
ORIGINAL ARTICLE

Genetic differences among Cedrela odorata sites in Bolivia provide
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Abstract
Illegal trade of tropical timber leads to biodiversity and economic losses worldwide. There is a need for forensic
tools that allow tracing the origin of timber and verifying compliance with international and national regulations. We
evaluated the potential for genetic tracing of Cedrela odorata, one of the most traded neotropical timbers, within
Bolivia. Using a set of seven microsatellites (SSRs), we studied the spatial distribution and genetic diversity and
tested whether populations show sufficient genetic discrimination for timber tracing at a national level. Cambium and
leaves were sampled from 81 C. odorata trees from three sites, at 268–501-km distance. To explore genetic
differentiation, Bayesian clustering and principal component analysis (PCA) were employed. To infer the origin of
samples, we conducted kernel discriminant analysis (KDA) based on a PCA that included all alleles and a manual
assessment of site-unique alleles. The PCA showed three distinct genetic clusters, but only one of them corresponded
with one of the sampled sites. The KDA based on allele frequency had a 33.7% mean classification error, with a
considerably lower error (8.2%) for the site which matched with one genetic cluster. The blind test on unique alleles
led to a similar classification error (30%). The occurrence of multiple genetic clusters within sites suggests that
Bolivian C. odorata populations contain several parental lines, resulting in limited potential for forensic tracing at a
national level. Based on our findings, we recommend for additional sampling across the spatial range of C. odorata
within the country to support the development of forensic techniques for this species.
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Introduction

Illegal logging and illegal timber trade is a worldwide envi-
ronmental problem, resulting in biodiversity and economic
loss. It has been estimated that 10% up to 80% of the total
timber trade is illegal (Seneca Creek Associates 2004), and in
some countries, such as Papua New Guinea, Liberia, and
those comprising the Amazon (Stark and Pang Cheung
2006; Lawson and MacFaul 2010; Wit et al. 2010), this is as
high as 80–90%. Up to now, the control of harvesting and
trade of timber species has been carried out based on certifi-
cates with declared origin. However, these systems have been
weakened by the frequent use of false declarations of species
and geographic origin as these documents are prone to be
falsified. The system to control the timber provenance based
on the respective declaration of origin is dependent on the
person who enters the data and hence vulnerable to
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manipulation. As a result of this scenario, timber is being
harvested from unauthorized areas by falsely declaring their
origin. To effectively combat fraud in illegal logging and
trade, there is a need for forensic techniques that use timber
properties as DNA fingerprint to independently verify the or-
igin in both local and international markets (Degen 2007;
UNODC 2016).

There are various potential methods based on timber prop-
erties to trace its origin such as mass spectrometry (Fidelis
et al. 2012; Paredes-Villanueva et al. 2018), near-infrared
spectroscopy (Braga et al. 2011; Bergo et al. 2016), stable
isotopes (Kagawa and Leavitt 2010), and DNA (Degen et al.
2006; Degen and Fladung 2007; Lowe 2007; Jolivet and
Degen 2012; Degen et al. 2013; Lowe et al. 2016). DNA
fingerprints hold a potential to trace a sample to a stump,
population, or region of origin. Its relation with spatial pat-
terns could assist in validating the harvesting origin through-
out the chain of custody and endorse legal declarations
(Degen et al. 2006; Degen and Fladung 2007; Lowe 2007;
Jolivet and Degen 2012; Degen et al. 2013; Lowe et al. 2016).

For implementing precise DNA fingerprint methods, a
large genetic diversity throughout the distribution of the tim-
ber species concerned is required. Previous studies suggest
that the population genetic diversity could influence the iden-
tification resolution from site specific to country level (Lemes
et al. 2003; Novick et al. 2003; Jolivet and Degen 2012;
Degen et al. 2013; Lowe et al. 2016). Genetic geographical
variability at a regional scale has been found on previous
studies of Cedrela species (Cavers et al. 2003; Cavers et al.
2004). A spatial analysis of Cedrela odorata’s cpDNA in
Central and South America found geographical genetic struc-
turing within species suggesting influence of geographic and
climatic drivers (Cavers et al. 2013).

Cedrela odorata is one of the most important tropical tim-
bers (Spanish cedar) and has been affected by illegal logging.
It is distributed throughout tropical America and the
Caribbean islands. Due to its continuous overexploitation
throughout its distribution range, it has recently been protected
by the Convention on International Trade in Endangered
Species of Wild Fauna and Flora in Appendix III (Compt
and Christy 2008). However, a high proportion (70–90%) of
illegal tropical timber is traded nationally (Cerutti and
Lescuyer 2011; Kishor and Lescuyer 2012; Lescuyer et al.
2014), and much of the illegal logging occurs in non-
permitted areas or close to official logging concessions
(ABT 2017). Effective conservation and control strategies
are required for the protection of these endangered species.
Methods to assist in tracking and verifying the origin of timber
within countries are needed because the current system is vul-
nerable to manipulation.

Bolivia is one of the most important habitats for
C. odorata. These species can be found along different altitu-
dinal, climatic, and environmental gradients, from moist to

dry tropical forests (Mostacedo et al. 2003; Navarro 2011;
Navarro-Cerrillo et al. 2013; Paredes-Villanueva et al. 2016).
C. odorata is one of the most commercially high-valuable
species in the country (Mostacedo and Fredericksen 1999)
as its softwood is used in carpentry, joinery, musical instru-
ments, carvings, and plywood (Toledo et al. 2008). However,
it has been heavily affected by illegal logging (Mostacedo and
Fredericksen 1999; Toledo et al. 2008; Navarro-Cerrillo et al.
2013). Our main objective was to test the applicability of
microsatellites to differentiate between Cedrela timber from
different geographical origin. Therefore, we investigated the
spatial distribution and genetic diversity in three sites, each
composed by three subgroups, of C. odorata in Bolivia. We
addressed the following questions: (1) Do the study sites rep-
resent distinct genetic groups and follow a spatial pattern
across the species distribution? (2) To what extent does this
genetic structure allow successful timber tracing at regional
and nationwide scale? We expected to find a pattern of isola-
tion by distance in which genetic differentiation increases with
geographical distance, allowing us to differentiate between
sites of origin (Wright 1943).

Methodology

Sampling

Samples of cambium and leaves of C. odorata were collected
from 81 randomly selected trees which were distributed
around three northern towns in Bolivia: 30 trees around
Cobija, 29 around Riberalta, and 22 around Rurrenabaque
(Fig. 1). For the purpose of this paper, the sampling sites will
be referred by the name of the town. Sampled trees were
homogeneously distributed with a minimum distance of 26–
98 m between individuals to minimize the probability of sam-
pling relatives (Gillies et al. 1999). Distance ranges between
sample sites were 304–419 km between Riberalta and Cobija,
501–621 km between Riberalta and Rurrenabaque, and 268–
534 km between Cobija and Rurrenabaque. To analyze if there
was genetic difference at smaller scales, samples were collect-
ed within each site from three subgroups each composed of up
to ten trees. The subgroups were at opposite sides and at dif-
ferent distances determined by the presence of the species in
the area. The collected samples were then dried in silica gel
(Chase and Hills 1991) for transporting and storing. When
species identity was uncertain, additional botanical samples
were collected and transported with a botanical press for tax-
onomic identification. The voucher preparation and confir-
mation of the species based on herbarium collections
were carried out by an experienced botanist, A. Araujo
Murakami at the Museo de Historia Natural Noel Kempff
Mercado (Bolivia). Once verified, correctly identified samples
were included in the dataset (Table 1).
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DNA extraction

Working with free of contamination equipment and very con-
served primer pairs improved DNA quality and optimized the
PCR conditions (Deguilloux et al. 2002). Cambium and leaf
samples were cut into small pieces using a sterile scalpel and
under sterile conditions to avoid contamination with other
plant DNAs. Then, 10–50 mg of cambium/leaf pieces were

incubated in liquid nitrogen with one stainless steel bead
(5 mm; Qiagen, the Netherlands) for 5 min to freeze
and then grinded using a mixer-mill apparatus Type
MM 300 (Westburg) for 2 min at 30 unit shaking speed (1/s
frequency). DNA extraction was performed with the DNeasy
Plant Mini Kit (DNeasy Plant Handbook 10/2012) following
Rachmayanti et al. (2006), Hernández et al. (2008), and
Degen et al. (2013) adding 3.1% (w/v) polyvinylpyrrolidone

Fig. 1 Sampling sites (Cobija, Riberalta, and Rurrenabaque) based on Cedrela odorata distribution in Bolivia based on herbarium collections. Source:
Museo de Historia Natural Noel Kempff Mercado, 2017. Forest cover: Autoridad de Bosques y Tierra, 2015

Table 1 Sampling characteristics: sample size, tree diameter range, minimum and maximum distance between trees per site, and number of samples
collected for species identification

Site Sampled size Tree diameter range
(cm)

Min. distance
(m)

Max. distance
(km)

Samples for confirmation
in herbarium

Cobija 30 1–130 98 122 1

Riberalta 29 4–146 26 88 2

Rurrenabaque 22 0.5–64 42 178 4
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(PVP) into AP1 lysis buffer of DNeasy Plant Mini Kit
(Qiagen, the Netherlands). DNA quantity and quality was de-
termined using NanoDrop™ 2000/2000c spectrophotometer.

Nuclear microsatellite analysis

Nuclear microsatellites are variable markers that permit
individual tree genotyping and suggested for forest crime ap-
plications (Deguilloux et al. 2002). For our analysis,
there were primers available (Hernández et al. 2008;
Hernández Sánchez 2008; Cárdenas et al. 2015).
Microsatellites or simple sequence repeats (SSRs, Tautz,
1989) have already been developed for Swietenia humilis
(White and Powell 1997a, 1997b), Swietenia macrophylla
(White and Powell 1997a; Lemes et al. 2002), Cedrela
odorata (White and Powell 1997a; Hernández et al. 2008;
Hernández Sánchez 2008), and Cedrela fissilis (Gandara
2009) and have also been tested on Cedrela balansae and
Cedrela saltensis (Soldati et al. 2013; Soldati et al. 2014).
Therefore, we assessed eight primer pairs of SSRs developed
for Cedrela odorata and Cedrela fissilis (Table 2). We consid-
ered patterns of high polymorphism loci for the selection of
these SSRs. Up to now, microsatellite amplification was done
in separate PCRs for each marker; we designed multiplex
PCRs for this purpose usingMultiplexManager v1.2 software
(Holleley and Geerts 2009). Seven selected SSR loci (locus
Ced61a failed to show consistent results in the amplification
tests) were used for the detection and separation of fragments
in a sequencer. Genotyping of the leaves and cambium sam-
ples was carried out in two PCR reactions.

Extracted DNA concentrations were 50 ng/μl in average
(NanoDrop™ 2000/2000c spectrophotometer) and were dilut-
ed five times with elution buffer before use in PCR. Selected
loci were amplified using 10.0 μl PCR reactions, containing
2.0 μl template DNA, 1.9 μl H2O, 1 μl primer mix (see details
in Table 2), 0.1 μl BSA (20 mg/ml), and 5 μl QIAGEN
Multiplex PCR Master Mix. In this PCR reaction mixture,
we combined the primers into two multiplexes for each

sample. Multiplex I targeted three loci (Ced95, Ced131, and
Ced41), and Multiplex II targeted four loci (Ced2, Ced18,
Ced44, and Ced54). Reactions for Multiplex I and II were
run according to the following protocol: 15 min at 95 °C, then
10 cycles of 30 s at 94 °C, 180 s at 62 °Cminus 1 °C per cycle,
60 s at 72 °C; followed by 35 cycles of 30 s at 94 °C, 180 s at
52 °C, 60 s at 72 °C, and finally 30 min at 60 °C. PCR
products were directly analyzed using an automated ABI
Prism® Genetic Analyzer (Applied Biosystems) coupled to
3730 Series Data Collection Software 4. Fragment sizes were
scored using GeneMarker® v.2.6.7 (SoftGenetics) software.

Data analysis

After the validation and calibration of the pre-selected SSR
markers, the number of alleles (NA), mean number of alleles
per locus (A), allele frequencies (pij), the observed heterozy-
gosity (Ho), expected heterozygosity (He), and fixation index
(Fis = 1 − (Ho / He)) were calculated using FSTAT v.2.9.3
(Goudet 1995). From a total number of 91 samples, 81 sam-
ples were selected after excluding samples without allelic in-
formation in more than one locus.

Genetic differentiation among sampling sites was explored
through two methods: STRUCTURE and principal compo-
nent analysis (PCA). One method employed a Bayesian algo-
rithm in a model-based clustering with STRUCTURE v.2.3.4
(Pritchard et al. 2000) to analyze the genetic structure of
C. odorata from three sites in Bolivia using seven
microsatellites (Table 2). Four independent runs were per-
formed for the complete sample set and each of the sites with
different number of groups (K = 1 through 18), each with
50,000 iterations in the burning period and 50,000 in Monte
Carlo Markov Chain (MCMC) iterations assuming both ad-
mixture and no-admixture models with both correlated and
independent allele frequency models. Delta K statistics were
used to define the optimal number of groups (K) by
STRUCTURE HARVESTER Web v0.6.94 (Earl and
vonHoldt 2012). The CLUMPP output files from the previous
analysis were exported to Excel files to visualize the number
of groups and genetic clusters. Individual samples were then
classified as belonging to one cluster based on the highest
assignment percentage, e.g., an individual assigned for 50%
to cluster 1 and 25% to clusters 2 and 3 was classified as
belonging to cluster 1. The second method employed a PCA
based on all (143) the alleles present in the dataset to explore
genetic differentiation among sampling sites. The alleles were
scored on a presence/absence binary dataset which was then
analyzed in a logistic PCA model by using logisticPCA v.0.2
package in R version 3.3.3. Once applying this model, plots
were prepared with ggplot v.2.2.1 package. To check the per-
formance of the markers, tests of Hardy-Weinberg equilibrium
(HWE) and linkage equilibrium (LE) were performed using
the program GENEPOP v.4.2 (Raymond and Rousset 1995).

Table 2 Oligonucleotides and primers used for all Cedrela samples

Multiplex PCR Locus 5′ Label of
forward primer

Primer concentration
in PCR (nM)

– Ced61a NED 200

I Ced95 6FAM 300

I Ced131 PET 200

I Ced41 VIC 200

II Ced2 PET 200

II Ced18 6FAM 200

II Ced44 VIC 200

II Ced54 NED 200
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Deviance from HWE in one marker might indicate null al-
leles. Deviance from LE might mean that two markers are
located closely together on the genome and their inheritance
is not independent. For measuring the fixation and genetic
differentiation among sites, both Wright’s FST (Wright 1951)
and Hedrick’s G′ST (Hedrick 2005) were calculated using
GenAlEx v.6.5 (Peakall and Smouse 2012).

Characterization of sites and genotype assignment

To check the consistency of the results, we used two indepen-
dent approaches to infer the origin of samples. The first ap-
proach included a discriminant analysis based on all (143) the
alleles as a whole present in the dataset: the principal
components—previously used for genetic differentiation in
PCA—were applied as variables in a kernel discriminant anal-
ysis (KDA) by using the package ks version 1.10.6 (Duong
2007, 2017) in R version 3.4.3 (R Development Core Team
2017). KDA learning algorithm uses Bayes discriminant rule
which allocates a point x in the sample space to one (and only
one) of the sampled sites (Duong 2007). This learning algo-
rithm needed to be trained in order to assess the discrimination
power of KDA. Therefore, our data was split in two sets: 97%
of the sample set used for training and 3% as testing set with
10,000 randomizations of both datasets. Smoothed cross-
validation method (Duong 2007) was also applied for
assessing the discrimination analysis. This showed the classi-
fication error, expressed in percentage (%), for the probability
of each sample to belong to the sampling sites.

In the second approach, we made use of the presence of
characteristic or unique alleles, which were defined as alleles
that occurred only in a single or in two out of three study sites
within the dataset composed of all the alleles. We performed a
blind test, in which the genetic profiles of all samples were re-
coded by the second author (GAG) and ten samples (i.e.,
profiles) were randomly drawn from the dataset. The remain-
ing samples were then used by the first author (KPV) as a
reference to infer the origin of the ten selected samples.
Inference of origin was manually analyzed based on a fixed
set of rules: (1) In case the test sample contained an allele that
occurred in two sites, the sample was considered to originate
from one of these two sites. (2) In case the profile of a test
sample contained an allele (at any of the loci) that was found
only in the dataset for one of the sites, this site was considered
to be its origin. When combining this information for all ob-
served alleles in the test sample, in most cases, only one pos-
sible origin remained. In case information from two alleles in a
profile resulted in contradictory conclusions, or in case two
possible sites of origin remained, the result was scored as
inconclusive. For the samples for which a conclusion was
reached, KPV then checked the outcome with GAG to check
whether the conclusion was correct.

Results

Genetic diversity and characterization of sites

The final dataset contained microsatellite profiles of 81
C. odorata samples from three spatially separated sites in
Bolivia, based on sevenmicrosatellite loci per profile, together
harboring a total of 143 different alleles. The mean number of
alleles (A) per nSSR locus was 14.2 for all the three sites
analyzed. The expected heterozygosity (He) varied from
0.83 to 0.89 for all the analyzed loci (Table 3). The mean
observed heterozygosity (Ho) was lower than the mean He in
all three sampling sites, resulting in a positive fixation index
(Fis) for especially Cobija and Rurrenabaque (0.14 and 0.11,
respectively), suggesting inbreeding orWahlund effects due to
spatial genetic structure within populations. This is in line
with the results of the STRUCTURE analysis (Figs. 2 and 3;
blue, red, and yellow dots), showing the presence of multiple
genetic clusters in these populations. Fis nearly equalled zero
(0.02) for Riberalta, indicating little substructure, again in line
with the STRUCTURE results that classified all individuals of
this population to the same genetic cluster (Figs. 2 and 3, blue
dots). In general, the observed genetic structure within sites
did not match with the subgroups distinguished during
sampling.

Genetic characterization and geographic structure
of sites

The average pairwise genetic differentiation tests (Fst andG′st)
allowed us to assess the magnitude of the genetic differentia-
tion among sites. Riberalta and Rurrenabaque sampling sites
showed the highest differentiation (Fst = 0.10; G′st = 0.68),
followed by the Riberalta and Cobija (Fst = 0.06; G′st = 0.40)
sites. Cobija and Rurrenabaque showed the lowest genetic
differentiation (Fst = 0.04; G′st = 0.34). Differentiation values
were significant (P < 0.05) for all population pairs.
Consistently, the allelic richness (A) for Cobija was the highest
among all sites (Table 3).

Structure analysis using seven microsatellites showed clear
groupings of the 81 samples through the analysis of the ΔK
(Evanno et al. 2005). TheΔK calculated assuming an admix-
ture model with both independent and correlated allele fre-
quencies showed a consistent decrease in the ΔK curve after
K = 3. We selected this optimal K value as the number of
genetic clusters (Online Resource 1) for our study species.
Results considering no admixture among sites also showed
similar results (data not shown).

For final classification of each sample to the three genetic
clusters, the admixture model was selected as we suspected
mixing of the genetic provenances (Falush et al. 2003). Using
these model settings, similarity in the classification results
between five iterations was 99.7%. Genetic cluster 1 (blue,
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Figs. 2 and 3) showed an almost homogenous genetic compo-
sition for all the samples in Riberalta site. Genetic clusters 2
and 3 covered both Rurrenabaque and Cobija (yellow and red,
respectively, Figs. 2 and 3).

Comparable with the STRUCTURE results, the PCA
showed three genetic clusters based on the allelic composi-
tion. It showed a clear separation of the genetic cluster 2 (yel-
low circle, Fig. 4) which mainly grouped samples from
Rurrenabaque. The composition of the genetic cluster 3 (red
circle, Fig. 4) was shared between Cobija and Rurrenabaque.
Genetic cluster 1 (blue circle, Fig. 4) was shared between
Riberalta and Cobija.

Genotype assignment

From the PCA analysis using all the alleles (first approach),
two principal components were used as variable input for the
KDA, as the PCAwas composed on binary data based on the
presence/absence of alleles in each of the sites. By using 97%
of the sample set as training, we maximized the allelic infor-
mation to train the model. After 10,000 runs of randomizing
both training and testing sets, we found stable results for the
assignment of all the samples to each sampling site. The
smoothed cross-validation presented Cobija as the site with
the highest classification error of 49.2%, followed by

Table 3 Average expected
heterozygosity (He), average
observed heterozygosity (Ho),
mean number of alleles (A),
number of alleles with a minimal
sample size of 21 diploid
individuals (Ar), and the average
inbreeding coefficient or fixation
index (Fis). Sample size were: 30
trees in Cobija, 29 in Riberalta,
and 22 in Rurrenabaque

Loci/sites Ced18 Ced44 Ced54 Ced02 Ced95 Ced41 Ced131 Average
per site

He Riberalta 0.42 0.93 0.90 0.84 0.93 0.93 0.86 0.83

Cobija 0.82 0.96 0.85 0.86 0.96 0.92 0.90 0.89

Rurrenabaque 0.83 0.93 0.92 0.84 0.94 0.85 0.86 0.88

Ho Riberalta 0.32 0.86 0.90 0.83 1.00 0.97 0.78 0.81

Cobija 0.55 0.93 0.60 0.54 0.93 0.86 0.86 0.75

Rurrenabaque 0.60 0.86 0.75 0.71 0.86 0.81 0.81 0.77

A Riberalta 3 16 15 9 16 18 9 12.29

Cobija 15 23 14 15 21 18 12 16.86

Rurrenabaque 12 16 14 11 17 12 11 13.29

Ar Riberalta 2.93 14.75 13.81 8.43 14.85 16.35 8.44 11.37

Cobija 12.55 20.13 11.49 13.31 18.92 15.87 11.35 14.80

Rurrenabaque 11.77 15.81 14.00 10.91 16.68 11.77 10.82 13.11

Total 10.29 20.05 14.10 13.24 19.35 17.02 12.15 15.17

Fis Riberalta 0.11 0.08 0.00 0.02 − 0.07 − 0.03 0.08 0.02

Cobija 0.27 0.03 0.26 0.32 0.02 0.06 0.03 0.14

Rurrenabaque 0.23 0.07 0.17 0.14 0.08 0.03 0.05 0.11

Fig. 2 Site genetic structure of 81 Cedrela odorata samples with admixture and at K = 3 based on the analysis of allele frequency in STRUCTURE
software. Names refer to the study sites and colours to genetic clusters: cluster 1 = blue, cluster 2 = yellow, and cluster 3 = red
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Rurrenabaque with 43.7% and Riberalta with the lowest clas-
sification error of 8.2% (Fig. 5). The mean classification error
of assigning one sample to its true origin was 33.7%. These
results confirmed the admixture structure presented previous-
ly on the cluster analysis in STRUCTURE.

The C. odorata dataset showed the presence of unique
alleles for each site (Online Resource 2). These unique alleles
were used for a manual classification of a blind set of samples.
The blind test (Online Resource 3) was performed using
the unique alleles, and ten samples were assigned to
possible sites of origin or suspected provenance. The
high amount of unique alleles in the sampling sites
allowed us to test whether these could be used as

characteristic of specific site (Online Resource 2).
From the total, 70% of the samples were correctly assigned
to the site of origin (Online Resource 4). For 30% of the
samples, the allele composition gave conflicting suggestion
of the site of origin. For example, BLIND08 was cor-
rectly assigned; however, it presented unique alleles
characteristic of both Cobija and Rurrenabaque. On the
contrary, BLIND03 sample was wrongly assigned to
Riberalta, as it presented a unique allele (locus Ced95-allele
230) characteristic of Riberalta and Cobija but also other al-
leles (locus Ced02-allele 161) characteristic of Riberalta and
Rurrenabaque, and (Ced131-allele 100) only for sites of
Cobija and Rurrenabaque (Online Resource 4).

Fig. 3 Genetic characterization of 81 sampled Cedrela odorata trees at
three sites in Bolivia. Colored filled dots refer to the dominant genetic
clusters: cluster 1 = blue, cluster 2 = yellow, and cluster 3 = red. Samples

covered two forest types: Amazon and Yungas. Forest cover: Autoridad
de Bosques y Tierra, 2015
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Discussion

There is a clear need for within-country provenancing of trop-
ical timbers, at scales < 100 km. We assessed whether
C. odorata trees from three regions in Bolivia—Cobija,
Riberalta, and Rurrenabaque—could be genetically dis-
tinguished (question 1). We also tested the level of discrim-
ination and resolution (question 2) for tracing timber origin.
We found classification errors ranging from 10 to 50%. The

mean classification error of assigning one sample to its true
origin was 33.7% based on allele frequency and 30% based on
unique alleles’ blind test. These results are in a similar range to
a previous study on Swietenia macrophylla species, which
showed an error assignment of 29.3% to site of origin
(Degen et al. 2013). Other study on Hymenaea courbaril
found mean classification error of 11–12% (Chaves et al.
2018). The samples of Degen et al. (2013) and Chaves et al.
(2018) were analyzed at large geographical scales: within and

Fig. 4 Principal component analysis (PCA) showing three genetic clusters (colored circles) based on presence/absence of alleles in 81 Cedrela odorata
trees at three geographic sites (symbols)
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among countries: 5–5660 km and 156–1384 km, respectively,
from the closest to the farthest sample. In contrast, we sampled
on a finer geographical scale (within Bolivia 26 m–619 km)
which revealed several limitations. Assignment accuracy
showed to be dependent not only on the number of sites sam-
pled and the genetic differentiation (Cavers et al. 2005) but
also on the alignment of the latter with the spatial organiza-
tion. Our results suggest that species-specific traits and the
analysis approach may affect the origin identification success.
Below, we discuss possible explanations for our classification
success.

First, results from different species have shown varying re-
sults, independent of spatial scale. They suggest that species-
specific traits affecting population genetics, such as pollination/
seed dispersal syndrome, mating strategy, and mutation rates,
might have affected the genetic diversity of the sampled sites
(Hedrick 2011) and potential for tracing. Our study species is
pollinated by insects (Bawa et al. 1985; Howard et al. 1995),
and its light wing-shaped seeds are dispersed by wind over long
distances (Mostacedo et al. 2003; Toledo et al. 2008). The seed
dispersal followed by a limited pollen dispersal trait best ex-
plained the multiple clusters in some of our populations (sub-
structure in Rurrenabaque andCobija sites), as very localmating
patterns (inbreeding) could have kept the introduced genetic
cluster intact. In addition, the lack of complete genetic differen-
tiation among populations can also be due to regular gene flow
from neighboring domesticated trees or conservation areas.
Although samples were collected in natural forests to reduce
the possibility that trees were recruited from non-natural seed
sources, the Cobija samples were close to communities where
trees may have been planted. Similarly, Rurrenabaque samples
were located in disturbed sites along the border of the Madidi
National Park. Gene flow from the national park to the disturbed
areas may have contributed to genetic diversity (Soliani et al.
2016). It has been found that reduction of tree population size
due to logging may result in decrease of genetic diversity
(Finkeldey and Ziehe 2004; Ratnam et al. 2014) and allelic
frequencies (Cornuet and Luikart 1996; Rajora et al. 2000);
hence, it is expected that protected areas still harbor a larger
historic genetic diversity. This structure should be taken into
account during future analyses that include conservation areas
as a reference since populations further from them may differ in
genetic composition. It is also recommended to get information
about enrichment planting activities in the past before sample
collection or data analysis.

Second, the resolution and approach used in the study, such
as frequency of alleles and the presence of unique alleles, may
have influenced the level of precision for identifying the origin
of the wood. The Bayesian clustering approach to estimate
allele frequency provides the likelihood of one allele of belong-
ing to one genetic cluster iteratively (Pritchard et al. 2000). If
this likelihood is low, this approach tries to assign the allele to
another genetic cluster. When genetic clusters have shared

alleles, the estimationsmay result in low accuracy for site origin
assignment during the KDA analyses. Alternatively, unique
alleles in each sampling site could be used for site diagnosis.
However, care should be taken because the inference of sample
originmay lose power when the unique alleles are used together
with allele composition and frequency. Site characterization
based on alleles depends on the type of data making up the
training sets. Vlam et al. (2018) suggested that increasing as-
signment accuracy may be not only due to the presence of large
numbers of unique (private) alleles but also on the way that
these are analyzed (PCA vs. Bayesian clustering analysis).

To objectively and confidently pinpoint the site of origin, a
blind sample should only be assigned to its origin if unique
alleles occur in only one genetic cluster. The classification
error based on the presence of unique/characteristic alleles
per site could be higher if a blind sample originates from an
unknown site. Therefore, the currently available dataset has a
limited contribution to identify the origin of a sample. This
indicates that, although our sites were widely dispersed, a
bigger and more widespread dataset is needed, namely a ref-
erence database with samples across the distribution of the
species including neighboring countries. Such an extensive
dataset would show to what extent Bolivian samples come
from local areas or are illegally imported.

Both the spatial resolution and the assignment accuracy de-
pend on geographical scale and sampling scheme. Previous stud-
ies found that identifying the country of originwasmore accurate
(82.2%) than identifying the site of origin individually (70.7%)
(Degen et al. 2013) and that only after merging common genetic
clusters did mean error decrease from 67–72% to 48–49%
(Jolivet and Degen 2012) and from 95.5 to 4.2% error (Vlam
et al. 2018). The 81 samples used in this study showed differ-
ences on spatial discrimination due to the high degree of genetic
mixing within sites. To improve insights into the degree of ge-
netic mixing, it is necessary to adjust sampling strategies accord-
ing to the level of differentiation and local variation which in turn
consider global standardized methods. Standardizing sampling
and data collection will make possible to use genetic data from
other countries when necessary. By expanding the database to
other countries and by sampling in between sites (e.g., sampling
across a gradient) will be possible to identify site of origin at finer
scales and with a higher precision.

In conclusion, this study shows that (a) microsatellites can be
used to define genetic clusters of C. odorata and study prove-
nances, (b) the studied C. odorata populations within Bolivia
have multiple parental lines, and (c) the dataset developed in
this study has limited use for tracing. Based on our findings, we
recommend for additional sampling across the spatial range of
C. odorata in this part of South America to support the devel-
opment of forensic techniques for this species.
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