm. The dog ad is 
indeed optimal when there is only one more user to show an ad to. But what if there 
were one million more users? We are still uncertain about the click-through rate of 
the cat ad. Then showing the dog ad for the next million users foregoes the opportu-
nity to learn about the true success of the cat ad.
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The core insight of the bandit approach is that the “greedy” algorithm of select-
ing the currently best option, the “front-runner”, loses the opportunity to learn about 
other options. The algorithm that maximizes long-run success instead allocates 
some trials to learning—if there is uncertainty and enough future trials to enjoy the 
fruits of learning.

For example, the advertiser might show the dog ad to 80% of users and the cat ad 
to the other 20%. As data is gathered on click-through rates, the proportion seeing 
each ad shifts to favor the ad garnering more success. If the click-through rate on 
the dog ad continues to be higher, its proportion would climb to 90% and eventu-
ally 100%. But if the cat advertisement started getting a higher click-through rate, 
then the dog ad’s proportion would drop to 70, 60, 50, and eventually to 0%, which 
means showing only cat ads.

Showing one ad 100% of the time of course means learning has ceased. The ban-
dit algorithms find the optimal moment to stop learning and use the fruits of learn-
ing. But before that moment, the algorithms maintain a diversity of viable options, 
converging on a best option only as uncertainty decreases.

3.2  A bandit perspective on RCTs and compassionate use

Now let’s apply the bandit perspective to the algorithms of randomized controlled 
trials and compassionate use. Randomized controlled trials use both the options 
equally during the entire trial—50% placebo, 50% new treatment—until the required 
sample size is achieved. From the bandit perspective, this would imply equal uncer-
tainty about both treatments throughout the trial. At the end of the trial, investigators 
assess whether the treatment had a significant difference from the placebo: if yes, 
then use the treatment 100% of the time, and if not, revert to the standard of care 
100% of the time. From the bandit perspective, all the exploitation of the learning 
takes place only after the end of the trial.

Compassionate use would be akin to an allocation of 100% new treatment, a 
form of greedy algorithm. Recall that the greedy algorithm is optimal if there is 
only one trial left, and from the perspective of a dying patient, there is only one trial 
left—their own life! But at the societal level, there are many trials left, so society 
would prefer to learn. This example illustrates a tension between what is optimal for 
a dying patient (who has one trial) and what is optimal for society (which has many 
trials). This tension dissipates if the patient is not deathly ill because the patient has 
a long life ahead, many future trials. Then the patient has time to benefit from the 
fruits of learning, too.

From the point of view of bandit algorithms, an optimal algorithm uses an adap-
tive allocation that varies based on uncertainty and trials remaining. And there actu-
ally is a form of clinical trial that leverages this idea.

3.3  Adaptive clinical trials for pharmaceuticals

Health care already has an established technique for adaptive allocation for phar-
maceuticals: adaptive clinical trials. Adaptive clinical trials were allowed—but not 
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required—by the U.S. FDA in 2010 (Pallmann et al. 2018). Adaptive clinical trials 
are similar to bandit algorithms but with full statistical rigor to ensure patient safety. 
Adaptive trials allow investigators to review the data mid-trial to make certain types 
of changes to the treatment protocol. A typical change is assigning more patients to 
the currently more successful “arm” of the trial, similar to what bandit algorithms 
do. However, the adaptations are not ad-hoc: they must be carefully designed up-
front by statisticians so that statistically valid conclusions can still be drawn.

With such statistical rigor, adaptive trials greatly reduce the safety versus urgency 
trade-off. They are just as safe as standard trials yet converge to the best treatment 
faster. As a recent tutorial on the topic explained: “Trials with an adaptive design 
are often more efficient, informative and ethical than trials with a traditional fixed 
design since they often make better use of resources such as time and money, and 
might require fewer participants” (Pallmann et al. 2018). That said, the relative mer-
its and ethics of randomized controlled trials and adaptive clinical trials are still 
debated (Fillion 2019).

In any case, the urgency of the covid-19 pandemic spurred not only more com-
passionate use but also more adaptive clinical trials that came to conclusions more 
quickly than traditional randomized controlled trials. For example, an adaptive 
clinical trial to treat severely ill covid-19 patients with the antiviral drug remdesivir 
began on February 21, 2020. By April 29, 2020, just three months later, prelimi-
nary results were shared: patients who received remdesivir had a 31% faster time 
to recovery than those who received placebo (Beigel et  al. 2020). Based on such 
results, the US Food and Drug Administration issued an Emergency Use Authoriza-
tion for remdesivir in the treatment of covid-19 in May 2020 (Beigel et al. 2020). 
Adaptive clinical trials helped the world find treatments for covid-19 safely and 
more quickly than with traditional randomized controlled trials.

4  Challenges of non‑pharmaceutical interventions

Pharmaceuticals are highly controlled. Unfortunately, making recommendations for 
non-pharmaceutical interventions is more challenging, both for covid-19 and other 
public health issues. For example, when the US Surgeon General declared in 1964 that 
smoking caused lung cancer, the conclusion was based on more than 7,000 studies, 
but none was a randomized controlled trial. Why not? Randomized controlled trials for 
non-pharmaceuticals tend to be logistically and ethically challenging. And when trials 
can be undertaken, they tend to require years. For example, the randomized controlled 
trial of mask-wearing for covid-19 took more than a year to organize, and results were 
not available until September of 2021 (Abaluck et al. 2021).

4.1  Randomized controlled trial for public mask‑wearing

Why did the clinical trial for face masks take so long? For mask-wearing, the 
outcome measure is the infection rate of a community, which inherently requires 
months to measure. Investigators had to find a location with similar communities 
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that could participate, ultimately identifying 600 villages in rural Bangladesh. The 
investigators also could not mandate mask usage, so instead villages in the inter-
vention arm were provided free masks along with encouragement and incentives 
to wear masks in public. It takes time to distribute masks and to broadcast public 
health announcements and incentives appropriate for local conditions. Because com-
pliance was far from guaranteed, the investigators also had to measure actual mask 
usage. Finally, because mask-wearing is tested on healthy people, investigators had 
to track infection rates over five months to allow time for natural covid-19 outbreaks 
to develop. In the end, the first results (a preprint) were only available in September 
2021. The conclusion was that a 30-percent increase in mask-wearing led to a 10 
percent drop in covid-19 infection rates (Abaluck et al. 2021).

The mask-wearing trial could not easily be made into an adaptive trial because 
adaptive trials do not work well “if the outcome measure of interest takes so long 
to record that there is basically no time for the adaptive changes to come into effect 
before the trial end” (Pallmann et al. 2018).

The randomized controlled trial assured us of the safety of public mask-wear-
ing—masks did not increase infection rates or have dangerous side-effects. Further-
more, masks were effective in reducing covid-19 transmission. But the first conclu-
sions were published in September of 2021.

4.2  Uncertainty before the mask‑wearing RCT 

In February of 2020, public health officials were under pressure to provide recom-
mendations to the public on protecting themselves from covid-19. At that time, 
using expert best judgment, several major public health agencies—the WHO, U.S. 
Centers for Disease Control, and European Center for Disease Prevention and Con-
trol—recommended against the public wearing face masks (Jingnan 2020). From 
the bandit point of view, using a single option halts valuable learning if uncertainty 
was high. So how much uncertainty was there?

Epidemiologists debated the merits of public mask-wearing in medical journals 
in February 2020. Some epidemiologists argued in favor of public mask-wearing as 
the safer option (Greenhalgh et al. 2020). Meanwhile, other epidemiologists (Mar-
tin et  al. 2020) argued that masks could be harmful in several ways. First, if the 
public re-used dirty masks, pathogens could accumulate and increase infection risk. 
Second, there were possible bad behavioral side-effects. People who wore masks 
might not bother to use other, more effective means of reducing transmission, such 
as avoiding social gatherings. And even worse, these people might feel so protected 
by masks that they took additional risks, like visiting covid-positive people (“moral 
hazard”). And finally, the public might buy so many masks that healthcare profes-
sionals could not obtain an adequate supply (Martin et al. 2020).

This debate demonstrated great uncertainty and therefore a need for learning 
about public mask-wearing. And  there was time to learn and reap the benefits of 
learning. Even in February 2020, we could anticipate at least a few more months of 
the pandemic, during which time we could be gathering data about face masks. In 
that case, putting 100% focus on one recommendation—in this case recommending 
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against masks—came at the cost of learning about the true success of wearing 
masks. The recommendation halted learning outside of randomized controlled trials.

4.3  Learning anyway: rogue locales and synthetic control

Or rather, the recommendation should have halted learning. It should have made 
the public wait until the randomized controlled trial was completed in September of 
2021. However, some locales, such as Jena, Germany, went against the public health 
recommendations and required face masks in the spring of 2020 anyway. As a side-
effect, these locales enabled learning about the safety and effectiveness of wearing 
face masks. Analyses of data from European regions (Mitze et al. 2020) and, later, 
US counties (Lyu and Wehby 2020) provided strong evidence that, to the surprise of 
health officials, wearing masks reduced covid-19 transmission. The European study 
summarized the effect size in lay terms:

Consider a region in which the number of COVID-19 cases increased by 10% 
from one day to another. This increase would have been only 6% if there had 
been an obligation to wear face masks. With a 10% daily increase in COVID-
19, cases double within 7 days; in contrast, a 6% daily increase means cases 
double only within 12 days (Mitze et al. 2020).

These researchers did not have randomized controlled trials. Instead, they used 
a method known as “synthetic control,” which relies on existing variation– such as 
before and after a locale mandates masks—to make a statistically-weighted combi-
nation of groups to act as a control (Bouttell et al. 2018).

While not a gold standard, the findings of the synthetic control studies tilted the 
weight of evidence toward face masks. By June of 2020, public health authorities 
reversed course and recommended wearing face masks (Yan 2020). The randomized 
controlled trial for face masks continued, publishing a preprint in September 2021 
(Abaluck et al. 2021), 15 months later, and confirming that the best recommendation 
was indeed to wear masks. Thus, the learning enabled by cities like Jena brought 
public mask wearing 15 months earlier than the randomized controlled trial, saving 
countless lives.

5  Public health communication

Ideally, public health policy would not rely on rogue experiments. So how could pub-
lic health recommendations better balance using known information and learning addi-
tional information, doing so safely and ethically? Designing a new  public health policy 
is beyond the scope of this essay, but I do want to leverage the bandit perspective for 
some potential leads in health communications, specifically not discouraging scientifi-
cally viable options and communicating uncertainty.
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5.1  Not discouraging scientifically viable options

The bandit perspective emphasizes the learning opportunity cost of discouraging a 
scientifically viable option when uncertainty is high. While it was perfectly appro-
priate to declare that the balance of evidence leaned against public mask wearing 
in February 2020, the US Surgeon general actively discouraged and even dispar-
aged mask-wearing. His tweet on February 29, 2020, stated: “Seriously people- 
STOP BUYING MASKS! They are NOT effective in preventing general public 
from catching #Coronavirus…” (Jingnan 2020). The tone scolds people who bought 
masks, even though there were well-respected epidemiologists who advocated wear-
ing masks.

In contrast, drinking bleach to prevent or treat covid-19 was never scientifically 
viable and should always be discouraged. Scientists had no uncertainty about drink-
ing bleach to cure covid-19. There was no learning cost to discouraging bleach 
because we had no need to learn more about bleach. Ideally, public health officials 
would focus discouragement where it matters most, such as not drinking bleach.

5.2  Communicating uncertainty

A more lofty communication goal would be to help the public understand all the 
scientifically viable options, the evidence for and against each option, and the uncer-
tainty about each option. These are the essential inputs to a bandit algorithm and 
could enable people to choose options that, in aggregate, balance using informa-
tion with learning new information. From a related perspective, economist Charles 
F. Manski has argued for “forthright communication of uncertainty in reporting of 
official statistics and in research that aims to inform policy” (Manski 2020). While 
the lay public may often seem too unsophisticated to understand uncertainties in 
science, there is active research on methods to successfully communicate scientific 
uncertainties, both verbally and visually (Hullman 2022).

Manski goes even further, arguing for actively incentivizing a diversity of poli-
cies among the scientifically plausible options when uncertainty is high. For the case 
of covid-19 interventions in the United States, Manski suggested, “The federal gov-
ernment can provide incentives to the states to encourage them to enact desirable 
portfolios of policies… modifying the incentives as knowledge accumulates” (Man-
ski 2020). The intersection of incentives and diversity with safety and urgency are a 
topic for future research.

5.3  Adaptive methods

In summary, adaptive methods have successfully attained both safety and urgency in 
decision-making for pharmaceuticals under insufficient information. Non-pharma-
ceutical interventions are more complicated. But the covid-19 pandemic has shown 
the importance of urgent recommendations for these interventions. We need adap-
tive decision-making methods that are appropriate for issues such as mask-wearing 
during a pandemic while keeping a close eye on safety.
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6  Changes in uncertainty

As the covid-19 pandemic has continued, our uncertainty has mostly decreased, 
and we have converged on a set of treatments and interventions. But as new 
covid-19 variants evolve, uncertainty increases, and we have to shift the balance 
more toward learning again. For example, in January of 2022, the CDC declared 
that the public needed better face masks to protect themselves from the new omi-
cron variant (2022). This masking change is unlikely to be the last change in rec-
ommendations due to a change in the virus. We need to be ready to learn again 
whenever uncertainty increases again.

7  Summary

Historically, public health decision-making has had to choose between the safety of 
randomized controlled trials and the urgency of compassionate use that allows dying 
patients to try experimental treatments. But adaptive algorithms, such as those used 
in multi-armed bandit problems, show that public health can maintain safety while 
converging faster to the best option. Adaptive algorithms work by balancing learn-
ing information (“exploration”) with using information (“exploitation”), adjusting the 
allocation as data is gathered and uncertainty decreases. Adaptive clinical trials are 
already in use for pharmaceuticals and helped more quickly identify safe and effective 
treatments during the covid-19 pandemic. But we do not yet have adaptive decision-
making for non-pharmaceuticals, such as whether the public should wear face masks. 
I hope the bandit algorithms’ perspective will spur the design of better public health 
decision-making and communication methods so we do not have to rely on rogue 
experiments by cities like Jena, Germany. Let us keep in mind that public health pro-
nouncements impact future learning.
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