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Abstract
Climate relicts are of particular importance in evolutionary biology because of the strategies they may adopt for long-term 
survival despite climatic oscillations. However, because their current distribution is usually restricted and fragmented, many cli-
matic relicts are at risk of extinction. Daphnimorpha (Thymelaeaceae) is a genus endemic to Japan that comprises two species 
(D. capitellata and D. kudoi) with a disjunct distribution in southern Japan. These two shrub species are endemic to a single 
mountain range. In this study, we conducted population genetic analyses using genome-wide single nucleotide polymorphisms 
obtained from multiplexed inter-simple sequence repeats genotyping by sequencing to reveal the phylogeographic history 
and obtain conservation implications for the two species. The results showed that these two species may have been isolated 
since the Tertiary period, supporting their status as climate relicts. In addition, D. kudoi showed clear genetic differentiation 
between the two mountains where it occurred (Mt. Nagata and Mt. Kuromi), with a decline in the effective population sizes 
inferred during the last glacial period. In contrast, D. capitellata showed no clear intraspecific genetic structure, and its effec-
tive population size was relatively stable. These differences could result in contrasting light tolerance between species. For 
conservation, we recommend managing these species as three evolutionarily significant units (ESUs): D. capitellata, D. kudoi 
population on Mt. Nagata, and D. kudoi population on Mt. Kuromi. Considering the limited gene flow among subpopulations 
and small population census, all ESUs require conservation attention to maintain or increase their effective population sizes.

Keywords  Climate relicts · Conservation genetics · Population demography · Disjunct distribution · Daphnimorpha · 
Thymelaeaceae

Introduction

A climate relict is defined as a species that had grown in a 
broad range under the warm and humid climate during the 
Tertiary period (65–2.6 million years ago [Mya]) but has 
survived in restricted regions owing to the climatic oscil-
lations during the Quaternary period (2.6 Mya–present) 
(Milne and Abbott 2002; Hampe and Jump 2011). Climate 
relicts are important components of local and regional biodi-
versity and are ideal materials for investigating the responses 

of an organism to climate change across large spatial and 
temporal scales because of their long-term persistence in 
populations (Hampe and Jump 2011; Woolbright et  al. 
2014). However, many relict species are at risk of extinc-
tion (Chávez-Cortázar et al. 2021). This is because the cur-
rent distribution of climate relicts is often highly restricted 
and fragmented, and such small and isolated populations 
typically show symptoms of genetic erosion (e.g., low het-
erozygosity, increased inbreeding, and/or reduced allelic 
richness), which may compromise population viability in the 
long term (Buza et al. 2000; Endels et al. 2007). In addition, 
climate relicts may be highly influenced by future climate 
change because of their strong conservatism in the climate 
niche (Chávez-Cortázar et al. 2021).

Understanding genetic variation within and among popu-
lations is a central issue in conservation and management 
strategies (Frankham 2018). Maintenance of population 
genetic diversity is essential for the long-term survival of 
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species (Yamamoto et al. 2017), and population management 
should be conducted based on evolutionarily significant units 
(ESUs) to avoid outbreeding depression (Bottin et al. 2007). 
Previous studies have shown that climate relicts could have 
persisted in isolated populations for a long time, even with 
apparently small population sizes (Baali-Cherif and Bes-
nard 2005; García 2008; Takahashi et al. 2022); however, 
this was not the case for some species (Bauert et al. 1998; 
García-Verdugo et al. 2013). These studies indicate that in 
addition to the estimation of genetic diversity and detection 
of ESUs, inferring historical demography is also important 
in considering the conservation of climate relicts.

In the present study, we focused on the endemic Japanese 
genus Daphnimorpha Nakai (Thymelaeaceae). This genus is 
morphologically and phylogenetically distinct from the other 
genera within the family (Hamaya 1955; Lee et al. 2022) 
and comprises only two shrub species: D. capitellata (H. 
Hara) Nakai and D. kudoi (Makino) Nakai. The distribution 
of both species was restricted to a single granitic mountain 
range in the eastern parts of Kyushu Island and Yakushima 
Island, Japan (Fig. 1). Daphnimorpha capitellata grows in 
the shaded understory of a conifer-broadleaved mixed forest 
at mid-altitudes (between 1000 and 1400 m) of the Oninome 
mountain range on Kyushu Island (Hirata 1974), whereas D. 
kudoi grows in rocky open habitats in alpine or subalpine 
areas of the Okudake mountain range on Yakushima Island 
(at altitudes higher than 1650 m) (Yumoto 1988). These 
mountain ranges are more than 270 km apart, and distribu-
tion records are absent for the other mountains. In addition 
to their morphological and phylogenetic distinctiveness, 
their restricted and disjunct distribution led us to expect 
that the two species would be climate relicts. However, no 
empirical studies have investigated whether these species 

diverged at a relatively old age or were formed through 
recent long-distance dispersal. In addition, because of their 
highly restricted distribution, limited number of individu-
als (less than 300 individuals of each species), and illegal 
digging for horticultural purposes, both species are listed 
as threatened on the Japanese Red List (D. capitellata as 
endangered (EN) and D. kudoi as vulnerable (VU); Environ-
ment Agency of Japan 2000). Moreover, basic information 
regarding their conservation, including their genetic struc-
ture and diversity, is lacking.

This study aimed to reveal the phylogeographic his-
tory of two Daphnimorpha species showing the disjunct 
and restricted distributions and to determine the conserva-
tion implications by population genetic analyses based on 
genome-wide single nucleotide polymorphism (SNP) mark-
ers. In particular, we addressed the following questions: (1) 
Does the disjunction between the two species result from 
the historical survival of Tertiary relicts or long-distance 
dispersal at relatively recent ages? (2) Are there any dif-
ferences between the two species in terms of their histori-
cal demography? (3) How should we preserve and manage 
the two species? The results of this study contribute to our 
understanding of how climate relicts have survived for mil-
lions of years despite climatic oscillations and how they can 
be conserved in the face of future environmental changes.

Materials and methods

Study species

Both Daphnimorpha species are slow-growing deciduous 
shrubs. They attain a maximum height of 1 m and have 
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Fig. 1   a Location of two mountain ranges in the southern part of the 
Japanese Archipelago where the two Daphnimorpha species are dis-
tributed. Orange areas show granitic soil areas. b Sampling locations 
of D. capitellata subpopulations (C1–10) and results of clustering 

analysis using MIG-seq data. c Results of clustering analysis for D. 
kudoi subpopulations (K1–7). The pie chart shows the cluster compo-
sition of subpopulations at K = 2
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verticillate arrangement of leaves at the tips of the axes. 
Both species produce white- or pink-coloured long-tubed 
flowers with sweet scents in July and August. These floral 
characteristics coincide with those of species pollinated by 
hawk moths (Miyake and Yahara 1998), and Yumoto (1988) 
reported that moths visit the flowers of D. kudoi. Seeds of 
both species are relatively small (3–4 mm) but lack any 
specific structure to promote dispersal. These two species 
are distinguished by the length of the calyx tube, size and 
thickness of the leaves, and length of the petiole (Yonekura 
2017). To the best of our knowledge, information on their 
reproductive ecology, including selfing ability, fruiting rate, 
proportion of seed establishment, and inbreeding depression, 
is lacking. Daphnimorpha capitellata grows in the shaded 
understory of temperate deciduous-coniferous mixed forests, 
whereas D. kudoi grows on rocky open slopes or outcrops 
where dwarf bamboo species (Pseudosasa owatarii [Mak-
ino] Makino ex Nakai) cannot grow. Although the areas 
where the two species are distributed have been reported 
as places with a high density of Japanese sika deer (Cervus 
nippon Temminck) (Koda and Kawamura 2012; Miyazaki 
Prefecture 2022) and where the florae are highly damaged 

by overgrazing (Takahashi, personal observation), we did 
not observe any bite marks on the two species, likely due to 
their toxicity, similar to that of other Thymelaeaceae species 
(Hashimoto and Fujiki 2014).

Sampling and molecular experiments

Sampling in the Oninome mountain range and Yakushima 
Island was conducted from 2020 to 2022. Although both 
species are distributed within a small range, their growth 
is discontinuous. We defined individuals more than 50 m 
apart as subpopulations and collected 2–16 individuals from 
each subpopulation. In total, we collected 115 D. capitellata 
individuals from 10 subpopulations (C1–10) and 52 D. kudoi 
individuals from seven subpopulations (K1–7), covering the 
entire distribution range of the species (Fig. 1 and Table 1). 
The collected leaves were dried on silica gel and used for 
the molecular experiments. Genomic DNA was extracted 
using cetyltrimethylammonium bromide (CTAB) (Doyle 
and Doyle 1987). Multiplexed inter-simple sequence repeats 
genotyping by sequencing (MIG-seq) was used (Suyama and 
Matsuki 2015; Suyama et al. 2022) to obtain genome-wide 

Table 1   Locality information 
and the genetic diversity of 
two Daphnimorpha species 
estimated from MIG-seq data

N, number of samples used for MIG-seq analysis; P, the number of private SNPs; π, nucleotide diversity; 
HE, expected heterozygosity; FIS, fixation index. Nucleotide diversity was calculated from whole sites 
including monomorphic sites. Expected heterozygosity and fixation index were calculated from only vari-
able sites. Voucher specimens were deposited in TUS (D. capitellata; DT171, and D. kudoi; DT3762)

Species Sub-
population 
name

N P π HE FIS Latitude
(°N)

Longitude
(°E)

Altitude (m)

Daphnimorpha 
capitellata

C1 2 0 0.0014 0.117 0.002 32.712 131.527 1136

C2 12 11 0.0018 0.194 0.022 32.709 131.523 1220
C3 14 3 0.0019 0.205 0.001 32.704 131.520 1247
C4 14 6 0.0018 0.198 0.031 32.703 131.514 1264
C5 14 5 0.0017 0.185 0.003 32.701 131.512 1020
C6 12 1 0.0018 0.188 0.001 32.701 131.516 1135
C7 9 0 0.0018 0.193 0.028 32.701 131.517 1165
C8 9 6 0.0018 0.192 -0.002 32.701 131.518 1185
C9 13 9 0.0018 0.191 -0.014 32.701 131.520 1211
C10 16 6 0.0019 0.207 0.065 32.691 131.521 1382
In total 115 - 0.0019 0.213 0.070 - - -

D. kudoi K1 4 0 0.0034 0.139 0.045 30.343 130.492 1860
K2 12 39 0.0037 0.188 0.070 30.343 130.493 1847
K3 3 1 0.0039 0.171 0.030 30.319 130.512 1658
K4 6 1 0.0039 0.191 0.073 30.317 130.509 1824
K5 11 1 0.0040 0.202 0.083 30.317 130.509 1797
K6 12 8 0.0040 0.204 0.089 30.317 130.511 1760
K7 4 3 0.0035 0.161 0.026 30.316 130.512 1747
In total 52 - 0.0041 0.216 0.164 - - -
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SNPs. Library preparation for the MIG-seq analysis was per-
formed as described by Suyama et al. (2022). Sequencing 
was conducted on the Illumina MiSeq platform (Illumina, 
San Diego, CA, USA) using the MiSeq Reagent Kit v3 (150-
cycle) (Illumina). The obtained data were deposited in the 
National Center for Biotechnology Information (BioProject 
ID: PRJNA914862) database.

SNP discovery and population genetic analyses

Following the method of Suyama and Matsuki(2015), for-
ward and reverse reads for each sample were merged and 
treated as single-end data. The sequenced reads were filtered 
and trimmed using Trimmomatic v.0.32 (Bolger et al. 2014) 
with the following commands: HEADCRAP:6, CROP:77, 
SLIDINGWINDOW:10:30, and MINLEN:51. We assem-
bled three datasets, one per species and a third dataset 
that included both species, using the Stacks v.2.41 pipe-
line (Rochette et al. 2019). For all datasets, the minimum 
depth option was set to 6 (-m 6), and the default values were 
employed for the other options. SNPs were extracted using 
the populations program in Stacks, and the minimum pro-
portion of individuals across populations required to process 
a locus was set to 10% for the dataset including both species 
and 80% for the dataset of each species. To remove paralo-
gous loci and possible PCR errors, we excluded loci show-
ing observed heterozygosity > 0.6 and eliminated SNPs with 
minor allele count < 3 for all datasets. We obtained 6151, 
651, and 1194 SNPs for two species, D. capitellata and D. 
kudoi, datasets, respectively.

Based on the SNP dataset of each species, we first cal-
culated the genetic diversity, number of private SNPs (P), 
nucleotide diversity (π), expected heterozygosity (HE), and 
fixation index (FIS) of each subpopulation and species using 
the populations program in Stacks. We evaluated the genetic 
structure patterns of the subpopulations within each species 
by plotting the relationships between pairwise genetic differ-
entiation (FST / [1 − FST]) and geographic distance. Pairwise 
genetic differentiation was calculated using the “hierfstat” 
package (Goudet 2005) in R v.4.0.5 (R Core Team 2013). 
To calculate the pairwise FST values, we removed subpopu-
lations C1 and K3 because of the limited number of indi-
viduals. The significance of isolation by distance was tested 
using the Mantel test with 999 random permutations using 
the “ade4” package (Dray and Dufour 2007).

For population genetic analyses, we first conducted a phy-
logenetic analysis based on a dataset that included both spe-
cies to confirm interspecific divergence. Phylogenetic analysis 
was performed using a maximum likelihood search under the 
GTR + G model using raxMLGUI v.2.0 (Edler et al. 2021). The 
population genetic structure within each Daphnimorpha spe-
cies was investigated using clustering analysis and principal 
component analysis (PCA) based on the SNP dataset of each 

species. Clustering analysis was conducted using the software 
ADMIXTURE (Alexander et al. 2009) by assuming between 
one and six ancestral populations (K) and using 10 replicate 
runs per K value. As the clustering analysis model assumed 
linkage equilibrium among markers (Alexander et al. 2009), 
we excluded SNPs with high LD values (R2 > 0.4) using Plink 
v.1.9 (Chang et al. 2015) for ADMIXTURE analysis (543 and 
1016 SNPs for D. capitellata and D. kudoi, respectively). PCA 
was performed using the “adegenet” package (Jombart et al. 
2008) in R.

We inferred contemporary gene flow among subpopu-
lations within species using BA3-SNPS (Mussmann et al. 
2019). We used the same datasets as for the ADMIXTURE 
analysis, but after removing subpopulations C1 and K3 
because of their limited number of individuals. For the 
analysis, mixing parameters for the delta values of migra-
tion rate (-m), allele frequency (-a), and inbreeding (-f) were 
determined using BA3-autotune (Mussmann et al. 2019) to 
achieve the best acceptance values (0.2–0.6). The follow-
ing parameters were used: -m = 0.9991, -a = 0.9982, and 
-f = 0.9982 for D. capitellata and -m = 0.9991, -a = 0.9991, 
and -f = 0.9859 for D. kudoi. For each dataset, the estimation 
was conducted with 5,000,000 MCMC iterations, a burn-in 
of 1,000,000 generations, and a parameter value sampling 
frequency of 100.

Demographic inferences

To reveal the formation process of the disjunct distribu-
tion of the Daphnimorpha species and the lineage diver-
gence within D. kudoi (see “Results”), we estimated the 
divergence time between species and lineages within spe-
cies using coalescent simulations implemented in fastsim-
coal2.7 (Excoffier et al. 2021). Based on the results of the 
population genetic analyses, the individuals were divided 
into three groups (D. capitellata [C1–10], D. kudoi on Mt. 
Nagata [K1 and 2], and D. kudoi on Mt. Kuromi [K3–7]). 
We constructed a branching model of three groups (Fig. 2), 
where D. capitellata and D. kudoi first diverged at time T2, 
and then two groups within D. kudoi diverged at time T1. 
The effective population sizes of D. capitellata, D. kudoi 
on Mt. Nagata, and D. kudoi on Mt. Kuromi are denoted 
as N1, N2, and N3, respectively, and the ancestral popu-
lations of D. kudoi and both species were designated N4 
and N5, respectively. As the simulation in fastsimcoal2 was 
conducted based on haploid individuals, we transformed the 
values of the effective population sizes into those of dip-
loid individuals. The prior intervals for these parameters are 
listed in Table S1. The model was fitted to the observed 
three-dimensional site-frequency spectrums (SFS). To esti-
mate the SFS, we assembled all individuals using stacks 
pipeline with the same settings as in the above analyses. 
For SNP detection, loci present in all three groups with a 
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genotyping rate of over 25% within the group (-p = 3 and 
-r = 0.25) were extracted. After removing paralogous loci 
(HO > 0.6) and highly linked SNPs (R2 > 0.4), we calculated 
the folded SFS using easySFS (https://​github.​com/​isaac​
overc​ast/​easyS​FS) based on 551 SNPs from 13,950 sites. 
Because missing data were not allowed for estimating SFS, 
we adopted the down-projection method, and the projection 
value of each group was set to eight gene copies. We set the 
mutation rate to 3.1 × 10−9 per site per generation following 
the genomic study using Thymelaeaceae species (Hu et al. 
2022) and set the generation time of Daphnimorpha spe-
cies as 15 years. We first ran 20 independent iterations with 
500,000 coalescent simulations and 20 optimisation cycles 
and obtained point estimates of the demographic parameters 
of the model based on the highest maximum composite like-
lihood. Then, to evaluate the uncertainty of the data, 95% 
confidence intervals (CIs) of the parameters were obtained 
using a parametric bootstrapping procedure, creating 100 
pseudo-observed SFS using the point estimates of the 
parameters, and repeating the estimation on these datasets 
with the same simulation settings.

To infer the relatively recent demography of the three 
groups, we estimated their historical changes in effective 
population size using the software Stairway Plot2 (Liu and 
Fu 2020). The assembly was conducted for each group, and 
SNPs in more than 50% of individuals (-R 0.5) were used for 
the analysis. We also eliminated paralogous loci (HO > 0.6) 
and highly linked SNPs (R2 > 0.4) and obtained 1523, 2526, 
and 1739 SNPs from 122,735, 138,337, and 120,418 sites 
in D. capitellata, D. kudoi on Mt. Nagata, and D. kudoi 
on Mt. Kuromi, respectively. The one-dimensional SFS of 
each group was calculated using easySFS. The projection 
value of each group was set to half the analysed number 

of individuals (58 gene copies for D. capitellata, 16 for D. 
kudoi on Mt. Nagata, and 36 for D. kudoi on Mt. Kuromi). 
The inferences were based on 200 spectral iterations. The 
mutation rate and generation time were the same as those 
used in the fastsimcoal2 analysis. Finally, we estimated the 
contemporary effective population sizes of the three groups, 
which could not be estimated from Stairway Plot2 analysis, 
using linkage disequilibrium information implemented in 
LDNE v.1.31 (Waples and Do 2008). We extracted SNPs 
with a genotyping rate higher than 80% (-R 0.8) within each 
group without paralogous loci (HO > 0.6) or highly linked 
SNPs (R2 > 0.4), which resulted in 543 SNPs for D. capitel-
lata on Mt. Nagata, 347 for D. kudoi on Mt. Nagata, and 989 
for D. kudoi on Mt. Kuromi. We applied a minimum allele 
frequency cutoff value of 0.05, and CIs were obtained using 
the locus jackknife method.

Results

Genetic diversity and population genetic structure

At both the subpopulation and species levels, the nucleotide 
diversity in D. kudoi (subpopulations, 0.0034–0.0040; total, 
0.0041) was higher than that in D. capitellata (subpopu-
lations, 0.0014–0.0019; total, 0.0019; Table 1). Expected 
heterozygosity was relatively similar among D. kudoi 
(0.139–0.204; total, 0.216) and D. capitellata (subpopula-
tions, 0.117–0.207; total, 0.213) subpopulations. The high-
est number of private SNPs was observed in subpopulation 
K2 for D. kudoi, and in subpopulation C2 for D. capitel-
lata. The subpopulation-level fixation index of both species 
was almost zero (D. capitellata: − 0.014–0.065, D. kudoi: 

Fig. 2   Population branching 
model used for fastsimcoal2 
analysis and estimated param-
eters with 95% CIs. N1–5 
indicate effective population 
sizes in diploid individuals and 
T1–2 indicate divergence times 
(years)

https://github.com/isaacovercast/easySFS
https://github.com/isaacovercast/easySFS
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0.026–0.089). Pairwise FST values showed that the subpopu-
lations of D. capitellata had relatively low genetic differen-
tiation (FST = 0.011–0.084; Table S2), whereas in D. kudoi 
the subpopulations of Mt. Kuromi (K1–2) and Mt. Nagata 
(K4–7) had relatively high values (FST = 0.082–0.152; 
Table S3). No significant pattern of isolation by distance 
was detected in D. capitellata (r =  − 0.13, p = 0.66), whereas 
the correlation was significant in D. kudoi (r = 0.82, p = 0.01; 
Fig. S1).

Our maximum-likelihood tree showed that the two spe-
cies are highly divergent (Fig. S2). Based on the results of 
the ADMIXTURE analysis of D. capitellata at K = 2, sub-
populations C3 and C10, which were geographically distant, 
comprised the same cluster, and the other subpopulations 
also contained the same cluster (Fig. 1b). In addition, as the 
K value increased, all the subpopulations comprised several 
clusters and showed no clear genetic structures (Fig. S3a). 
For D. kudoi, the subpopulations on Mt. Nagata (K1 and 
K2) and Mt. Kuromi consisted of different clusters at K = 2 
(Fig. 1c). When K values were increased, additional clus-
ters were divided within either group and almost no clusters 
were shared between the groups (Fig. S3b). Scatterplots of 
the PCA scores (Fig. S4) also showed that in D. capitel-
lata, the subpopulations did not form clusters, whereas in D. 
kudoi, distinct clusters between the subpopulations on Mt. 
Nagata (K1 and K2) and those on Mt. Kuromi (K3–7) were 
observed along the PC1 axis.

The results of the BA3-SNPS analysis showed that in D. 
capitellata, the estimated gene flow among the subpopu-
lations was relatively low, averaging 0.036 per generation. 
However, certain subpopulations displayed higher rates of 
gene flow, with a maximum value of 0.210 from C2 to C8 
(Table S4). In D. kudoi, the gene flow among subpopulations 
in different mountains was relatively low, averaging 0.025. 
This is in contrast to the gene flows observed within the 
same mountains, which averaged 0.059 for Mt. Nagata and 
0.068 for Mt. Kuromi (Table S5).

Demographic inference

Our parameter estimation using fastsimcoal2 (Fig. 2) showed 
that the effective population sizes of D. capitellata, D. kudoi 
on Mt. Nagata, and D. kudoi on Mt. Kuromi were 55,433 
(95% CI: 29,943–79,067), 2804 (95% CI: 1511–4842), and 
2867 (95% CI: 1449–4840) individuals, respectively. The 
estimated divergence time between the two groups within 
D. kudoi was 47,830 years ago (95% CI: 42,708–61,961), 
and that between D. capitellata and D. kudoi was 
2,939,695 years ago (95% CI: 1,388,769–5,653,420). The 
ancestral population size of D. kudoi was 662,233 (95% CI: 
327,816–1,194, 804), and that of the most common ancestor 
of the two species was 167,467 (95% CI: 18,705–274,364). 
Stairway plots (Fig. 3) showed that after an initial increase, 
the effective population size of D. capitellata was sta-
ble after an initial increase before the last glacial period 
(12,000–115,000 years ago). On the other hand, both groups 
of D. kudoi showed almost the same pattern, decreasing dur-
ing the last glacial period and then stabilising. The estimated 
contemporary effective population sizes were 63.0 (95% CI: 
57.6–69.2), 230.3 (95% CI: 130.1–919.9), and 191.7 (95% 
CI: 172.6–215.3) for D. capitellata, D. kudoi on Mt. Nagata, 
and D. kudoi on Mt. Kuromi, respectively.

Discussion

Phylogeographic history of Daphnimorpha species

Our demographic parameter estimations indicated that the 
divergence between species was approximately 3 Mya (95% 
CI: 1.4–5.7 Mya; Fig. 2), corresponding to the boundary 
between the Late Pliocene and Pleistocene periods. During 
this period, the warm and stable climate gradually changed 
to a cooler and more arid climate, and climatic oscillation 
began (Sun and Wang 2005). Owing to global cooling and 

Fig. 3   Historical changes in effective population sizes of D. capitel-
lata (a) and D. kudoi on Mt. Kuromi (b) and Mt. Nagata (c) estimated 
from Stairway Plot2 analysis. The x-axis shows the time before the 

present, and the y-axis shows the effective population size (log 10 
scale). The grey area shows the 95% CI and the blue area corresponds 
with the last glacial period (12,000–115,000 years ago)
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aridification, Tertiary elements have undergone a sharp 
decline in restricted areas with suitable environmental con-
ditions (Manchester et al. 2009). Regional lineages of cli-
mate relicts in East Asia were likely isolated during this 
period (Sakaguchi et al. 2021; Takahashi et al. 2022). Thus, 
we considered that Daphnimorpha species could have also 
been isolated and diverged because of the climatic events 
during this period. Both the Oninome mountain range and 
the alpine area of Yakushima Island are characterised by 
large amounts of precipitation (more than 3000 mm per 
year) and orographic complexity owing to granitic rocks 
which could be suitable for the persistence of climate relicts 
(Moran and Hopper 1983; Zaghloul et al. 2016; Raposo et al. 
2021). Both areas have high plant diversity and comprise the 
southern limit of the distribution of species (Hirata 1974; 
Yahara et al. 1987). These lines of evidence imply that the 
two areas could be climate refugia for Daphnimorpha spe-
cies, and that their stable environments could have allowed 
their long-term survival in the face of climatic oscillations. 
Overall, the current disjunct distribution of Daphnimorpha 
species is most likely the result of relictual survival rather 
than recent long-distance dispersal. Indeed, range expan-
sions could have been prevented by the strong conservation 
of climatic niches, as in other Tertiary relicts.

Although the two species are distributed in almost simi-
lar spatial ranges (Fig. 1), our genetic results indicated that 
these two species showed different patterns of genetic struc-
ture and demographic history; that is, D. capitellata showed 
no clear genetic structure and relatively stable population 
sizes, whereas populations of D. kudoi were clearly differen-
tiated and declined during the last glacial period (Figs. 1 and 
3). Our fastsimcoal2 analysis showed that the two lineages of 
D. kudoi have diverged during the last glacial period. These 
differences may be a result of the difference in habitat prefer-
ences between the two species: D. kudoi grows in rocky open 
habitats in the alpine area, whereas D. capitellata prefers 
the shaded understory at mid-altitudes. During the glacial 
period, both species may have been forced to move to lower 
elevation areas in the mountains with decreasing tempera-
tures. Although D. capitellata would have been able to move 
downward in temperate forests, D. kudoi could have been 
restricted to the rocky slopes scattered on Yakushima Island. 
This habitat restriction may have caused not only declines 
in effective population size, but also the divergence between 
individuals on Mt. Nagata and Mt. Kuromi. On Yakushima 
Island, several plant species can only be found on Mt. Nagata 
and/or Mt. Kuromi (Yahara et al. 1987, 2021; Hirota et al. 
2022), and fine-scale genetic studies have indicated genetic 
differentiation between populations on these mountains 
(Sakaguchi et al. 2020). This implies that these mountains 
could have served as microrefugia within a refugia, probably 
because of topoclimatic factors. Thus, although D. kudoi 
may have experienced strong population shrinkage during 

the last glacial period, small populations may have persisted 
on these two mountains. Our results indicate that although 
the two species could have maintained their populations in 
climatic refugia for a long time, their demographic histories 
could have been highly influenced by their preference for 
microhabitats.

Implications for conservation

Evaluating the level of genetic diversity and understanding a 
population demography of threatened species are important 
criteria for developing and managing effective conservation 
strategies (Yang et al. 2015). Our Stairway Plot2 analysis 
indicated that all three groups apparently maintained rela-
tively large effective population sizes after the last glacial 
period than current individual censuses (Fig. 3). However, 
the estimated contemporary effective population sizes of the 
three groups are either similar to or smaller than the cur-
rent apparent number of individuals. These findings sug-
gest that all three groups may have recently experienced 
reductions in their effective population sizes, likely due 
to habitat destruction and illegal digging. A genetic drift 
in small populations can lead to an increased frequency of 
deleterious alleles (Robinson et al. 2023) and diminished 
adaptive potential (Willi et al. 2006), ultimately increasing 
the risk of extinction. Although further genomic analyses 
and common garden experiments are required to fully assess 
the presence of deleterious variants and adaptive potential 
of the two species, considering the limited number of seed-
lings and saplings observed in the wild (Takahashi, personal 
observation), it is plausible that Daphnimorpha populations 
face the risk of further decline in the future. The estimated 
genetic diversity and contemporary effective population size 
were higher in D. kudoi than in D. capitellata (Table 1). 
However, considering the high extinction risk of alpine 
plants in the face of climate change (Grabherr et al. 2010) 
and their restricted distribution, both D. capitellata and D. 
kudoi require conservation attention. Our results showed a 
clear genetic structure within D. kudoi (Mt. Kuromi vs. Mt. 
Nagata) but not within D. capitellata. Although the exact 
levels of genetic distinctiveness required for the definition of 
ESUs are debatable (Moritz 1984), considering their genetic 
differentiation, geographic isolation, and limited contempo-
rary gene flow, we considered that in D. kudoi, the popula-
tions on Mt. Nagata and Mt. Kuromi should be regarded 
as different ESUs. Therefore, these three ESUs should be 
managed separately to conserve Daphnimorpha species.

In threatened species with fragmented distributions, a low 
level of connectivity among sub-populations can increase the 
risk of extinction (Ellstrand 1992). The results of the BA3-
SNPS analysis showed that in all three ESUs, the gene flow 
among the subpopulations was relatively low (Tables S4 
and S5). Although we should be cautious that we could not 
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analyse all wild individuals and our data consisted of a lim-
ited number of SNPs, the result implies that contemporary 
gene flow would be limited among most subpopulations. In 
both species, the subpopulations are discontinuously distrib-
uted and several subpopulations consisted of fewer than 10 
individuals. Such small and isolated subpopulations often 
result in a loss of genetic diversity and a subsequent reduc-
tion in offspring fitness (Oostermeijer et al. 1994). As the 
loss of small subpopulations may trigger a further decrease 
in connectivity among subpopulations and all three ESUs 
showed small contemporary effective population sizes, we 
emphasise the conservation of both large and small Daph-
nimorpha subpopulations to preserve the overall genetic 
diversity of the species. For this purpose, monitoring of 
fruiting rates and seedling establishment of subpopulations 
is needed. If necessary, hand cross-pollination and/or estab-
lishment of artificial populations, which can allow connect-
ing subpopulations, could further guarantee the long-term 
persistence of these endemic climate relicts.
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