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Abstract
Many quantitative genetic models assume that all genetic variation is additive because of a lack of data with sufficient struc-
ture and quality to determine the relative contribution of additive and non-additive variation. Here the fractions of additive 
(fa) and non-additive (fd) genetic variation were estimated in Sitka spruce for height, bud burst and pilodyn penetration depth. 
Approximately 1500 offspring were produced in each of three sib families and clonally replicated across three geographi-
cally diverse sites. Genotypes from 1525 offspring from all three families were obtained by RADseq, followed by imputation 
using 1630 loci segregating in all families and mapped using the newly developed linkage map of Sitka spruce. The analyses 
employed a new approach for estimating fa and fd, which combined all available genotypic and phenotypic data with spatial 
modelling for each trait and site. The consensus estimate for fa increased with age for height from 0.58 at 2 years to 0.75 at 
11 years, with only small overlap in 95% support intervals (I95). The estimated fa for bud burst was 0.83 (I95=[0.78, 0.90]) 
and 0.84 (I95=[0.77, 0.92]) for pilodyn depth. Overall, there was no evidence of family heterogeneity for height or bud burst, 
or site heterogeneity for pilodyn depth, and no evidence of inbreeding depression associated with genomic homozygosity, 
expected if dominance variance was the major component of non-additive variance. The results offer no support for the 
development of sublines for crossing within the species. The models give new opportunities to assess more accurately the 
scale of non-additive variation.

Keywords Epistasis · Genetic variance · Non-additive variation · RADseq · Single-step · Sitka spruce · Spatial model

Introduction

Breeding is well established in many forest tree species but 
it is often hindered by the lengths of generation intervals. 
Current breeding cycles in conifers, including spruces, 
pines, larches and firs, commonly exceed 15 years requir-
ing candidate trees to have reached reproductive age and 
have sufficiently accurate predictions of breeding value 
obtained from early predictors of adult performance, pos-
sibly supplemented with progeny testing, prior to selection 
decisions being made. The history of Sitka spruce (Picea 
sitchensis [Bong.] Carr.) in the UK is an example of a well-
planned and executed breeding programme which is faced 
with this challenge of long intervals. Sitka is a conifer 
species originating from the Pacific North West extending 
from south-eastern Alaska to northern California. It was 
first brought to the UK in the 1830s (Lee et al. 2013), and 
now accounts for over 50% of all the area planted with 
conifers and ~25% of all woodland area of Great Britain 
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(IFOS-Statistics, 2022). Breeding objectives for the spe-
cies relate to its primary use for construction timber and 
wood pulp (Lee et al. 2013), and although improvements 
have been achieved since the start of plus-tree selection 
in the early 1960s, only two cycles of selection have been 
completed (Lee and Connelly, 2010). This time constraint 
along with the high cost of field evaluations, among others, 
has often limited the ability to characterise fully the genetic 
control of phenotypic traits, such as their partitioning into 
additive and non-additive gene effects.

An attraction of genomic prediction is the potential 
to transform forest breeding through reducing genera-
tion intervals or increasing selection intensity while 
retaining sufficient accuracy of the predicted breeding 
values (EBVs) to obtain faster rates of improvement 
(Grattapaglia, 2017). This is due to a different approach 
to estimating breeding values using molecular data 
(Meuwissen et al. 2001) and genomic relationship coef-
ficients (Van Raden, 2008), compared to using pedigree 
and the matrix of numerator relationship coefficients 
derived from it. In the pedigree approach, the breed-
ing values are predicted from models that, beyond the 
base generation, rely on estimating Mendelian sampling 
terms of individuals, which in turn relies on obtaining 
phenotypic information on the candidate or offspring. 
In contrast, when applying the molecular approach, the 
breeding values are predicted from the estimated effects 
of (dense and genome wide) marker alleles, typically 
SNPs, which can be obtained for all genotyped individ-
uals provided relevant data are available for estimating 
the SNP effects. With genotypes available from ‘con-
ception’, one barrier to reducing the generation interval 
and obtaining an EBV that encompasses an individual’s 
own genome is removed.

Most attention in tree breeding (as in other fields) has 
focused upon developing genomic predictions of breed-
ing value, i.e. additive genetic merit, and it is the variance 
of the breeding values that defines the additive genetic 
variance. However, the total genetic variance includes 
contributions from non-additive genetic variation, and 
predicting non-additive effects can be used to improve 
the merit of those deployed in the wider forest popula-
tion for timber. The molecular data make it possible to 
access the non-additive genetic effects more directly and 
to predict non-additive components of the total genetic 
merit (Vitezica et al. 2017; Joshi et al. 2020). One benefit 
of using the genomic data is that it is feasible to estimate 
non-additive genetic variance from simpler designs than 
would be necessary using pedigree data. In forestry, the 
ease of vegetative propagation allows clonal experiments 
to be established which provide material to estimate the 
total genetic variance and broad heritability (H2), while the 

genotypic data can be used to estimate genomic relation-
ships, and hence estimate the additive genetic variance and 
narrow sense heritability (h2). Consequently, the extent and 
potential impact of the non-additive genetic variance can 
be estimated.

One of the challenges of advancing the use of genomic 
techniques in Sitka has been the need to generate the thou-
sands of SNP marker genotypes on selection candidates to 
provide a marker coverage of the genome that is sufficiently 
dense. There are multiple ways of obtaining SNP genotypes, 
e.g. through SNP chip arrays, whole genome resequenc-
ing, or reduced representation sequencing. Restriction-site-
associated DNA sequencing (RADseq) belongs to a group 
of reduced representation sequencing methods that have been 
particularly popular in non-model species. The benefits of 
RADseq are its flexibility and relatively low cost compared 
to whole genome resequencing (Parchman et al. 2018) but 
it is particularly attractive for species, including many coni-
fers, with large repetitive genomes where the compilation 
of a draft reference genome is challenging (Pan et al. 2015; 
Fuentes-Utrilla et al. 2017; Parchman et al. 2018). While 
assays for RADseq have been described for Sitka (Fuentes-
Utrilla et al. 2017), this was for a single family and their 
application and performance across multiple families are 
unknown. One of the drawbacks of RADseq is the stochas-
tic nature of the sequence reads for a given coverage, par-
ticularly when the coverage is low but this can be overcome 
using imputation (e.g. Li et al. 2009).

The primary goal of this paper was to estimate the frac-
tions of additive and non-additive genetic variance in the 
total genetic variance of Sitka spruce, based on SNP markers 
derived from RADseq data and phenotypic data collected on 
height, pilodyn depth and bud burst in the offspring of three 
full sib families. Height and pilodyn depth are important traits 
for the tree breeder as they are key in determining quantity 
and quality of timber, while bud burst is an adaptive trait that 
provides insight into local adaptation to climatic conditions. 
The newly developed linkage map of the Sitka spruce genome 
(Tumas et al. 2023) allowed the application of an imputation 
procedure, which enabled missing genotypes to be recovered, 
thereby making maximum use of the available SNP data. The 
tree height data was collected at different ages and allowed the 
sensitivity to site and family variation to be studied as it came 
from three large sib families, clonally replicated across three 
geographically and climatically diverse sites. The analyses 
employed spatial modelling to account for natural and extra-
neous variation within each site (Gilmour et al. 1997). To the 
authors’ knowledge, this is the first paper where the heritabil-
ity of economically important traits in conifers was estimated 
using analyses that simultaneously accounted for additive and 
non-additive genetic variance based on genomic data along 
with spatial modelling.
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Materials and methods

Population

The phenotypic and genomic data were based on material 
in a large field experiment established in 2005 by Forest 
Research (https:// www. fores trese arch. gov. uk). The experi-
ment was designed as three full-sib families (denoted as SF1, 
SF2 and SF3) each with 1500 offspring (where offspring 
represents a unique genotype), clonally replicated across 
three contrasting sites: Huntly, Llandovery and Torridge 
(Table 1). The families were created by controlled pollina-
tion of maternal clones growing in the Sitka spruce clone 
bank of Forest Research. The genomic data presented below 
revealed that SF3 was not a single full-sib family but was a 
mix of two full-sib families with a common maternal parent, 
in an approximate ratio of 3:2. The parents of both SF1 and 
SF2 and 2 of the 3 parents of SF3 were unrelated members 
of the Forest Research Sitka Spruce Breeding Population 
but were otherwise unselected. The source of the unknown 
parent in SF3 is uncertain, but was not another of the geno-
typed parents.

Each offspring was vegetatively propagated from cut-
tings to produce 12 ramets (clonally replicated copies of 

an offspring genotype), with four ramets of each genotype 
on each site and, within sites, one ramet of each geno-
type in each of four replicate blocks. In addition to the 
intended 1500 offspring trees, each block contained 46 
control trees raised from open pollinated seed collected 
from Haida Gwaii (formerly Queen Charlotte Islands), 
British Columbia. Control trees were not cloned. The trees 
of SF1 at Torridge formed the data for a previous publica-
tion (Fuentes-Utrilla et al. 2017).

Traits

All trees had their height measured after 2, 4, 6 and 
11 years of age, with the ages determined by available 
resources. In addition, the depth of penetration of a pilo-
dyn pin at breast height after 10 years was recorded using 
a Pilodyn 6J Forest device (Proceq, Switzerland) as an 
indicator trait for wood density, but due to resource con-
straints only at the Torridge site. Trees from family SF1 
were also scored for the timing of bud-burst at the start 
of the fifth year in 2009 following the scale of Krutzsch 
(1973) at all sites, where 0 is a dormant bud, 1 is slightly 
swollen, up to 8 where all needles are more or less spread 
with new buds developing. This scoring was carried out on 
three occasions at each site: 5A on 29/04, 06/05 and 06/05 
at Torridge, Huntly and Llandovery; 5B on 06/05, 12/05 
and 12/05; and 5C on 12/05, 19/05 and 20/05 respectively. 
A summary of the design for the measurement of traits is 
shown in Table 2. The number of trees available for meas-
urement of height at each age is shown in Table 3, which 
also provides a guide to numbers of trees assessed for bud 
burst and pilodyn measurements at the intermediate ages. 
Table 4 shows the raw means and standard deviations for 
all traits measures at each site for each family including 
both genotyped and ungenotyped offspring.

Table 1  Geographic and climatic characteristics of the three sites. 
The accumulated temperature is defined by the number of days above 
5°C using historical data from the UK Meteorological Office over the 
30-year recording period 1961–1990

Characteristic Units Huntly Llandovery Torridge
Scotland Wales England

Latitude °N 57.58 51.97 50.82
Longitude °W 2.82 4.12 4.37
Height above sea level m 140 230 120
Accumulated temperature °days 1106 1450 1828

Table 2  The design of trials showing which traits were measured at which sites and in which families (SF1, 2 or 3). Measurements were made 
for all trials other than those shaded grey. Trials shaded green are those which have one master block while trials shaded yellow have two master 
blocks (described in Supplementary Information 3)

Trait Age Site
(years) Huntly Llandovery Torridge

Height 2 1 2 3 1 2 3 1 2 3
4 1 2 3 1 2 3 1 2 3
6 1 2 3 1 2 3 1 2 3

11 1 2 3 1 2 3 1 2 3
Bud Burst 5A 1 2 3 1 2 3 1 2 3

5B 1 2 3 1 2 3 1 2 3
5C 1 2 3 1 2 3 1 2 3

Pilodyn 10 1 2 3 1 2 3 1 2 3

https://www.forestresearch.gov.uk
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RADseq genotypes

Assay

The RADseq data used for SF1 were initially produced for 
Noveltree (https:// cordis. europa. eu/ proje ct/ id/ 211868), and 

those for SF2 and SF3 were produced for Procogen (https:// 
cordis. europa. eu/ proje ct/ id/ 289841). DNA was extracted 
from the needles of the 6 known parents and from randomly 
selected subsets of the offspring in each family. The proto-
cols for DNA extraction and RADseq digestion were fully 
described in Fuentes-Utrilla et al. (2017). Briefly, DNA was 

Table 3  Numbers of trees 
measured for height according 
to site, age and family, together 
with the total number of 
offspring, and the number of 
genotyped offspring represented

Age (years) Huntly Llandovery Torridge

SF1 SF2 SF3 SF1 SF2 SF3 SF1 SF2 SF3

Trees
 2 5854 5903 5670 5786 5805 5805 5988 5981 5845
 4 5698 5861 5400 5220 5288 5164 5987 5875 4207
 6 5676 5857 5400 4716 4900 4527 5982 5829 4089
 11 5673 5856 5396 4326 4760 3947 5982 5829 4076
Offspring
 2 1500 1500 1496 1500 1500 1496 1500 1500 1496
 4 1500 1500 1496 1498 1500 1496 1500 1500 1495
 6 1500 1500 1496 1493 1500 1491 1500 1500 1495
 11 1500 1500 1495 1488 1499 1467 1500 1500 1495
Genotyped
 2 573 474 478 573 474 478 573 474 478
 4 573 474 478 572 474 478 573 474 478
 6 573 474 478 569 474 477 573 474 478
 11 573 474 478 569 474 470 573 474 478

Table 4  The raw means and 
standard deviations (S.D) for 
all traits measured at all sites 
within families SF1, SF2 and 
SF3 including both genotyped 
and ungenotyped offspring

Site Trait Units Age Family SF1 Family SF2 Family SF3

Mean S.D. Mean S.D Mean S.D

Huntly Height m 2 0.708 0.108 0.616 0.117 0.662 0.107
4 1.374 0.294 1.431 0.272 1.369 0.312
6 2.831 0.584 2.855 0.458 2.760 0.550
11 7.612 1.023 7.573 1.306 8.106 1.302

Bud burst units 5A 2.893 0.483 - - - -
5B 5.564 0.655 - - - -
5C 6.650 0.603 - - - -

Llandovery Height m 2 0.673 0.118 0.658 0.160 0.647 0.109
4 1.319 0.372 1.417 0.430 1.295 0.358
6 2.674 0.777 2.640 0.753 2.256 0.601
11 6.691 1.391 5.848 1.589 4.549 1.235

Bud burst units 5A 3.945 0.687 - - - -
5B 4.505 0.688 - - - -
5C 5.104 0.610 - - - -

Torridge Height m 2 0.759 0.128 0.676 0.107 0.606 0.099
4 1.613 0.351 1.364 0.311 1.024 0.344
6 3.365 0.615 2.809 0.669 2.054 0.697
11 8.634 0.813 7.815 1.177 6.292 1.303

Bud burst units 5A 2.548 0.738 - - - -
5B 3.355 1.055 - - - -
5C 5.150 1.082 - - - -

Pilodyn mm 10 14.835 1.644 17.214 2.151 14.075 2.192

https://cordis.europa.eu/project/id/211868
https://cordis.europa.eu/project/id/289841
https://cordis.europa.eu/project/id/289841


Tree Genetics & Genomes (2023) 19:53 

1 3

Page 5 of 14 53

extracted using a Qiagen DNeasy Plant mini-kit but with the 
protocol modified to maximise DNA quantity. The extracted 
DNA was then subjected to a double-digest RADseq proto-
col using AlnwI and PstI enzymes. Paired-end reads were 
produced for parents, and single-end for offspring using Illu-
mina HiSeq2000. While the protocol for the RADseq diges-
tion was the same for all 3 families, the resulting average 
read length ranged from 45bp in offspring of SF1 to 112bp in 
parents of SF2 and SF3. In addition to the six known parents, 
the numbers assayed in each family were 578, 478 and 486 
from SF1, SF2 and SF3 respectively.

Bioinformatic pre‑processing of RADseq data

The raw, barcoded fastq-libraries were de-multiplexed 
using RADtools v1.2.4 (Baxter et al. 2011). The paired-
end reads of parents were then screened for PCR duplicates 
using a Perl script (Kerth, 2014) which removed 22–24% 
reads in parents of SF1 and 43–46% reads in parents of SF2 
and SF3. Offspring whose number of reads fell outside 3 
standard deviations from the overall mean within each fam-
ily were removed, and this resulted in the removal of 5, 4 
and 8 offsprings from families SF1, SF2 and SF3 respec-
tively. Adapter sequences were removed from all reads 
using Scythe v.0.994 (Buffalo, 2014). The reads were then 
processed with the ‘process radtags’ package of Stacks v.2 
(Rochette and Catchen, 2017) to remove reads with uncalled 
bases and quality scores <20, and then to truncate all reads 
to 45bp to allow simultaneous processing of all three fam-
ilies. The ‘k-mer filter’ option of Stacks v.2 was used to 
remove both abundant and rare k-mers, with the default 
k-mer size set to 15. The final number of reads retained for 
further analysis ranged between 17.4 and 20.2M for each of 
the six genotyped parents, and between 2.2 and 3.5M reads 
for each of the 1525 remaining offspring.

SNP genotyping

SNP markers were identified and genotyped using the 
Stacks v.2 pipeline: ‘ustacks’ to build loci within a sam-
ple; ‘cstacks’ to construct a catalogue of loci from parental 
samples; ‘sstacks’ to match loci from all samples to the 
catalogue; ‘tsv2bam’ to transpose data to become locus 
oriented; ‘gstacks’ to call variants sites and genotyping 
individuals. The parameters used for the genotyping were 
optimised as recommended in Paris et al. (2017). The out-
come was as follows: minimum stack depth (m) set to 2, 
distance between stacks (M) set to 3 and distance between 
catalogued loci (n) set to 3. The resulting genotypes were 
exported to a ‘vcf’ format using the ‘populations’ pack-
age of Stacks v.2, parameterised so that a locus was pro-
cessed if it was detected in at least 3 populations (p=3), 
and in at least 3% of all individuals across all populations 

(R=3). The parameter settings were chosen to minimise 
the number of Mendelian inconsistencies and missing val-
ues across the resulting genotypes.

SNP quality control

The genotypes were split into 3 within-family datasets using 
Plink (Purcell et al. 2007). Quality control was then applied 
within each family by sequentially removing individuals 
with call rates less than 0.6 and then removing SNPs with 
call rates less than 0.8 and MAF<0.15. The choice of 0.15 
was guided by noting that within full-sib families, the segre-
gating SNPs are expected to have frequencies of either 0.25, 
0.5 or 0.75 and, within the full-sib families that were antici-
pated, an observed MAF<0.15 would be highly unusual. The 
resulting call rates across all retained individuals and SNPs 
were 0.77, 0.79 and 0.81 for SF1, SF2 and SF3 respectively. 
Mendelian inconsistencies were examined using a custom 
Python script (https:// github. com/ joann ailska/ Mende lian_ 
incon siste ncies). Firstly, the observed genotype frequen-
cies were compared to the expected frequencies conditional 
on the parental genotypes. SNPs were removed if the cor-
responding χ2-test exceeded the P<0.05 threshold having 
applied a Bonferroni correction for the number of SNPs. 
Secondly, the stochastic nature of sequence reads results in 
a background number of opposing homozygotes in offspring 
and parent, and offspring genotypes were removed if incom-
patible, given the manifold greater coverage of the parents. 
The summary of the latter step identified anomalies for 194 
of the 478 offspring in SF3. This led to the discovery of the 
family structure of SF3 being a mix of two full-sib families, 
denoted SF3A and SF3B, with a common maternal parent, 
and SF3A comprising a larger fraction (0.594, s.e. 0.022) 
of the offspring (see Supplementary Information 1). The 
numbers of SNPs by family are reported in Table 5. Among 
the retained SNPs, 2054 SNPs were segregating in all three 
families and offered an element of validation, and these are 
henceforth referred to as ‘common SNPs’.

Table 5  The number of SNP markers and trees retained within each 
family (SF1, SF2 or SF3) following quality control, together with the 
percentage of these SNPs (i) among the 2054 SNPs found in all three 
families (‘common’) and (ii) among the 1630 SNPs that were both 
‘common’ and mapped and used for imputation

Family

SF1 SF2 SF3

SNPs 15,452 17,915 13,176
% present in all SF 13.2 11.5 15.6
% present in all SF and 

mapped
10.5 9.1 12.4

Offspring 573 474 478

https://github.com/joannailska/Mendelian_inconsistencies
https://github.com/joannailska/Mendelian_inconsistencies
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Imputation

Among common SNPs, 1630 (78%) had been reliably 
assigned to the 12 linkage groups of the linkage map com-
piled by Tumas et al. (2023) and this map was used for impu-
tation. For each of the three families used in this study, the 
available genotyping data for these 1630 loci were assigned 
to the 12 linkage groups and ordered within them. The geno-
types identified were processed using AlphaPeel (Whalen 
et al. 2018, v.1.1.0 for SF1 and SF2, v.2.1.0 for SF3) using 
the multi-locus peeling option, with an additional param-
eter giving the map distance in Morgans spanning the loci 
for each linkage group. A dummy identity was assigned to 
the unknown paternal parent of SF3B. The distribution of 
SNPs across linkage groups is shown in Table 6. Imputation 
accuracy was assessed using posterior genotype probabilities 
provided by AlphaPeel for the full-sib offspring and summa-
rised by assuming genotypes to be assigned if the posterior 
probability for a genotype was greater than p and varying 
p over the range 0.5 to 1 (so the assignment is unique). For 
a given value of p, the SNP call rate over offspring and off-
spring call rates over SNPs were calculated. An additional 
assessment described in Supplementary Information 2 esti-
mated the probability of error in genotype assignment to 
be 0.013.

Statistical models

A site and family combination is hereafter referred to as a 
trial (with 9 trials in total). Each trial was designed as a ran-
domised complete block design with four replicate blocks. 
Each block was nominally allocated 1500 offspring trees and 
the controls. Given the objectives, the controls were treated 
as filler plots with missing phenotypes in the analysis. Due 
to topographic constraints, some blocks were spatially sepa-
rated (non-contiguous) which required ‘master blocks’ to 
be constructed. For trials with non-contiguous blocks, two 
master blocks were created and filler plots with missing phe-
notypes were added to ensure a continuous spatial structure 
within each master block. Trials with contiguous blocks 
were treated as having a single master block. The number 
of master blocks in each trial is shown in Table 2, with fur-
ther information provided in Supplementary Information 3.

All models were fitted separately for each trial and 
included: (i) a preliminary spatial model without genomic 

data and (ii) an extended spatial model with genomic data. 
The novel feature of (ii) is that phenotypic data was included 
on all offspring trees (regardless of whether they have been 
genotyped) while genomic data was also included on the 
subset of genotyped trees in each family. For SF3, all data 
was included for both SF3A and SF3B offspring, genotyped 
or otherwise, as described in the following sections. This 
preserved all data to estimate the genetic and non-genetic 
variance parameters, and enabled estimates of additive and 
non-additive genetic variance parameters to be obtained. A 
similar approach was proposed by Tolhurst et al. (2019), but 
note that here the ungenotyped trees are utilised to estimate 
the total genetic variance, rather than just the non-genetic 
variances.

Preliminary spatial model

The preliminary spatial model fitted was a univariate BLUP 
model that accommodated the experimental design and spa-
tial modelling for each trial. This linear mixed model for y, 
the vector of available phenotypic data on the 1500 offspring 
trees in each trial, can be written as:

where b is a vector of fixed effects, here only the mean, 
with X being a vector 1’s, u is a vector of random genetic 
effects for all offspring trees with design matrix Zu, v is 
a vector of random non-genetic effects, here only blocks, 
with design matrix Zv, and e is the vector of residuals. The 
genetic effects are assumed to be distributed as u ~ MVN(0, 
σ2
u
I ), where σ2

u
 is the total genetic variance. The block 

effects are assumed to be distributed as v ~ MVN(0, σ2
v
I ), 

where σ2
v
 is the block variance. The residuals are assumed 

to be distributed as e ~ MVN(0, R), where R is the residual 
variance matrix which includes a model for natural and 
extraneous variation, i.e. variation due to random error and 
spatial trend (Gilmour et al. 1997). The residual variance 
matrix is given by:

where σ2
r
 is the random error variance and σ2

s
 is the 

spatial error variance, such that fr = �2

r
∕
(

�2

r
+ �2

s

)

 and 
fs = �2

s
∕
(

�2

r
+ �2

s

)

 are the fractions of random and spatial 
error variance. The Kronecker plus operator (⊕) constructs a 

(1)y = Xb + Zuu + Zvv + e

(2)R = σ2
r
I + σ2

s
⊕b

k=1
�c(k)

(

𝜌c
)

⊗ �r(k)

(

𝜌r
)

Table 6  The partition of the 
1630 ‘common’ and mapped 
loci (# SNP) and their average 
spacing (#SNP/cM) across 
linkage groups

Linkage group Overall

1 2 3 4 5 6 7 8 9 10 11 12

Length (cM) 218 194 201 194 165 174 203 199 164 157 128 146 2143
# SNP 159 163 153 146 109 139 149 129 125 129 108 121 1630
# SNP/cM 0.73 0.84 0.76 0.75 0.66 0.80 0.73 0.65 0.76 0.82 0.84 0.83 0.76
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block-diagonal model across the b master-blocks (b = 1 or 2; 
Table 2) and the Kronecker product operator (⊗) constructs 
a separable model between the columns and rows in each 
master block. Note that the model for each master block 
is parameterised by different auto-correlation matrices, i.e. 
Σc(k) and Σr(k), but the same auto-correlation parameters, 
ρc and ρr. This constructs a common spatial model for all 
master blocks within a trial. The significance of the spatial 
models was informally assessed by log-likelihood ratio 
tests and the Akaike Information Criterion, and showed 
considerable improvements compared to models with 
independent residuals, i.e. e ~ MVN(0, σ2

e
I ). The model 

described by Eqs. (1) and (2) is hereafter referred to as 
model 1.

Extension to include genomic data

Model 1 was then extended to genomic BLUP using a 
genomic relationship matrix, G, derived from RADseq 
data (described below). This model included phenotypic 
data on all offspring trees, while genomic data were 
included on the subsets of genotyped trees in SF1, SF2 
and SF3 respectively. Let the vector of genetic effects 
be partitioned as u = (u1

T, u2
T)T where u1 and u2 are 

the vectors for the ungenotyped and genotyped trees, 
respectively. Since there was clonal replication, the 
genetic effects for the genotyped trees can be further 
partitioned into additive and non-additive effects, 
where u2 = u2(a) + u2(d). The design matrix is partitioned 
conformably with u, where Z = [Z1 Z2].

The linear mixed model for y can now be written as: 

where the non-genetic and residual terms are as described 
for model 1. The genetic effects for the ungenotyped trees 
are assumed to be distributed as u1 ~ MVN(0, σ2

u
I ). The 

additive genetic effects (breeding values) for the genotyped 
trees are assumed to be distributed as u2(a) ~ MVN(0, 
σ2
a
G ), where σ2

a
 is the additive genetic variance and G is the 

genomic relationship matrix. The non-additive effects for 
the genotyped trees are assumed to be distributed as u2(d) ~ 
MVN(0, σ2

d
I ), where σ2

d
 is the non-additive genetic variance. 

The model described by Eqs. (2) and (3) is hereafter referred 
to as model 2. Model 2 was repeated with heterozygosity 
included as a covariate: this extension is of interest in 
describing −1× inbreeding depression, but potentially 
removes non-additive variance and results are given in 
Supplementary Information 4.

Model 2 provides a direct estimate of the total genetic 
variance from the ungenotyped trees ( σ2

u
 ) and an indirect 

estimate from the genotyped trees, which is a function of 
the additive ( σ2

a
) and non-additive ( σ2

d
 ) genetic variances. 

(3)y = Xb + Z
1
u
1
+ Z

2

[

u
2(a) + u

2(d)

]

+ Zvv + e

In terms of the additive genetic variance, it should be noted 
that the model parameter σ2

a
 is not the true additive genetic 

variance of each family since it corresponds to a population 
with markers in Hardy-Weinberg equilibrium. The true 
additive genetic variance of each family was therefore 
estimated by kσ2

a
 , where k = diag (G) −G with the bar 

denoting the mean value, and k = 0.669, 0.686 and 0.731 
for SF1, SF2 and SF3 respectively. Note that scaling was 
not necessary for σ2

d
 and σ2

u
 since diag (I) − I ≈ 1 when the 

number of genotyped and ungenotyped trees is large. The 
total genetic variance for the ungenotyped and genotyped 
trees was then constrained as: 

which aligned the ungenotyped and genotyped trees. This 
constraint was applied when fitting model 2 (see below).

Genomic relationship matrix

The genomic relationship matrix, G, was constructed 
separately for each family following Van Raden’s method 
1 (VanRaden, 2008), using the alternative allele dosages 
for each locus for each genotyped tree provided by 
AlphaPeel (Whalen et al. 2018) following imputation. 
The dosage is the expected number of alternative 
alleles accounting for the genotypic probabilities, 
and takes values between 0 and 2. For example, if the 
genotype probabilities for locus j of tree i are 0.01, 
0.99 and 0.00 for allele counts 0, 1 and 2, the dosage 
is 0.99  (0 × 0.01 + 1 × 0.99 + 2 × 0.00). The allele 
frequencies (pi for locus i) used for centring the dosages 
and calculating the scalar (∑i2pi(1 − pi)) were calculated 
from the full-sib parents for each family for SF1 and SF2 
and were either 0.25, 0.50 or 0.75 as each known parent 
had been genotyped to high coverage and imputed. For 
SF3, the values of pi were as observed.

Model fitting

Models 1 and 2 were fitted separately for each trait and 
trial in ASReml-R, which obtains REML estimates of the 
variance parameters and empirical BLUPs of the random 
effects. Following Tolhurst et al. (2019), the spatial model 
in Eq. (2) was constructed by fitting a separate model for 
each master block, with the sets of auto-correlation and 
variance parameters constrained to be equal across master 
blocks using the vcc argument in ASReml-R. Model 2 was 
fitted with the constraint in Eq. (4) using the ‘own’ function, 
which constructs user specified variance models. The 
variance models for the genotyped trees were constructed 
as var(u2(a))= �2

u
raG∕k and var

(

u
2(d)

)

= �2

u
r
d
I , where 

r
a
= k�2

a
∕�2

u
 and r

d
= �2

d
∕�2

u
 and �2

u
 is constrained to equal 

(4)σ2
u
= kσ2

a
+ σ2

d



 Tree Genetics & Genomes (2023) 19:53

1 3

53 Page 8 of 14

the total genetic variance of the ungenotyped trees, i.e. 
var

(

u
1

)

= �2

u
I.

Model summaries

Sample variograms showing the residual semi-variance 
between plots were constructed after fitting all models to 
informally assess the spatial models and detect any addi-
tional extraneous variation in the column or row directions. 
An example is presented and summarised in Supplementary 
Information 3.

Model 2 provided estimates of the fractions of additive 
and non-additive genetic variance within each family. For 
SF1 and SF2, these directly estimated the fractions within a 
full-sib family (fa and fd), as f̂a = r̂a and f̂d = r̂d . Additional 
scaling was required for SF3 to account for the two maternal 
half-sib families, with f̂a = 2.81 r̂a∕

(

3 − 0.19 r̂a
)

 and 
f̂d = 2.14 r̂d∕

(

2 + 0.14 r̂d
)

 . The scaling was calculated using 
the expected variances across the two families, based on a ratio 
of 0.594:0.406. Model 2 also provided estimates of broad and 
narrow-sense heritability, with H2 = �̂�2

u
∕
(

�̂�2

u
+ �̂�2

v
+ �̂�2

r
+ �̂�2

s

)

 
and h2 = f̂a�̂�

2

u
∕
(

�̂�2

u
+ �̂�2

v
+ �̂�2

r
+ �̂�2

s

)

 , where the denominator 
estimated the phenotypic variance,  σP

2. The confidence 
intervals for f̂a were obtained from likelihood profiles calculated 
by constraining ̂ra in model 2 to take values over relevant ranges 
in the interval [0,1], most densely around the REML estimates. 
The 95% confidence intervals were defined by the interval for 
which the drop in 2logL was less than 3.84, the 95% point for 
χ2

1. Estimates of fa were pooled across families and sites by 
summing these profiles. For the estimates of spatial parameters 
and heritabilities, pooling was done by weighting estimates by 
the reciprocal of their sampling variance.

Results

Imputation

The cumulative distribution functions of the call rates for 
SNPs over offspring are shown in Figure 1a, and those for 
offspring over SNPs in Figure 1b, for no imputation and for 
different thresholds (p) of the posterior probability required 
to call a genotype following imputation by AlphaPeel. All 
such functions will tend to 1 as the call rate tends to 1, 
and if all genotypes were known with certainty, the func-
tion would be a step function, where f(x)=0 for x<1 and 
f(x)=1 for x=1. The distribution functions will asymptote 
towards this step function as the number of genotypes called 
increases, and the sensitivity of the distribution functions 
to the value of p decreases as confidence in the imputation 
increases. When the threshold was set to p=0.9, 96% of 
SNPs had call rates exceeding 95% over all offspring (from 
Figure 1a), and 94% of offspring had call rates exceeding 
95% over all SNPs (from Figure 1b). Without imputation, 
only 50% of SNPs and 67% of offspring had call rates 
exceeding 95%.

Spatial parameters

The spatial parameters described in Eq. (2) are treated in 
this study as nuisance parameters and are summarised below 
in less detail than the genetic parameters of interest. The 
sample variograms presented in Supplementary Informa-
tion 3 show an example outcome from fitting model 2 and 
illustrate the residual semi-variance between plots x rows 
and y columns apart. Variograms peak at the spatial ( ̂𝜎2

s
 ) 

Fig. 1  A summary of imputation success rates for sib offspring obtained from AlphaPeel: a cumulative distribution function for SNP call rate 
over offspring and b cumulative distribution function for offspring call rate over SNPs. These are shown for no imputation (black), with geno-
types assigned with probability >0.7 (blue) and genotypes assigned with probability >0.9 (red), and where light colours are for each family and 
the dark colour is their average
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and total error variance ( ̂𝜎2

r
+ �̂�2

s
 ), with the discontinuity 

at zero displacement reflecting the random error variance 
( ̂𝜎2

r
 ). The general shape of the variograms is determined 

by the auto-correlation parameters �̂�c and �̂�r . Table 7 sum-
marises the fraction of random error variance ( f̂r ) and the 
auto-correlation parameters for height at all four ages. Since 
the ‘column’ and ‘row’ labels were arbitrarily assigned for 
each site, the estimates �̂�c and �̂�r have been pooled into a 
common estimate �̂�.

Two trends for height are observed in Table 7: (i) f̂r 
diminished from 2 to 11 years of age, indicating stronger 
spatial (positive) associations in height with neighbours 
as the trees grew; and (ii) the auto-correlations differed 
between sites, indicating that the observable associations 
extended over longer distances at Torridge, and conversely 
smallest at Llandovery. The estimates f̂r and �̂� for pilodyn 
depth averaged across families at Torridge were 0.64 (range 
[0.50, 0.77]) and 0.92 (range [0.86, 0.98]), respectively. 
For the three measurements of bud burst at 5 years of age 
(5A, 5B and 5C) for SF1 at the three sites, f̂r was compara-
tively high (mean 0.81; range [0.73, 0.94]) and �̂� was also 
comparatively high (mean 0.78; range [0.61, 0.97]). Taken 
together, although the common environmental component 
of variance among neighbours decays slowly for all traits, 
there is substantial environmental variance independent of 
neighbours for these ages.

Pilodyn depth at 10 years

Pilodyn depth was measured at 10 years in all three families 
at Torridge only, with the results shown in Table 8. The 
total genetic variance, �̂�2

u
 , was considerable in all families, 

although the broad sense heritability, H2, differed widely 
between families (range [0.115, 0.349]). These differences 
were largely due to the differing environmental variances. 
Considerable additive genetic variance, �̂�2

a
 , was detected 

in all families with differences in h2 that reflected the dif-
ferences in H2. This correspondence was due to a relative 
constancy in the fraction of additive genetic variance, f̂a . 
Figure 2 shows the likelihood profile for f̂a in each family, 
together with the consensus profile pooled across families. 
The consensus estimate for fa was 0.84 with 95% confidence 
interval of [0.77, 0.92]; this estimate was within the 95% 
confidence intervals for each family, and the hypothesis of 
a common value across families was not rejected (P>0.05; 
X2 = 4.75 c.f. χ2

2).

Bud burst at 5 years

Bud burst at 5 years was only measured in SF1 and Table 9 
focuses on the first measurement (5A), and the results for 
the other two measurements are given in the Supplementary 
Information 5. Estimates of H2 differed between sites (range 
[0.276, 0.476]) and these differences were, again, reflected in 
the estimates of h2 for the sites. However, f̂a was very similar 
across sites. Figure 3 shows the likelihood profiles for f̂a 
and the consensus profile pooled across sites. The consen-
sus estimate of fa was 0.83 with 95% confidence interval of 
[0.78, 0.90]. There was no evidence to reject the hypothesis 
of a common value across sites (P>0.05; X2 = 0.617 c.f. χ2

2). 
Similar results were obtained for measurements 5B and 5C, 
which had consensus estimates of 0.91 (s.e. 0.03) and 0.89 
(s.e. 0.04) respectively.

Table 7  The fraction of random error variance (fr) and the auto-correlation pooled across columns and rows (ρ) for height measured at four ages 
at all three sites (see Eq. (2)). The estimates presented have been averaged across all three families with the range given in parentheses

Age (years) Huntly Llandovery Torridge

fr ρ fr ρ fr ρ

 2 0.85 (0.80, 0.92) 0.85 (0.82, 0.86) 0.88 (0.87, 0.89) 0.77 (0.72, 0.82) 0.73 (0.67, 0.77) 0.90 (0.86, 0.97)
 4 0.76 (0.71, 0.85) 0.82 (0.78, 0.83) 0.70 (0.62, 0.76) 0.69 (0.62, 0.80) 0.60 (0.43, 0.76) 0.90 (0.85, 0.95)
 6 0.72 (0.63, 0.80) 0.84 (0.83, 0.86) 0.61 (0.57, 0.68) 0.73 (0.67, 0.80) 0.54 (0.40, 0.72) 0.91 (0.86, 0.95)
 11 0.52 (0.45, 0.59) 0.91 (0.87, 0.95) 0.53 (0.49, 0.58) 0.81 (0.74, 0.86) 0.60 (0.39, 0.82) 0.93 (0.90, 0.96)

Table 8  Estimates of the total genetic (σu
2) and phenotypic (σP

2) variances, broad (H2) and narrow (h2) sense heritabilities and the fraction of 
additive genetic variance (fa) for pilodyn depth measured at 10 years in all three families at Torridge, where fa for SF3 has been corrected to refer 
to full-sibs. The associated s.e.s are given in parentheses

Family σP
2 σu

2 H2 fa h2

SF1 2.994 (0.125) 1.046 (0.060) 0.349 (0.019) 0.912 (0.043) 0.319 (0.024)
SF2 4.673 (0.368) 1.283 (0.073) 0.275 (0.024) 0.751 (0.064) 0.206 (0.026)
SF3 4.651 (0.650) 0.533 (0.055) 0.115 (0.019) 0.837 (0.128) 0.097 (0.027)
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Height at 2, 4, 6 and 11 years

Table 10 shows the broad sense heritabilities, H2, and phe-
notypic variances, �̂�2

P
 , for height measured at 2, 4, 6 and 

11 years in all four families at all three sites. For each site, 
�̂�2

P
 increased with age but there was no clear trend in the 

changes in H2 with age. The estimates of H2 for Llandovery 

were generally smaller than for Huntly and Torridge, which 
were associated with generally larger �̂�2

P
 at a given age com-

pared to the other sites. There were no clear trends in H2 or 
�̂�2

P
 between families across ages or sites.
The consensus estimates of fa pooled across families are 

given in Table 11 for each age and site. There was broad 
evidence of increasing f̂a with age at all sites, in particularly 

Fig. 2  The profiles of −2logL 
for pilodyn depth measured at 
10 years in all three families 
(grey lines, with labels ‘SF1’, 
‘SF2’ and ‘SF3’) according 
to fa, the fraction of genetic 
variance that is additive and the 
profile pooled across families. 
Each profile has been adjusted 
by subtracting its minimum 
value and therefore the junction 
with the solid red line y=0 indi-
cates the maximum likelihood 
estimate, and the interval below 
the dashed red line y=3.84 
indicates the 95% confidence 
interval

Table 9  Estimates of the total genetic (σu
2) and phenotypic (σP

2) variances, broad (H2) and narrow (h2) sense heritabilities and the fraction of 
additive genetic variance (fa) for measurement 5A of bud burst in SF1 at all three sites. The associated s.e.s are given in parentheses

Site σP
2 σu

2 H2 fa h2

Huntly 0.251 (0.010) 0.085 (0.005) 0.333 (0.019) 0.836 (0.056) 0.278 (0.026)
Llandovery 0.499 (0.021) 0.138 (0.010) 0.276 (0.024) 0.831 (0.069) 0.229 (0.025)
Torridge 0.699 (0.020) 0.326 (0.018) 0.476 (0.019) 0.851 (0.039) 0.405 (0.025)

Fig. 3  The profiles of −2logL 
for the first measurement of bud 
burst at 5 years in SF1 at all 
three sites (grey lines) accord-
ing to fa, the fraction of genetic 
variance that is additive and the 
profile pooled across sites. Each 
profile has been adjusted by 
subtracting its minimum value 
and therefore the junction with 
the solid red line y=0 indi-
cates the maximum likelihood 
estimate, and the interval below 
the dashed red line y=3.84 
indicates the 95% confidence 
interval. The labels ‘H’, ‘L’ and 
‘T’ denote profiles for Huntly, 
Llandovery and Torridge 
respectively
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f̂a was largest at 11 years and smallest at 2 years. This trend 
was particularly evident in the consensus estimates of fa after 
pooling across sites with f̂a increasing from 0.60 at 2 and 
4 years to 0.75 at 11 years, with 95% confidence intervals 
with only small overlap. The confidence interval for the con-
sensus estimate of fa at 11 years does not include 1, i.e. not 
all genetic variance is additive. However, some individual 
families at some individual sites do include 1 in their con-
fidence intervals, which are wider, and the best point esti-
mate for SF2 at 11 years at Llandovery was 1. There was 
no overall evidence of differences between families across 
sites from the goodness of fit tests (P>0.05, X2=34.325, 
c.f. χ2

24), although Torridge at 4 and Huntly at 11 years of 
age gave isolated significance (P<0.05, X2=4.81 and 4.42 
respectively, c.f. χ2

2).

Discussion

This study combines all available phenotypic and genomic 
data from a multi-site, clonally replicated experiment 
with large sib families produced by controlled crossing to 

partition the genetic variance observed between clones for 
height, bud burst and pilodyn penetration depth into additive 
and non-additive components. The additive genetic variance 
formed the largest fraction of total genetic variation for all 
traits, with estimates of 0.58 for height at 2 years of age 
increasing to 0.75 at 11 years, 0.84 for pilodyn penetration 
depth at 10 years and ranging from 0.83 to 0.91 for the 3 
measures of bud burst at 5 years. This partition is possible 
as the model underlying the Van Raden relationship matrix, 
G, is a ridge regression model on marker allele counts and 
therefore only describes what is observed as an additive 
sum of effects over loci, whereas the total genetic variance 
obtained from the clonal replication includes dominance 
and epistasis. The experimental design had several aspects 
that made the study feasible, or more powerful, beyond the 
clonal replication of the offspring. Firstly, the experiment’s 
large sib families made it possible to consolidate genotypes 
obtained from RADseq by imputation, using the recent 
availability of a molecular map for Sitka spruce (Tumas 
et al. 2023). Secondly, the measurement of traits across sites, 
or across families, or both, allowed for replicated estimates 
of fa, and the estimates were found to be very largely con-
sistent, subject to their sampling errors. The size of the sib 

Table 10  Estimates of the broad sense heritability (H2) and phenotypic variance (σP
2) for height measured at four ages in all three families at all 

three sites. The associated s.e.s are given in parentheses

Age (years) Family Huntly Llandovery Torridge

H2 σP
2 H2 σP

2 H2 σP
2

 2 SF1 0.202 (0.014) 0.013 (0.000) 0.101 (0.014) 0.015 (0.001) 0.256 (0.015) 0.019 (0.001)
SF2 0.099 (0.018) 0.014 (0.002) 0.043 (0.011) 0.025 (0.001) 0.286 (0.014) 0.012 (0.001)
SF3 0.192 (0.014) 0.012 (0.000) 0.103 (0.013) 0.012 (0.000) 0.204 (0.022) 0.009 (0.001)

 4 SF1 0.155 (0.013) 0.087 (0.002) 0.088 (0.012) 0.140 (0.006) 0.239 (0.015) 0.130 (0.004)
SF2 0.165 (0.014) 0.075 (0.004) 0.056 (0.012) 0.178 (0.005) 0.178 (0.015) 0.075 (0.004)
SF3 0.155 (0.013) 0.097 (0.003) 0.062 (0.012) 0.128 (0.005) 0.064 (0.011) 0.085 (0.008)

 6 SF1 0.149 (0.013) 0.341 (0.010) 0.061 (0.012) 0.590 (0.027) 0.225 (0.012) 0.402 (0.014)
SF2 0.174 (0.013) 0.214 (0.005) 0.065 (0.012) 0.544 (0.016) 0.222 (0.015) 0.324 (0.017)
SF3 0.154 (0.012) 0.288 (0.009) 0.097 (0.015) 0.358 (0.033) 0.081 (0.011) 0.368 (0.017)

 11 SF1 0.089 (0.012) 1.416 (0.134) 0.056 (0.011) 1.786 (0.055) 0.214 (0.015) 0.779 (0.029)
SF2 0.100 (0.028) 1.895 (0.505) 0.062 (0.011) 2.156 (0.136) 0.334 (0.027) 1.282 (0.097)
SF3 0.196 (0.014) 1.607 (0.067) 0.076 (0.018) 1.341 (0.251) 0.180 (0.015) 1.465 (0.079)

Table 11  The fraction of additive genetic variance (fa) for height measured at four ages at all three sites. The estimates presented are pooled 
across families using likelihood profiles, and the consensus estimate is obtained by pooling the resulting profiles across sites. The associated 95% 
confidence intervals are given in parentheses

Age (years) Huntly Llandovery Torridge Consensus

2 0.54 (0.40, 0.67) 0.52 (0.32, 0.73) 0.62 (0.51, 0.73) 0.58 (0.48, 0.68)
4 0.59 (0.46, 0.73) 0.59 (0.36, 0.85) 0.67 (0.55, 0.79) 0.63 (0.52, 0.74)
6 0.60 (0.46, 0.73) 0.63 (0.43, 0.93) 0.72 (0.62, 0.82) 0.67 (0.57, 0.77)
11 0.62 (0.49, 0.74) 1.00 (0.69, 1.00) 0.79 (0.70, 0.86) 0.75 (0.66, 0.83)
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families also gave the opportunity to manage the unexpected 
parentage of SF3.

An important theoretical perspective to consider when 
comparing the current results with those from other pub-
lished studies is that here the parameter reported (fa) is 
defined within full-sib families, even though this required 
an adjustment in SF3. Therefore, the estimates presented 
here are partitions of the Mendelian sampling, and not the 
full genetic variance for a random-mating population, which 
may be obtained from other approaches. The expectations 
for the additive and non-additive components can be scaled 
up to the corresponding variance for a full random-mating 
population and, based on these expectations, the fraction 
fa would increase. Although half the additive variation lies 
within families, a greater portion (3/4) of the dominance and 
the additive × additive epistatic variation is within families, 
and more than 3/4 for higher order epistatic terms (Falconer 
& Mackay, 1996). Assuming that any non-additive variation 
observed within families is explained by dominance or addi-
tive by additive, then the expectation is that fa in this study 
corresponds to 3 fa /(2+ fa) in a random mating population, 
e.g. fa = 0.6 and 0.8 corresponds to 0.69 and 0.86. While 
only three sib families were sampled, the consensus esti-
mates for fa for the traits measured on all families is impor-
tant in providing guidance on the wider population.

Among previous studies, Weng et al. (2008) estimated 
partitions of genetic variance in white spruce, a close rela-
tive to Sitka spruce, for a similar range of ages for height, 
and also for pilodyn depth. Their results show comparable 
estimates of fa ranging from ~ 0.4 at 4 years to 0.8 at 14 
years, despite the large s.e.s found in their data. The study 
of Nguyen et al. (2022) in Norway spruce covered a range 
of ages for height between 6 and 12 years and their results 
also appear to suggest that fa decreases between these ages; 
however, examination of the results shows large s.e.’s and 
negative estimates of fa which seriously limit interpreta-
tion. Results for Norway spruce were also reported by Chen 
et al. (2019) using genomic analysis: for height at 17 years, 
fa ~ 0.4 and 0.6 at two sites, and for pilodyn depth at 30 
years of age fa ~ 1 at both sites. Among other studies of 
height, Isik et al. (2003) assessed four ages between 1 and 6 
years and Baltunis et al. (2007) at 2 years, both in loblolly 
pine, Baltunis et al. (2013) at 12 years in yellow cypress 
but for the large sampling errors limit comparability. Few 
studies have examined pilodyn depth, but those that have 
are in agreement with the findings here that the fraction of 
additive genetic variance is very high, with estimates of 
0.90 (s.e. 0.18) at 26 years of age in white spruce (Nguyen 
et al. 2022); ~0.8 in Eucalyptus globulus at 4 years derived 
from the results of Costa de Silva et al. (2004). There are no 
comparable results for bud burst in other published studies. 
Each trait should be expected to have its own architecture, 
but too few results are available to attempt generalisation 

particularly given the substantial standard errors of many 
estimates (stem diameter in Norway spruce (Nguyen et al. 
2022; Berlin et al. 2019), Eucalyptus globulus (Costa de 
Silva et al. 2004) and radiata pine (Baltunis et al. 2009); 
wood quality traits in white spruce (Nguyen et al. 2022) and 
Norway spruce (Chen et al. 2019)).

This study partitions the genetic variance in Sitka 
spruce into additive and non-additive components using an 
approach similar to that of de Almeida Filho et al. (2019), 
which used the classical ridge regression model to estimate 
the fraction of additive genetic variance and the clonal vari-
ance to estimate the total genetic variance. However, their 
approach requires all trees to be genotyped and removes 
any ungenotyped trees. In this paper, a linear mixed model 
was developed which combines all available phenotypic and 
genomic data on all trees, regardless of whether they have 
been genotyped. In particular, the fraction of additive genetic 
variance was estimated using the subset of genotyped trees 
and the total genetic variance estimated using all genotyped 
and ungenotyped trees. This approach preserves all avail-
able data to estimate the genetic and non-genetic variances, 
which is particularly important for spatial modelling (as it 
requires a continuous spatial structure). It is equivalent to 
setting the ungenotyped trees as diagonal (independent) 
in the genomic relationship matrix within model 2, so that 
the additive component for these trees would not be well 
defined. There are also similarities to single-step GBLUP 
(Legarra et al. 2009), but without the need for pedigree or 
the need to construct an H matrix. The distinguishing feature 
here is that the primary goal of this study was to obtain reli-
able estimates of the fraction of additive genetic variance, 
rather than obtaining predictions of additive genetic merit 
for genomic selection. Furthermore, single-step GBLUP 
involves setting an equivalence between the genetic vari-
ances being estimated, whereas here the data are used to 
estimate to what extent the variances coincide.

Obtaining reasonable precision on the fraction of additive 
genetic variance using pedigree alone has proved challeng-
ing as it typically involves scaling up and calculating linear 
functions of the estimated pedigree components. The models 
used here are parsimonious in that no attempt has been made 
to partition the non-additive genetic variance into dominance 
and epistatic components to avoid overfitting. The further 
partition is in general feasible, without assuming Hardy-
Weinberg equilibrium, as shown by Vitezica et al. (2017), 
and exemplified in Nile tilapia (Oreochromis niloticus) by 
Joshi et al. (2020). This involves using the markers to cal-
culate orthogonal relationship matrices for the dominance 
and epistatic components (e.g. the additive by additive rela-
tionship matrix is proportional to the Hadamard product of 
G with itself). The partition was attempted in the study of 
Chen et al. (2019) in Norway spruce but assumed Hardy-
Weinberg equilibrium. Furthermore, no attempt has been 
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made here to estimate genetic variance across families (as 
distinct from pooling the results within families) for two 
reasons: (i) the number of parents is small and (ii) the num-
ber of markers are too few for satisfactory estimation across 
families, but more than adequate within families (Lilleham-
mer et al. 2013). This leads to limitations in interpretation 
of this study, e.g. there is no assessment of whether addi-
tive marker effects in one family are similar to those from 
another, despite the consistency of the fa observed within 
families. .

The evidence suggests that the fraction of additive 
genetic variance increases with age for height towards the 
high fractions observed for pilodyn and bud burst. The esti-
mates for results of Supplementary Information 4 also show 
no evidence of inbreeding depression for any of the traits 
and therefore no evidence on the form of the non-additive 
genetic variance, e.g. in the study of Joshi et al. (2020) in 
Nile tilapia, the extra genetic variance observed in full-sibs 
aligned with additive by additive epistasis and not domi-
nance. While the form of the non-additive genetic variance 
may be less relevant for deployment strategies using clones, 
it does influence the form of the breeding programme, as 
additive by additive fractions become converted to additive 
variance under selection and little benefit is expected from 
establishing sub-lines for crossing, as in reciprocal recurrent 
selection.

Knowing the relative proportions of additive and non-
additive genetic variance is important in deciding how 
to proceed with the Sitka spruce breeding programme. If 
genetic variation is predominantly additive, it can make the 
breeding process somewhat more straightforward and pre-
dictable; the greatest genetic gain is made combining those 
parents with the largest estimates of breeding value for the 
traits subject to selection. A low proportion of non-additive 
genetic variation reduces the likelihood of exceptional fam-
ily combinations resulting from a mating of two parents of 
moderate or poor breeding values. The breeder can now sim-
plify the breeding process through the use of elite breeding 
programmes such as ‘Nucleus Breeding’ as originally sug-
gested for sheep breeding (Jackson and Turner, 1972) and 
adapted for trees by Cameron et al. (1989). The indications 
from this study suggest that elite breeding could be used to 
good effect in the Sitka spruce breeding programme to max-
imise early increases in height, selection for timing of bud 
burst avoiding the more frost-damage prone, early flushing 
genotypes and pilodyn-pin penetration.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11295- 023- 01627-5.
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