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Abstract Genotype-by-environment (G × E) interaction for
tree height measured at ages 7 to 13 was investigated in 20
large open-pollinated progeny trials for Norway spruce (Picea
abies (L.) H. Karst.) in southern and central Sweden. Factor
analytic method using spatially adjusted data and a reduced
animal model was used to explore the pattern of G × E inter-
action. Extended factor analyses captured 93.0% of additive
G × E interaction variances using three factors. The mean
daily temperature less than 3.2 °C in May and June explained
27.8% G × E interaction, and it was moderately correlated
with the first factor, indicating that spring or autumn frost
weather condition could be a main driver for G × E interaction
in Norway spruce. Cluster analysis has divided 20 trials into
either 6 clusters or 3 clusters. Both sets of clusters reflected the
geography of the trials (climates) and the genetic connected-
ness among testing series, indicating that more trials with bet-
ter connectedness are required to examine whether current
delineation of breeding or seed zones is optimal. Parental sta-
bility using latent regression could be used to locate best par-
ents that have the highest breeding values and are highly sta-
ble across trials.

Keywords Picea abies . Factor analysis .MET . Cluster
analysis . G × E interaction

Introduction

Based on the photoperiod and temperature gradients, the
Swedish breeding strategy for Norway spruce [Picea
abies (L.) Karst.] delineates the country into 22 breeding
zones (populations), with each including 50 founders
(Danell 1993). This multiple population strategy was consid-
ered to be effective in managing the genetic diversity and
adaptation to the future climate change while maintaining ge-
netic gain. The drawback of managing so many breeding pop-
ulations is the increased costs (Rosvall et al. 2011). Also, the
division of populations was mainly based on geo-climatic da-
ta. Similarly, the deployment of Norway spruce was also di-
vided into 9 seed orchard zones to maximize adaptation and
genetic gain.

To optimize the regionalization in Swedish breeding pro-
gram, it was suggested that all available Swedish Norway
spruce trials with an acceptable genetic connectivity should
be used to find the biological base of the current division of
breeding and seed zones. Berlin et al. (2014) analyzed 65 trials
and estimated genetic correlations across trial within each of
17 test series to explore genotype-by-environment (G × E)
interaction patterns. However, no convincing G × E interac-
tion patterns justifying the current division of breeding and
seed zones were observed.

Within the Norway spruce breeding program in Sweden,
progeny trials at 4 sites as a test series are used for each of the
22 populations. These trials are usually well connected for
genetic entries. However, genetic connectivity among test se-
ries is usually poor (Johnson 2004). Within each breeding
zone, a low or moderate G × E interaction, demonstrated with
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a high genetic correlation, was usually found using the trials
from the same test series for tree height. This was attributed to
the relatively small geographic area within each test series
(Berlin et al. 2014). It is highly desirable to combine different
test series within adjacent breeding zones for a joint analysis
to explore the validity of current delineation of breeding zones
using biological data.

There are many traditional ways to analyze G × E interac-
tions and detect the patterns including (1) analysis of variance
(ANOVA), (2) principal components analysis (PCA), and (3)
linear regression (Freeman 1973). These methods are not al-
ways adequate to dissect a complex interaction structure with
missing connections (Zobel et al. 1988). ANOVA can only
test the significance of G × E and the relative size of G × E
variance to genetic variance, but cannot provide any insight
about its patterns; PCA only considers the multiplicative ef-
fects of G × E. The linear regression method combines addi-
tive and multiplicative components. Various stability parame-
ters can also be estimated from such regression to examine
stability of genotypes/families and test trials to infer the causes
of the interactions (Finlay and Wilkinson 1963; McKeand
et al. 2003; Wu and Ying 1998). For multiple site progeny
trials in forestry, among-trial type B (Burdon 1977) genetic
correlations were usually estimated using a mixed linear mod-
el (Baltunis et al. 2010). Since the 1980s, singular value de-
composition (SVD) was employed to describing the G × E
patterns (Gauch 1992), initially in agronomic crops using ad-
ditive main effects and multiplicative interaction model
(AMMI), and later in forestry. Recently, factorial regression
using a mixed model approach (factor-analytic method—FA)
was introduced to explore the G × E patterns for multiple
environmental trials in crops (Burgueño et al. 2008; Fox
et al. 2007; Mathews et al. 2007; Piepho 1998; Smith et al.
2001; Smith et al. 2015) to relate underlining factors to the
causes of G × E interactions. Besides the linear and nonlinear
fixed and mixed models using the parametric approaches to
decompose the G × E interactions, there are also nonparamet-
ric methods to analyze G × E such as multivariate regression
tree (MRT) (Hamann et al. 2011). For index selection with
linear combination of many traits, G × E pattern for index is
a function of the relative importance of each traits (weights)
and traits themselves (Namkoong 1985). In forestry, multiple
regression and response surfaces were also commonly used to
detect a relationship between population variation and envi-
ronmental gradients for inferring adaptive variation to de-
scribe nonlinear G × E (Campbell and Sorensen 1978;
Rehfeldt 1983; Wang et al. 2010; Wu and Ying 2004).

Cullis et al. (2014) summarized three main advantages of
FA model in multi-environment trials (MET) analysis: (1) the
ability to estimate the unstructured variance-covariance matrix
without the use of an excessive number of variance parameters
when the number of MET increases; (2) less than full rank
variance structure for the G × E effect could be fitted using an

appropriate estimation algorithm; and (3) the FA model is a
mixture of multiple regression and principle component anal-
ysis. It could be easily used to explain the nature and the extent
of G × E interaction using graphical tools such as biplots
(Kempton 1984), regression plots (Thompson et al. 2003),
and heatmap for estimated genetic correlation matrix with
rows and columns ordered using cluster analysis (Cullis
et al. 2010).

The FA model is also becoming popular in forestry MET
analysis (Costa e Silva and Graudal 2008; Costa e Silva et al.
2006; Cullis et al. 2014; Hardner et al. 2010; Ivković et al.
2015). Costa e Silva et al. (2006) successfully used FAmodels
to analyze stem diameter at breast height (DBH) for 15
Eucalyptus globulus progeny trials.

Spatial analysis models have recently been widely used in
estimating genetic parameters for tree species (Costa e Silva
et al. 2001; Dutkowski et al. 2006; Fu et al. 1999). Ye and
Jayawickrama (2008) reported that spatial analysis could gen-
erally increase heritability and improve the accuracy of
estimates of genetic parameters. Smith et al. (2001) consid-
ered that using an FA model and adjustments of spatial local
and global field trend will improve the results of MET analy-
sis. The suggested approach has been used inMETanalysis of
radiata pine (Pinus radiata) and eucalypt hybrids (Eucalyptus
camaldulensis Dehnh. × E. globulus Labill . and
E. camaldulensis × E. grandis) in Australia (Hardner et al.
2010; Ivković et al. 2015). A clear G × E pattern and some
causes of G × E patterns have been explored in the 20 full-sib
radiata pine progeny trials (Ivković et al. 2015).

In this paper, we selected 20 relatively well-connected
progeny trials from a total of 146 Norway spruce trials to
explore G × E patterns in southern and central Sweden. The
aim of this study are to (1) estimate additive genetic variance
and heritability for height in 20 large trials within six test
series in three seed orchard zones, (2) estimate genetic corre-
lations between trials, (3) dissect the G × E patterns in south-
ern and central Sweden, and (4) analyze stabilities of selected
parents in these trials.

Materials and methods

Field trials and measurements

In six test series, 20 open-pollinated progeny trials were
planted by the Swedish tree breeding organization Skogfork
in southern and central Sweden from 1986 to 1996, within
three seed orchard zones (Fig. 1 and Table 1). The detailed
characteristics of the trials are listed in Table 1. Randomized
complete block design (RCB) with single-tree plots was used
in test series 1 and 2, and completely randomized design with
single-tree plots was used in the other test series. These 20
large trials were selected because of their relatively good
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parental connectedness. The number of female parents varied
from 304 to 1389 among trials. The height of trees was mea-
sured at the ages of 7–13 years.

Climate data

Climate information for these 20 trials is shown in Table 2. Daily
mean temperature and precipitation from the year of planting to
the year of height measurement were downloaded from climate
database (http://luftweb.smhi.se/). Mean annual precipitation
(MAP), mean precipitation growing season (April to October)
(MPGS), mean annual temperature (MAT), and mean annual
heat sum (MAHT) above 5 °C were calculated. In order to
estimate the influence of low temperature (related to frost dam-
age) on bud burst and the consequent growth of Norway spruce
trees, two climate indices were computed, including the mean
temperature of days when daily mean temperature was below
3.2 °C in May and July (MTMJ) and the mean temperature of
days when daily mean temperature was below 1.3 °C in
September and October (MTSO). The MTMJ and MTSO rep-
resent spring and autumn cold indices, respectively.

Statistical analysis

Spatial analysis

Spatial analysis based on a two-dimensional separable
autoregressive (AR1) model was used to fit the row and col-
umn directions for tree height data at each trial using ASReml

Fig. 1 Location of 20Norway spruce progeny trials in six test series. The
numbers correspond to the test series described in Table 1

Table 1 Summary of trial information

Trial_ID Site Test series Seed orchard
Zone

Female LE LN Alt No_stems (alive) Age Year

F1021 Nöbbele 1 7 305 15.09 56.73 155 5550 13 1986

F1022 Hörby 1 8-9S 304 13.70 55.87 165 5733 13 1986

F1023 Remningstorp 1 7 304 13.58 58.47 110 4750 13 1986

F1024 Sund 1 7 188 15.23 57.86 235 6875 8 1986

F1059 Verum 2 8-9S 305 13.77 56.37 125 6280 13 1987

F1064 Ekebo 2 8-9S 305 13.11 55.95 80 7210 7 1987

F1067 Torpa 2 7 305 15.14 57.97 175 7032 13 1987

F1069 Alseda 2 7 304 15.25 57.40 160 6016 8 1987

F1145 Virå Bruk 3 7 1358 16.47 58.78 65 10,286 8 1990

F1146 Höreda 3 7 1358 15.04 57.61 225 12,639 7 1990

F1147 Erikstorp 3 8-9S 1360 13.93 55.90 155 11,776 7 1990

F1148 Hjuleberg 4 8-9S 1389 12.72 56.95 50 12,842 8 1990

F1149 Sätra 4 7 1387 14.33 58.70 145 12,388 12 1990

F1150 Lindesberg 4 6 1386 15.42 59.68 110 8853 7 1990

F1184 Ämtervik 5 6 732 13.12 59.76 110 7098 7 1991

F1215 Huseby 5 7 732 14.64 56.79 175 7254 7 1991

F1216 Ingatorp 5 7 730 15.42 57.63 190 6958 7 1991

F1267 Björneke 6 7 691 15.22 56.86 235 4260 11 1996

F1270 Gunnarskog 6 6 880 12.50 60.00 185 4907 11 1996

F1271 Dagarn 6 6 876 15.72 59.92 160 9925 8 1996

Female number of female parents in each trial, LE east longitude, NL north latitude, Alt altitude, year planting year
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3.0 (Gilmour et al. 2009). Block, trial, and extraneous effects
were estimated simultaneously and all significant block and
spatial effects were removed from the raw data. The spatially
adjusted data were used for the MET analysis in this paper.

Statistical model, variance components, and genetic
parameters

The following reduced parental linear mixed model was used
for multi-environment analysis:

y¼Xτþ1
2
Fpuapþe ð1Þ

where y is the vector of observations; τ is the vector of fixed
effect, including the grand mean, trial, and age; uap is the

vector of random additive genetic effects for female parents
(mother); and e is the vector of random residual term. X
and Fp are known incidence matrices for fixed effects and
female parents, respectively. Age effect was confounded with
the trial effect; therefore, it was dropped out in the final model
because of singularity. The random effects in the model are
assumed to follow a multivariate normal distribution with
means and variances defined by:

uap∼N 0;σ2
aApp

� �
and e∼N 0;σ2

eI
� �

where 0 is the null vector; App is the numerator relationship
matrix of female parents; I is the identity matrix, with order

equal to the number of trees; and σ2
aand σ

2
e are the additive and

residual variances, respectively.
Narrow-sense heritability was calculated as follows:

ĥ
2

i ¼
σ̂
2

a

σ̂
2

p

¼ σ̂
2

a

σ̂
2

a þ σ̂
2

e

ð2Þ

where σ2a is the estimate of additive genetic variance, σ2
p is the

phenotypic variance, and σ2
e is the residual variance. All var-

iance components were estimated from FA model.

Factor analysis

Smith et al. (2001) have found that a FA variance model pro-
vides a good parsimonious approximation to the unstructured
genotype-by-environment covariance matrix using a few in-
formative factors. The FA model can be viewed as arising
from a multiplicative model for the genetic effect in each trial.
The additive genetic effect i at trial j can be expressed as

uapij ¼ λa1 j f a1i þ λa2 j f a2i þ…þ λakj f aki þ δaij ð3Þ

which includes a sum of kmultiplicative terms. Each term is the
product of a genetic effect ( f ariÞ, which is known as a factor

score, and an environment effect (λar jÞ, which is known as a

loading. The k of the FA models is the number of factors (mul-
tiplicative terms), and we denote a FAmodel with k factors as a
FAk model. The last term of δaij represents a lack of fit of the

regression model, and so will be termed as a genetic residual.
The model 3 can be written in vector notation as

uap ¼ Im⊗Λað Þ f a þ δa ð4Þ

whereΛais the t (site) × kmatrix of environment loadings, fa is
the mk × 1vector of additive genetic scores, and δa is mt × 1
vector of genetic regression residuals with t and m
representing number of trials and additive effects, respective-
ly. fa and δa are assumed to be independent and be distributed
as multivariate Gaussian distribution with zero means and
variance matrices given by

Var f að Þ ¼ App⊗Ik and var δað Þ ¼ App⊗ψa

where ψa is a t × t diagonal matrix with a variance for each
environment, which is known as a specific variance. These
assumptions lead to

Var uað Þ ¼ App⊗ ΛaΛa
T þ ψa

� � ð5Þ

So that genetic covariance matrix among trials:
Ga = (ΛaΛa

T +ψa).
To determine the appropriate value of k, Cullis et al. (2014)

suggested a measure similar to an R2 goodness of fit value for
a multiple regression. Thus, it can define, for each trial, a
percentage of additive genetic variance accounted for by the
k multiplicative terms as follows:

va j ¼ 100 ∑
k

r¼1
λ2
arj

.
∑
k

r¼1
λ2
arj þ ψa j

� �
ð6Þ

In addition, an overall percentage variance accounted for
can be calculated as

va ¼ 100 trace ΛaΛ
T
a

� �.
trace Gað Þ ð7Þ

The FAmodels with different levels of r factors were tested
using residual maximum likelihood ratio test (REMLRT).

Parental stability

Empirical best linear unbiased predictions (EBLUPs) of
breeding value for parent i at trial j could be expressed as

ûapij ¼ λ̂a1 j f̂ a1i þ λ̂a2 j f̂ a2i þ…þ λ̂akj f̂ aki þ δ̂aij

¼ β̂ij þ δ̂aij ð8Þ

where β̂ij is the predicted regression component for parent i
at trial j. Equation 8 could be used to investigate parental



stability (Cullis et al. 2010; Smith et al. 2015). When k in the

FA model is greater than 1, using rotated trial loading (λ̂
*
arj )

and scores ( f̂
*
ari ) to model β̂ij as ∑k

r¼1λ̂
*
arj f̂

*
ari , it may explain

more of biological meaning of the interaction. We could build
k plots for each parent using the predicted parental regression

component (β̂ij ) on each trial and their corresponding trial

loading (λ̂
*
arj ) for k factors. Therefore, for parent i, the plot

for the first factor has the y- and x-axes corresponding to the

values of β̂ij and λ̂
*
a1 j , respectively, with a slope representing

rotated factor score of f̂ a1i as shown in the plot. The plot for

factor 2 was similar, but with adjusted values from factor 1.
Generally, the y-axis for plot b (b = 2,…,k) corresponds to the

adjusted value of β̂ij as ðβ̂ij−∑b−1
r¼1λ̂

*
arj f̂

*
ari ), and the x-axis

values are λ̂
*
abj . Similarly, the line drawn on plot b for parent

i has a slope given by f̂
*
abi.

Heatmap and hierarchical clustering

There are several tools for exploring G × E interaction based
on the FA model (Cullis et al. 2010). We used heatmap to
represent genetic correlation matrix. Cluster analysis was
employed using the dissimilarity of genetic correlation be-
tween trials, and the dendrogram of cluster analysis is present-
ed in the same heatmap.

All the models were fitted using ASReml-R package
(Butler et al. 2009) within the R statistical environment (R

Core Team 2014). Heatmap.2 is used to build the heatmap
for genetic correlation matrix in gplots package. The dissimi-
larity used for cluster analysis is calculated by hierarchical
clustering algorithm in hclust function within the R package.

Approximate standard errors of genetic correlations were
estimated in ASReml 4.1 stand alone (Gilmour et al. 2015).
Since Swedish Norway spruce tree breeding program used
breeding value (BV) for volume at age 55 years as the stan-
dard age for selection, all BVestimates need to be projected to
the BVat age 55. Breeding values of female parents at age 55
for volume shown in the 20 trials were predicted using
TREEPLAN (McRae et al. 2004).

Results

The parental concurrence between trials is presented in Fig. 2
along with test series. The diagonal elements of the matrix are
the number of female parents used in the trials, and the off-
diagonal elements are the number of the female parents in
common among trials. Test series 4 (F1148-F1150) and 5
(F1184, F1215, and F1216) had the best and the second best
connection with all other trials, respectively. Test series 3 had
good connection with series 2, 4, and 5. However, test series 1
(F1021-F1024) had no connections with test series 2 and 3
(F1059-F1147), and test series 6 (F1267-F1271) also had
weak connection with all other test series (i.e., less than 13
common parents with all other test series).

Based on REMLRT, k = 4 was the best model to fit Ga

(Table 3). However, the models beyond r = 3 did not show

Seed Zones 7 8 7 7 8 8 7 7 7 7 8 8 7 6 6 7 7 7 6 6
Test Series 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

F1021 F1022 F1023 F1024 F1059 F1064 F1067 F1069 F1145 F1146 F1147 F1148 F1149 F1150 F1184 F1215 F1216 F1267 F1270 F1271
F1021 305 304 304 303 0 0 0 0 0 0 0 74 74 74 2 2 2 12 12 12
F1022 304 304 304 303 0 0 0 0 0 0 0 74 74 74 2 2 2 12 12 12
F1023 304 304 304 303 0 0 0 0 0 0 0 74 74 74 2 2 2 12 12 12
F1024 303 303 303 303 0 0 0 0 0 0 0 74 74 74 2 2 2 12 12 12
F1059 0 0 0 0 305 305 305 304 16 16 16 20 20 20 4 4 4 1 1 1
F1064 0 0 0 0 305 305 305 304 16 16 16 20 20 20 4 4 4 1 1 1
F1067 0 0 0 0 305 305 305 304 16 16 16 20 20 20 4 4 4 1 1 1
F1069 0 0 0 0 304 304 304 304 15 15 15 19 19 19 4 4 4 1 1 1
F1145 0 0 0 0 16 16 16 15 1358 1357 1357 967 966 966 393 393 393 4 4 4
F1146 0 0 0 0 16 16 16 15 1357 1358 1358 966 965 965 393 393 393 4 4 4
F1147 0 0 0 0 16 16 16 15 1357 1358 1360 966 965 965 395 395 395 4 4 4
F1148 74 74 74 74 20 20 20 19 967 966 966 1389 1387 1386 352 353 352 9 9 9
F1149 74 74 74 74 20 20 20 19 966 965 965 1387 1387 1384 352 353 352 9 9 9
F1150 74 74 74 74 20 20 20 19 966 965 965 1386 1384 1386 352 353 352 9 9 9
F1184 2 2 2 2 4 4 4 4 393 393 395 352 352 352 732 731 729 6 6 6
F1215 2 2 2 2 4 4 4 4 393 393 395 353 353 353 731 732 729 6 6 6
F1216 2 2 2 2 4 4 4 4 393 393 395 352 352 352 729 729 730 6 6 6
F1267 12 12 12 12 1 1 1 1 4 4 4 9 9 9 6 6 6 691 691 691
F1270 12 12 12 12 1 1 1 1 4 4 4 9 9 9 6 6 6 691 880 874
F1271 12 12 12 12 1 1 1 1 4 4 4 9 9 9 6 6 6 691 874 876
6 Cluster VI VI VI V IV IV III IV III III III V V VI V V V II II I
3 Cluster III III III III II II II II II II II III III III III III III I I I

Fig. 2 The common parents between all pairs of trials within six test series in three seed zones, two cluster distributions of either 3 or 6 clusters each,
respectively. The value on diagonal of the matrix show the number of parents used in each of 20 trials
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greater improvement for the Bayesian and Akaike information
criteria (BIC and AIC, respectively). Therefore, the FA3 mod-
el was selected based on the improvement of AIC and the
overall percentage variance accounted for. The distribution
of individual trials based on their percentage variances
accounted for the first three factors is shown in Fig. 3. FA1
accounted for about 80% variance for six trials while FA2
accounted for about 80−100% for 7 trials. We also observed
that all 20 trials have an individual trial variance explained
greater than 70% in FA3 model. The FA1, FA2, and FA3
models explain overall 78.3, 86.1, and 93.0% of the variances,
respectively, for all 20 trials combined.

Regression interpretation of the FA model is often
expressed using loadings that have been rotated to a principal
component solution (Cullis et al. 2014). In FA3 model, the
three loadings totally explained 93.0% of the additive genetic
variance. The rotated loadings for the first three factors ac-
count for 56.2, 23.7, and 13.1% of the additive genetic vari-
ance, respectively, with each pair of loadings orthogonal.

The distribution of narrow-sense heritabilities for 20 trials
is shown in Fig. 4. The mean (median) of narrow-sense heri-
tability for the 20 trials was 0.33 (0.31) with a range from 0.11
to 0.57, based on spatial adjusted height data.

The trial-trial additive genetic correlation matrix for tree
height was also obtained using the FA3 model and is repre-
sented by a heatmap with dendrograms added to the left and to
the top of the heatmap (Fig. 5). Additive trial-trial correlations
varied from −0.76 to 0.98 with the mean (median) of additive
trial-trial correlations of 0.48 (0.58). Test series 6 (F1267,
F1270, and F1271) with two most northern trials had particu-
larly low additive trial-trial genetic correlations with other
trials (Fig. 5). All the three trials had very low connection with
all other trials. Excluding the three trials, mean (median) of
additive trial-trial correlations increases to 0.54 (0.65).

The relationships between parents in common and esti-
mates of type B genetic correlations (as well as their standard
errors) for all pairs of trials are shown in Fig. 6. The estimates

Table 3 Residual log-likelihoods for different models (DIAG,
heterogeneous additive variances for each of trials, FAk—factor
analytic with k factors) of additive variance-covariance matrix, AIC and
BIC, and percentages of variance accounted for

Model Parameter Residual LogL AIC BIC %

DIAG 64 −381,444.5 763,017.0 763,655.3

FA1 64 −379,896.0 759,920.0 760,558.3 78.3%

FA2 78 −379,824.6 759,805.2 760,583.2 86.1%

FA3 91 −379,802.6 759,787.2 760,694.8 93.0%

FA4 105 −379,789.3 759,788.6 760,835.9 96.4%

Fig. 3 Distribution of percentage
variance accounted for by
individual trials in FA models
(FA1, FA2, and FA3). Overall
percentage for each FA model is
given in parenthesis
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of type B genetic correlations were generally higher and less
varied when the common parents were more than 75 parents.
The standard errors were smaller when common parents were
more than 75 parents.

Average genetic correlation coefficients (standard errors)
for tree height among and within 6 test series, derived from
factor-analytic model, are shown in Table 4. Average additive
genetic correlations within test series (average of 0.76 ± 0.05)
were higher than those among test series (average of
0.44 ± 0.18), except that genetic correlation (0.69 ± 0.08) be-
tween test series 1 and 4 was slightly higher than that within
the test series 4 (0.67 ± 0.05). Test series 6 had average cor-
relation of 0.60 ± 0.11 within the test series, but had the lowest
(a negative) correlation of −0.19 ± 0.34 with the test series 2
and had a correlation close to 0 with the test series 1 and 3.

Cluster analysis could divide the 20 trials into six clusters
as shown in Figs. 2 and 5 and Table 2 if a low cutoff value
(1.4) is used. There was only one trial (F1271) in cluster I.
Cluster II had two trials (F1270 and F1267). The three trials
for clusters I and II were all from the same test series 6 with
two of the most northern trials. Cluster III had four trials that
were from the test series 3 and one trial F1067 from test series
2. Cluster IV had three trials from test series 2. Cluster V

included all trials in test series 5, plus one trial from test series
1 (F1024) and two trials from test series 4 (F1148 and 1149).
Cluster VI had three trials from test series 1 plus one trial
F1150, which is from test series 4. It seemed that the six
clusters represented more of same series plus some trials
which had good connection with the test series. For example,
cluster V included all trials in test series 5 plus two trials of test
series 4 which had 352/353 common families with series 5.

Three clusters could be derived if a higher value was used
as cutoff value (2.3) (Fig. 2): cluster I including all trials in test
series 6, cluster II including all trials of test series 2 and 3, and
cluster III including all trials of test series 1, 4, and 5. Again,
three clusters more or less reflected trial geography and trial
connectedness. Cluster I had two trials (F1270 and F1271) in
the northern seed zone (zone 6) and one trial (F1267) in the
middle seed zone 7. The reason that these three trials being in
cluster I could be explained by geography (F1270 and F1271
in the seed zone 6) and good connection with the third trials
F1267 (e.g., same series of seed zone 6). For cluster III, test
series 1 had good connection (74 common families) with the
test series 4 and the best connection (352 common families)
between test series 4 and 5, and plus the geography (6 trials in
the seed zone 7).

The correlations between climate variables and the trial
rotated loadings for each of three factors may reveal the con-
tribution level of the climatic variable to the observed different
performance between trials (Table 2). Under the FA3 model,
the trial loadings of the three factors weremoderately to highly
correlated to mean annual temperature (MAT) (0.41, 0.42, and
−0.28), mean annual heat sum (MAHT) (0.30, 0.33, and
−0.20), conditional mean daily temperature of May and June
(MTMJ) (0.65, 0.44, and −0.46), and conditional mean daily
temperature of September and October (MTSO) (0.55, 0.27,
and −0.50). Both mean annual precipitation (MAP) and mean
precipitation growing season – (April to October) (MPGS)
showed low correlations with trial loadings for each of 3 fac-
tors (−0.27, 0.02, and 0.17 and −0.30, −0.10, and 0.11, respec-
tively). For geographical variables, only latitude showed sig-
nificant correlation with trial loadings for each of 3 factors
(−0.45, −0.36, and 0.21).

Ten trials were recorded for frost damage (Table 2). The
trial F1271 in the northeast had the heaviest frost incidence
(39.8%). Pearson correlation between dissimilarity (com-
puted as 1 -genetic correlation across trial) and absolute
difference of frost damage across trial is 0.33. Absolute
differences of MTMJ, MTSO, AMT, and North latitude
(NL) showed significant Pearson correlations with the rel-
atively additive genetic correlations across trial (0.49, 0.35,
0.25, and 0.23, respectively). Stepwise regression was used
to select the variables to predict the variation of additive
genetic correlation matrix. We only found that MTMJ and
MTSO had significant effect on G × E and they explained
27.8% of variation.

Fig. 4 Distribution of estimated narrow-sense heritabilities for 20 trials
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Parental stability may be best viewed using latent regres-
sion plots which show genetic responses to each of trial load-
ings. Twelve parents with the highest breeding values of vol-
ume at age 55 estimated by TREEPLAN (McRae et al. 2004)
were selected to show their latent regression plots responding
to the first three factors in Figs. 7 and 8. If the progeny of the
associated parents were planted in the corresponding trials, the
score points on the plot were colored as blue; otherwise, they
were colored as red dots. For example, progeny of the parents
P1, P3, and P4 was tested in four, seven, and six trials, respec-
tively, as shown in Fig. 7. The line on each plot is a regression
slope estimated by the predicted factor scores (rotated) for the
parent. Table 5 shows the 3 factor scores for the 12 parents and
the percentage representation of each parent planted in the 20
trials.

The estimated trial loadings for the first factor were all
positive, except for trial F1270 (Table 2). In addition, the first
factor explained a large proportion of additive G × E variation
(56.2%), indicating that the latent regression on the first factor
had the greatest impact on predicted breeding values. The
large positive rotated factor scores (slope) for the first factor
indicated positive correlation between tree height and trial
loading score (Fig. 7, on the left). For example, P5 had the
largest slope for factor 1, the predicted breeding values were
all positive in all trials (Table 2, see loadings for factor 1), and
it had larger breeding values in those trials with higher trial
loadings. All 12 parents had positive slopes in Fig. 7, which
means that these parents had positive response to trial loadings
in the first factor. However, P1, P2, P7, P11, and P12 had more
spread around the lines (slope) than other parents.

Fig. 5 Heat map and dendrogram
of cross-trial additive genetic
correlations for height

Fig. 6 Estimated genetic correlations for tree height on the left and their approximated standard errors on the right
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Latent regression plots for factor 2 are shown in Fig. 7 (on
the right). P1, P2, and P12 had strong positive responses to
trial loadings while P6, P9, and P10 showed small positive
responses to trial loadings. P3, P4, P5, and P11 showed neg-
ative responses to trial loadings and P8 showed quite stable
responses to trial loadings.

Latent regression plots for factor 3 are shown in Fig. 8. P1,
P2, P4, P5, and P12 showed moderate to strong positive re-
sponse to trial loadings for factor 3. P3, P9, P10, and P11 had
moderate to strong negative responses to trial loadings. P6,
P7, and P8 were almost stable across trials. The differential
parental response to FA2 and FA3 factors in Figs. 7 and 8 may
indicate potential genotype by FA factor (trial loading)
interaction.

Discussion

Connectedness

Prior to estimating the genetic parameters and exploring G × E
interaction in MET analysis, genetic connectedness between
trials should be examined and analyzed (Apiolaza 2012;
Ivković et al. 2015; Smith et al. 2015). Poor connectedness
between trials may bias the estimates of genetic correlations
(Apiolaza 2012; Dutkowski et al. 2016). Cullis et al. (2014)
reported that in an unpublished simulation study, when an FA
model was used for estimation of G × E effect, there was little
bias in the estimated genetic correlation for a pair of trials with
poor concurrence (even zero concurrence), if there was

Table 4 Average genetic correlation coefficients (standard errors) for height among the six test series, derived from factor-analytic model

S1 S2 S3 S4 S5 S6
(F1021-24) (F1059-69) (F1145-47) (F1148-50) (F1184-16) (F1267-71)

S1 0.75 (0.04) 0.45 (0.15) 0.71 (0.09) 0.69 (0.08) 0.54 (0.11) 0.04 (0.33)

S2 0.79 (0.04) 0.76 (0.12) 0.35 (0.14) 0.38 (0.17) −0.19 (0.34)
S3 0.86 (0.05) 0.64 (0.05) 0.62 (0.07) 0.01 (0.34)

S4 0.67 (0.05) 0.72 (0.06) 0.34 (0.30)

S5 0.89 (0.04) 0.58 (0.28)

S6 0.60 (0.11)

The values of diagonal are the average of genetic correlations within the test series

Fig. 7 Latent additive genetic regression plots using the first factor (on the left) and the second factor (on the right) for 12 parents with the largest
breeding value for volume in age 55 estimated in TREEPLAN
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sufficient linkage through other trials. In our study, genetic
correlation within test series was generally higher than that
among test series. Genetic correlations were generally low
among two series if there were a few direct common parents,

and in addition, there were only a few common parents in the
third series that connected with the both series. For example,
testing series 6 had poor correlations and large standard errors
with other series because it has no good connections directly

Fig. 8 Latent additive genetic
regression plot for the third factor
for 12 parents with the largest
breeding value for volume in age
55 estimated in TREEPLAN

Table 5 Predicted (rotated) three
factor scores for 12 parents with
the highest breeding value of
volume in age 55

Parent_ID Parent Factor 1 Factor 2 Factor 3 No of trials Representation (%)

S21K8120405 P1 1.18 2.03 0.65 4 20

S21K8120402 P2 1.12 1.71 1.26 4 20

S21K8120835 P3 1.98 −0.72 −0.28 7 35

S21K8120451 P4 1.74 −0.40 0.54 6 30

S21K8120840 P5 2.05 −0.53 0.87 6 30

S21K8220629 P6 1.55 0.76 0.28 4 20

S21K8120535 P7 1.90 −1.34 −0.05 6 30

S21K8220073 P8 1.56 −0.03 −0.07 4 20

S21K8220063 P9 1.41 0.60 −0.43 4 20

S21K8120407 P10 1.67 0.54 −1.00 4 20

S21K8120412 P11 1.51 −1.69 −0.41 7 35

S21K8220633 P12 1.33 1.66 0.85 4 20

Note that these breeding values were estimated in TREEPLAN Platform in 2014, based on all available data in
field trials. Also shown is the number of trials in which the progeny of those parents were planted and the
percentage representations in 20 trials
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and indirectly with other series. On the other hand, test series 1
had no direct connections with test series 2 and 3, but had
more than 74 common parents with test series 4, while the test
series 4 had about 20 and 965 common parents with the test
series 2 and series 3, respectively. From this, we observed a
medium correlation of 0.45 between test series 1 and 2 and a
medium standard error of 0.15, and a high correlation of 0.71
between test series 1 and 3 and a low standard error of 0.09.
Therefore, we could estimate genetic correlation between se-
ries that have no or low direct connection, but have good
connection with a common third series.

Estimate of G × E interaction and cluster analysis

To understand and estimate the amount of G × E interaction,
genetic correlations between trials are commonly used to ex-
plore G × E interaction (Berlin et al. 2014; Burdon 1977;
Hannrup et al. 2008; Smith et al. 2015; Wu and Matheson
2005). In Sweden, there are a few published papers that dis-
cuss patterns of G × E interaction and their significance for
Norway spruce breeding. Bentzer et al. (1988) reported high
genotypic correlations of height at age 5 for two studies with
six and three clonal trials, respectively. Average genotypic
correlations of 0.66 and 0.91 were observed, respectively.
Karlsson and Högberg (1998) observed a medium type B
genotypic genetic correlation of 0.54 for tree height in several
clonal trials at age 11. In another study, Karlsson et al. (2001)
showed a similar result using 11 clonal trials in southern
Sweden and Demark. However, a univariate model was used
to estimate the genotypic genetic correlations in their studies.
Kroon et al. (2011) reported that a high average of 0.80 for
additive genetic correlation in a study using a bivariate model,
indicating a low G × E interaction in Norway spruce. Berlin
et al. (2014) used a widely accepted multivariate model to
estimate genetic correlations and found a low to moderate
G × E interaction with an average of 0.72 trial-by-trial genetic
correlation in 65 Norway spruce trials in southern Sweden.
Estimation of type B genetic correlation between two trials
using conventional approach may be inefficient, and often
result in estimates of genetic correlation greater than 1 or less
than −1 (Cullis et al. 2014).

To improve MET data analysis, Smith et al. (2001) recom-
mended a new approach combining a FA model and spatial
analysis; thus, in this study, we used the more advanced ap-
proach to estimate trial-by-trial genetic correlation. The substan-
tial G × E interaction was found with an average (median) of
0.48 (0.58) for genetic correlations between the 20 trials in
southern and middle Sweden. Our study indicated stronger
G × E than the most studies of Norway spruce except for the
study byKarlsson andHögberg (1998) in which they observed a
median genotypic correlation of 0.54. Such large G × E interac-
tion indicates that exploring patterns and the drivers of G × E is
important in current Norway spruce breeding.

In previous studies for G × E interaction of Swedish spruce,
estimates of genetic correlations were all within the same test
series; so, exploring G × E pattern is relatively difficult be-
cause the area of a breeding test series is not large enough to
cover a large area. In this study, we used 20 trials in 6 test
series which cover several major southern and central
Sweden’s seed orchard zones. Thus, a cluster analysis is rec-
ommended to detect if the clusters follow the current seed
zones. The clusters partially reflected the three seed orchard
zones but with many exceptions that were similarly observed
byKarlsson et al. (2001) using 11 clonal trials in Denmark and
southern Sweden. The discrepancy between the existing seed
zone delineation and our clustering results using biological
data may indicate that current delineation of seed zone may
not be optimal. The fact that uneven trial distribution of same
series among the seed zones, low connectedness between se-
ries made the clustering of trials based on type B genetic
correlation more complicated, and it may have only partially
reflected the real G × E patterns for the region tested. We
recommend that more connections among testing series
should be used in future progeny testing. For example, St
Clair and Kleinschmit (1986) found a simple geographic pat-
tern for Norway spruce in northern Germany with trials hav-
ing more connections. Their study area was divided into two
zones based on the altitude of trials, which indicated effect of
spring or autumn frost.

Environment drivers

In a previous study, Berlin et al. (2014) examined 15 climate
variables to investigate the possibility of predicting genetic
correlations across trials using a linear regression model.
However, none of climate variables could explain more than
5% G × E interaction variation. However, they observed that
frost damage had a significant influence on across-trial genetic
correlation. In almost all the published papers involving the
G × E discussion for Norway spruce, frost damage was con-
sidered as the main cause in southern and central Sweden
(Berlin et al. 2014; Karlsson and Högberg 1998; Karlsson
et al. 2001). Thus, in this study, we firstly tried to use the frost
damage to explain across-trial genetic correlations and found
that it could explain 11% of additive genetic correlations.
However, the frost damage was only recorded in ten trials
out of the total 20 trials and was measured at different ages.
To relate potential frost severity at different trials with G × E
interactions, we constructed two climate indices (MTMJ and
MTSO) related to the temperature at spring and autumn frost
seasons. We observed that MTMJ and MTSO could explain
27.8% variation of additive genetic correlation matrix and
these two variables showed significant correlation with the
first and second (rotated) trial loadings (r = 0.65, and 0.44
for MTMJ for the first and second loading, respectively, and
r = 0.55 and 0.37 for MTSO for the first and second loading,
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respectively). These may indicate that the climate indices that
reflect spring or autumn frost seasons could more reliably
predict the G × E interaction. We recommend use of the min-
imum and maximum daily temperatures in spring and autumn
to further examine possible accuracy in predicting the G × E
interaction for Norway spruce. Since temperature loggers are
routinely placed in all field trials now, the local temperature
records should be more reliable.

Stability of parents

In general, tree breeding programs select individual trees with
the highest breeding values, which are stable across trials. In
this study, 12 parents selected with the highest breeding values
from a total of 3160 parents. P3, P4, P5, and P8 had both high
stability and high breeding values. They are high valued for
breeding and deployment in these 20 trials (three seed zones).
In contrast, most of other parents that had the higher breeding
value in many trials showed very high incidence of frost dam-
age on frost prone trials, and therefore showed poor stability.

In conclusion, we find a relatively large amount of G × E
interactions for tree height of Norway spruce in southern and
central Sweden. Revision of the delineation of breeding and
seed orchard zones was not recommended at moment due to
the limited number of test trials and less satisfactory genetic
connection among several series in the study. It is recommend-
ed that more trials with better connection among test series
should be used to improve delineation of breeding and seed
orchard in the future. The climate indices of spring and au-
tumn temperature have been shown to account for a large
amount of G × E interaction and frost damage could be an
important cause of G × E interaction in Norway spruce of
southern and central Sweden.
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