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Abstract Quantitative trait loci (QTL) mapping is an impor-
tant approach for the study of the genetic architecture of
quantitative traits. For perennial species, inbred lines cannot
be obtained due to inbreed depression and a long juvenile
period. Instead, linkage mapping can be performed by using a
full-sib progeny. This creates a complex scenario because both
markers and QTL alleles can have different segregation pat-
terns as well as different linkage phases between them. We
present a two-step method for QTL mapping using full-sib
progeny based on composite interval mapping (i.e., interval
mapping with cofactors), considering an integrated genetic
map with markers with different segregation patterns and
conditional probabilities obtained by a multipoint approach.
The model is based on three orthogonal contrasts to estimate
the additive effect (one in each parent) and dominance effect.
These estimatives are obtained using the EM algorithm. In the
first step, the genome is scanned to detect QTL. After, segre-
gation pattern and linkage phases between QTL and markers
are estimated. A simulated example is presented to validate
the methodology. In general, the new model is more effective
than existing approaches, because it can reveal QTL present in
a full-sib progeny that segregates in any pattern present and

can also identify dominance effects. Also, the inclusion of
cofactors provided more statistical power for QTL mapping.
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Introduction

Quantitative trait loci (QTL) mapping enables a better under-
standing of the genetic architecture of quantitative traits. One
of the most important applications of this type of study is the
possibility to incorporate architecture-derived information in-
to breeding programs to make them more effective. It also
allows a better understanding of the genetic correlation among
traits (Jiang and Zeng 1995; Mackay 2001), the interaction
between genotypes and environments (Malosetti et al 2004,
2008; van Eeuwijk et al 2005, 2007, 2009; Boer et al 2007;
Mathews et al 2008; Messmer et al 2009; Pastina et al 2012),
and the determination of the breeding value of individuals for
marker-assisted selection (Kao et al 1999; Zeng et al 1999;
Dekkers and Hospital 2002; Hospital 2009).

Several statistical models are available for QTLmapping in
populations based on inbreed lines (e.g., F2, backcross and
recombinant inbred lines), including interval mapping (IM)
(Lander and Botstein 1989), composite interval mapping
(CIM), (Zeng 1993, 1994; Jansen and Stam 1994) and multi-
ple interval mapping (Kao and Zeng 1997; Kao et al 1999).
IM proposed modeling QTL genotypes as latent variables by
using mixture models for the analyses. In CIM, cofactors are
included in the model to remove the effect of QTL located
outside the mapping region, resulting in a significant increase
in statistical power. Models based on CIM have been used for
QTL mapping in several economically important plant spe-
cies, e.g., maize and soybeans (Sabadin et al 2008; Li et al
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2008; García-Lara et al 2009, 2010; Tang et al 2010; Tucker
et al 2010; Warburton et al 2011; Xu et al 2011).

For perennial species (citrus, eucalyptus, loblolly pine, rub-
ber tree, and others), inbred lines are unavailable so mapping
populations can be generated by a biparental cross between
non-inbred individuals, resulting in full-sib progeny. In dip-
loids, either molecular markers or QTL may have 1:1:1:1,
1:2:1, 3:1, or 1:1 segregation patterns, depending on the number
and configuration of the alleles of the parents. In this situation,
statistical analyses are frequently carried out using an approach
named double pseudo-testcross (Grattapaglia and Sederoff
1994). For this analysis, only markers with 1:1 segregation
patterns are considered, which allows obtaining separate linkage
maps for each parent, and the usage of QTL models developed
for backcross populations on each individual map. However, this
approach cannot be directly employed in integrated maps using
new markers with distinct segregation patterns (1:1:1:1, 1:2:1,
and 3:1), which have become common recently (e.g., single
nucleotide polymorphism, microsatellite, etc.).

Several authors proposed the construction of integrated link-
age maps using markers exhibiting different segregation pat-
terns. Ritter et al (1990), Ritter and Salamini (1996), and
Maliepaard et al (1997) have developed methods to determine
recombination fractions using two-point estimates. Ridout et al
(1998) have proposed the estimation of recombination fractions
based on three-point tests. Wu et al (2002a) and Lu et al (2004)
have developed approaches based on maximum likelihood to
simultaneously estimate the recombination fraction and linkage
phase between markers. Ling (2000), Wu et al (2002b), and
Tong et al (2010) proposed methods based on multipoint max-
imum likelihood using hidden Markov models (HMM).
HMMs have been incorporated into software, such as
OneMap (Margarido et al 2007, 2011). The main advantage
of these methods is the ability to obtain linkage maps with
higher saturation and good representation of the genetic poly-
morphism generated by the cross, because markers with all
segregation patterns can be used in the statistical analysis.

Several alternatives are available for QTL mapping in out-
bred populations, in which two common situations can be
considered: a complex pedigree or a large progeny. In the
former, QTL mapping is done based on multiple families, and
both fixed or random models can be used (Knott and Haley
1992; Kruglyak and Lander 1995; Xu and Atchley 1995; Xu
and Gessler 1998; Gessler and Xu 1999; Yi and Xu 1999). The
latter considers a single biparental cross to obtain tens or
hundreds of offspring, usually modeling QTL genotypes as
fixed effects (Haley et al 1994; Knott et al 1997; Schäfer-
Pregl et al 1996; Sillanpää and Arjas 1999; Lin et al 2003;
Wu et al 2007; Hu and Xu 2009; Xiong 2010; Payne et al
2010). Considering the approaches developed for large proge-
ny, Haley et al (1994) proposed a model for F2 population (two
segregating alleles), and then applied it to a full-sib progeny,
under some assumptions. When more than two alleles are

considered, Knott et al (1997) expanded the previous approach,
but still requires pedigree information. Schäfer-Pregl et al
(1996) also presented models for a full-sib progeny considering
either one scorable allele common to both parents or consider-
ing four alleles per marker locus under a non-linear approach.
Sillanpää and Arjas (1999) proposed a Bayesian QTLmapping
method for outbred species, which was initially proposed for
inbred-based populations (Sillanpää and Arjas 1998). Lin et al
(2003) developed an IM model using a maximum likelihood
approach, considering QTL effects and linkage phases between
markers with different patterns of segregation. However, the
conditional probabilities for QTL genotypes are not based on
multipoint estimates, and, in this approach, there are difficulties
in estimating the linkage phase between QTL and markers
using the expectation–maximization (EM) algorithm. As ob-
served, none of these models incorporated the advantages of
CIM, which is widely used for inbred-based populations, in-
cluding the incorporation of cofactors and a high statistical
power. Other software-based approaches were also suggested
(Xiong 2010; Payne et al 2010; Hu and Xu 2009), but the
segregation patterns of QTL and their linkage phases with
markers were not fully addressed. Moreover, the estimation of
QTL probabilities based on HMMs (multipoint) is of core
importance in this context, because with outcrossing, it is
common to have genomic regions with different marker types.

In this work, we developed a QTL mapping model based
on the CIM approach considering a full-sib progeny and
multipoint genetic mapping using molecular markers with
several segregation patterns. The proposed method enables
the determination of QTL, the estimation of their position,
effects and segregation patterns, and the inference of their
linkage phase with markers. A simulation study showed the
advantages of the proposed model.

Methodology

Statistical model

We considered a full-sib progeny from the cross between two
non-inbred, diploid parents PandQwith a known genetic map
(Fig. 1). For an interval defined by two adjacent markers m
and m+1, with alleles 1 or 2 for each parent, the genotypes of
these loci may be generically represented by Pm

{1,2},Pm+1
{1,2},

Qm
{1,2},Qm+1

{1,2}, where {1,2} indicates the allele possibilities
for each locus in each parent. Assuming that there is a QTL
in the interval, these alleles are represented as P1 and P2 for
parent P and asQ1 and Q2 for parentQ. It is also assumed that
the alleles P1 and Q1 have a positive effect on the phenotype.
The crossing is then represented as Pm

1 P1Pm+1
1 /Pm

2 P2Pm+1
2 ×

Qm
1Q1Qm+1

1 /Qm
2Q2Qm+1

2 for the three loci considered.
The segregation of the QTL in the progeny results in four

genotypic classes (P1Q1, P1Q2, P2Q1, and P2Q2) in 1:1:1:1
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proportion. Therefore, it is possible to define three orthogonal
contrasts between the means of these classes, similar to those
suggested by Knott et al (1997), Lin et al (2003) and Payne
et al (2010):

P1Q1 þ P1Q2 −P2Q1 −P2Q2

P1Q1 −P1Q2 þ P2Q1 −P2Q2

P1Q1 −P1Q2 −P2Q1 þ P2Q2

The first two contrasts represent the additive effects of the
QTL alleles in parents P and Q, respectively, and the third
contrast is the intra-locus interaction (dominance) between
additive effects on each parent. The contrast coefficients can
be represented in the columns of the matrix D (genetic design
matrix), similar to the notation of Kao and Zeng (1997):

D ¼
1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

2664
3775 ð1Þ

It is important to note that QTL genotypes are not directly
observed, so they need to be inferred based on the genotype of
their flanking markers. The conditional probabilities for QTL
genotypes can be obtained by either two-point (Lynch and
Walsh 1998) or a multipoint approach (using hidden Markov
models) (Jiang and Zeng 1997; Wu et al 2002b). Although
two-point analysis could be used, multipoint methods are
strongly recommended because they allow the inclusion of
all individuals, including the ones with missing markers, and
also because of the partial information provided by non-
fully informative markers on the genetic map (Jiang and
Zeng 1997; Wu et al 2002b). For this reason, in the
present work, conditional probabilities for QTL geno-
types were obtained using OneMap software, which
implements a multipoint approach using hidden
Markov models (Margarido et al 2007, 2011).

From the contrasts, it is possible to define a statistical
model for QTL mapping:

y j ¼ Z jγ þ αp
∗ xpj∗ þ αq

∗ xqj∗ þ δ*pqxpj
∗ xqj∗ þ ε j ð2Þ

where yj: the phenotype of the j
th individual ( j=1,…, n); Zj: j

th

line of the indicator matrix Z, with dimensions n×(1+3c), and
a column of 1's and variables related to the genotypes of c
cofactors, according to the contrasts represented in D matrix
(Eq. 1) and similar to x�pj and x�qj ; parameter vector γ: vector
(1+3c)×1 containing the intercept (μ) and the coefficients
of the multiple linear regression parameters (αpc, αqc, and
δpqc) for each cofactor. Cofactors are selected in a previous
step using for an example stepwise regression (Basten et al
1999) and they are fixed for each genomic position, given
the window size; αp* and αq*: additive effects of the QTL for
parents P and Q, respectively; δpq

∗ : effect of the intra-locus
interaction (dominance) between additive effects; and εj:
error. It is assumed that εj∼N(0, σ2). The variables x�pj
and x�qj indicate the contrasts for QTL genotypes:

xpj∗ ¼
1 if P1Q1

1 if P1Q2

−1 if P2Q1

−1 if P2Q2

8>><>>: ; x*qj ¼
1 if P1Q1

−1 if P1Q2

1 if P2Q1

−1 if P2Q2

8>><>>:
The elements of Z are defined in a similar way; however,

they refer to markers proposed for CIM models (Zeng 1993,
1994). To select cofactors, procedures described for CIM for
inbred-based populations were used. We found satisfactory
results using multiple regression methods between markers
and phenotypes using the Bayesian information criterion, or
BIC (Schwarz 1978) to select the final model with a maximum
of 2

ffiffiffi
n

p
parameters to avoid super-parameterization (Sakamoto

and Kitagawa 1987; Wang et al 2007). Because three effects
(αpc, αqc, and δpqc) may be included for each marker that is
added as a cofactor, the non-significant markers may be re-
moved to reduce the number of parameters to be estimated.

Likelihood and estimation

Considering that QTL genotypes could not be observed, the
model 2 was considered as a mixture model, with QTL geno-
types as latent variables. The likelihood function for themodel is:

L θ;γ;σð Þ ¼ ∏
j¼1

n X
u¼1

2 X
v¼1

2

puvjϕ
y j −μuvj

σ

� �" #
ð3Þ

where θ and γ are vectors of QTL and cofactor parameters,
respectively; puvj is the conditional multipoint probability for
genotype PuQv and the jth individual, in a given position
on the genome. The procedure to obtain these probabil-
ities are detailed by Wu et al (2002b); ϕ (.) is the
standard normal probability with mean μ11j=Zjγ+αp

∗+αq
∗+

QP

P1
m P2

m Q1
m Q2

m

P1 P2 × Q1 Q2

P1
m+ 1 P2

m+ 1 Q1
m+ 1 Q2

m+ 1

Fig. 1 Schematic representation of the type of cross considered in the
model. The parents are represented by P and Q, and the alleles for
the markers at the m and m+1 loci are represented by Pm

{1,2},
Qm
{1,2},Pm+1

{1,2} and Qm+1
{1,2}. The QTL alleles are represented as P1, P2,

Q1 and Q2
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δpq
∗ ; μ12j=Zjγ+αp

∗−αq∗−δpq∗ ; μ21j=Zjγ−αp∗+αq∗−δpq∗ ; μ22j=Zjγ−
αp
∗−αq∗+δpq∗ , and variance σ2.
Using the notation presented by Kao and Zeng (1997), and

expanding the ideas of Zeng (1994) for a full-sib cross, the
maximum likelihood estimates are obtained using the EM
algorithm (Dempster et al 1977), in two steps:

Step E: a posterioriprobabilities (πuvj
(t+1)) for QTL genotypes,

which can be obtained applying the Bayes theorem:

π tþ1ð Þ
uvj ¼

puvjϕ
y j−μ

tð Þ
uvj

σ tð Þ

 !
X
u¼1

2 X
v¼1

2

puvjϕ
y j−μ

tð Þ
uvj

σ tð Þ

 !

Step M: maximum likelihood estimates:

where:

V tþ1ð Þ ¼
10Π tþ1ð Þ D1∘D1ð Þ10Π tþ1ð Þ D1∘D2ð Þ10Π tþ1ð Þ D1∘D3ð Þ
10Π tþ1ð Þ D2∘D1ð Þ10Π tþ1ð Þ D2∘D2ð Þ10Π tþ1ð Þ D2∘D3ð Þ
10Π tþ1ð Þ D3∘D1ð Þ10Π tþ1ð Þ D3∘D2ð Þ10Π tþ1ð Þ D3∘D3ð Þ

24 35
D1, D2, and D3 are the columns of the matrix D, Π(t+1)=

{πuvj}(n×4) is the a posteriori probability matrix of QTL geno-
types, ◦ represents the Hadamard product, and primes indicate a
matrix (vector) transposed.

The algorithm is initiated by arbitrarily attributing values in
iteration t to the parameters contained in θ, which allows the
calculation of the a posteriori probabilities in step E (t+1); the
new probability estimates are then employed to update the
model parameters according to the estimators obtained in step
M. The procedure is repeated until convergence is obtained.

QTL mapping

The procedure to test for QTL evidence is carried out by
comparing the likelihood of the models, considering the pres-
ence of a QTL (Ha) versus a model without QTL (H0):

H0 : α
�
p ¼ α�

q ¼ δ�pq ¼ 0
Ha: at least one is different from zero

These hypotheses can be tested in all genome positions,
using the LOD Score or likelihood ratio test (LRT) in a way
similar to that presented by Zeng (1994). It is necessary to
account for problems that occur with multiple tests, which can
be done using strategies already available for inbred-based

populations, such as permutation tests (Churchill and Doerge
1994). In short, this is a non parametric resampling method,
allowing to obtain the empirical distribution under a null hy-
pothesis of test statistic used for QTL mapping. The method
starts shuffling the phenotypic values a number of times in
order to break any correlation between QTL and phenotypes,
and then performing the QTL mapping for these new data sets.
The maximum test value obtained along the genome is record-
ed for each analysis, and the 95th percentile indicates the
genome-wide threshold value.

Linkage phase and QTL segregation pattern

After finding evidence for QTL, it is possible to infer their
linkage phase with their flanking markers simply based on the
signals of the estimates of αp

* and αq
*. Because the configura-

tion Pm
1 P1Pm+1

1 /Pm
2P2Pm+1

2 ×Qm
1 Q1Qm+1

1 /Qm
2Q2Qm+1

2 was
used, with alleles P1 and Q1 having a positive effect on the
phenotype both the estimates for αp

* and αq
* are positive

(Fig. 1). If distinct configurations occur, the signal of the
estimates will be negative accordingly. Therefore, the linkage
phase can be inferred simply by identifying the alleles that
have a positive or negative effect on the phenotype, and it is
not necessary to include the linkage phases in the model, as
seen in Lin et al (2003). This approach sensibly reduces the
complexity and numerical problems of the EM algorithm.

The QTL segregation pattern depends on the relations
between alleles. To infer these relations, several statistical
hypotheses have been defined, and they need to be tested in
the positions with evidence for QTL presence in one or two
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steps (Table 1). In step 1,H01, H02, andH03 are tested, one at a
time. Depending on what hypotheses are rejected and on the
signal of the significant estimates of the QTL effects, another
hypothesis may be necessary (step 2).

If only one of these three hypotheses is rejected, an exam-
ination of the signal of the significant effect estimates allows
the conclusion of the segregation pattern and linkage phase
(no step 2 required). For example, if only H01 is rejected and
the signal of αp

* is positive, the inferred segregation is 1:1 and
the linkage phase is Pm

1P1Pm+1
1 /Pm

2P2Pm+1
2 . If αp

* is negative, the
linkage phase is Pm

1P2Pm+1
1 /Pm

2P1Pm+1
2 .

If more than one hypotheses is rejected at step 1, new tests are
performed (step 2) that also consider the signals of the estimates.
If two hypotheses are rejected, they need to be identified and the
signals of the estimates of the significant effects need to be
examined to check what hypotheses need to be examined in
step 2. If both additive effects are significant, H04 needs to be
tested; if αp

* and δpq
* are not 0, H05 needs to be tested; otherwise,

H06 needs to be tested. Depending on the result of the test ofH04,
H05, and H06 (conditional on the signs of the estimates), the
segregation patterns and linkage phases are inferred. For exam-
ple, if H01 and H02 are both rejected and αp

* and αq
* are positive

and negative, respectively, H04 αp
*=−αq* will be tested

(bilateral); if rejected, the segregation is 1:1:1:1 and the linkage
phase is Pm

1P1Pm+1
1 /Pm

2P2Pm+1
2 andQm

1Q2Qm+1
1 /Qm

2Q1Qm+1
2 for par-

ents P and Q, respectively. When H01, H02, and H03 are all
rejected, it is necessary to test H04, H05, and H06 in step 2. In a
similar way, conclusions are reached based on the signs of the
estimates and on what hypotheses were rejected in step 2.

The hypothesis tests of step 2 are implemented by
obtaining new estimates for the parameters under the
constrained new hypothesis. Thus, a T matrix is defined, to
impose constrains bymultiplying theDmatrix. TheDTmatrix
substitutes D in the steps of the EM algorithm and then new
likelihood estimates are easily obtained (Appendix A).

Simulation

To exemplify and validate the proposed model, a simulation
study was conducted in a similar way to those presented by
Zeng (1994), Kao and Zeng (1997) and Lin et al (2003). A full-
sib progeny consisting of 300 individuals was considered, with
a genetic map composed of four chromosomes. Each chromo-
some had 15 molecular markers equally spaced at 10
centiMorgans (cM), employing the Kosambi function
(Kosambi 1944). Markers exhibiting distinct segregation pat-
terns were considered using the notation proposed by Wu et al
(2002a). Briefly, the markers are classified into four types
according to their segregation type as follows: A (1:1:1:1), B
(1:2:1, separated into B1, B2, or B3 depending on the presence of
the null allele in the parentP,Qor neither of them, respectively),
C (3:1), andD (1:1, labeledD1 when the heterozygous parent is

P and D2 when it is Q). From the total simulation, 15 markers
were fully informative (type A); 15 markers were of the B type
(equally distributed among theB1,B2, andB3 types); 10markers
were of the C type; and 20 markers belonged to the D type of
markers, with half of them beingD1 and the other half beingD2.
The markers were randomly distributed along the chromo-
somes, resulting in the following distribution: chromosome
one, 5 A, 1 B1, 0 B2, 2 B3, 4 C, 2 D1, and 1 D2; chromosome
two, 3 A, 2 B1, 1 B2, 1 B3, 1 C, 2 D1, and 5 D2; chromosome
three, 4A, 0B1, 1B2, 2B3, 2C, 4D1, and 2D2; and chromosome
four, 3 A, 2 B1, 3 B2, 0 B3, 3 C, 2 D1, and 2 D2. The order of the
markers is indicated in Fig. 2.

The simulated trait had a heritability of 0.70 and was con-
trolled by eight QTL located along the four chromosomes
whose genetic effects were distributed such that they represent-
ed distinct linkage phases and segregation patterns. The effects
were simulated as deviations of the mean, which was zero.

The conditional probabilities puvj were calculated at every
1 cM along each chromosome using the multipoint approach
implemented in the OneMap software (Margarido et al 2007,
2011). Subsequently, composite intervalmappingwas performed,
using the new model. Additionally, QTL mapping was carried
out in the absence of cofactors to determine if the properties of the
new proposed model were similar to those described by Zeng
(1994). Cofactor selection was performed by stepwise multiple
linear regression using the BIC. For each included marker, three
parameters (αp, αq, and δpq), were added and their significance
was tested. The parameters exhibiting non-significant (5 %) ef-
fects were removed from the model. As proposed by Zeng
(1994), from all the selected cofactors, only markers located at
a distance greater than 10 cM (window size) from the markers
flanking the interval to be mapped were considered.

To search for QTL along the genome, we used the likeli-
hood ratio test, with three degrees of freedom. To declare a
QTL, the threshold value used was LRT=16.89 (LOD Score
3.66) obtained by employing 1,000 permutations, with 95 %
significance level (Churchill and Doerge 1994). The remain-
ing tests carried out for step 1 (H01, H02, and H03) and step 2
(H04, H05, and H06) were performed using one degree of
freedom. These tests are performed only at positions with a
putative QTL, thus, the problems derived from the use of
multiple tests are not present (Jiang and Zeng 1995).

Results

Interval mapping

As expected, interval mapping did not perform well for QTL
detection (Fig. 2). For chromosome 1, two QTL were simulated
(15 and 115 cM), but only one was mapped, at 5 cM. On
chromosome 2, two of the three simulated QTL were detected.
For chromosome 3, a large region of approximately 80 cM was
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found to display an LOD Score superior to the threshold.
However, the mapping results did not show conclusively if there
exists twoQTL located at 25 and 65 cM, as simulated, or if there
is only a single QTL with a residual effect on the adjacent
intervals. On chromosome 4, a QTL located at 60 cM was
detected but there was also a possible false positive at 12 cM.

Cofactor selection

Eight cofactors were selected and all of them flanked the
regions spanning the simulated QTL. No super-
parameterization occurred in the CIMmodel because the actual
sample size would accommodate a total of 2

ffiffiffiffiffiffiffiffi
300

p ¼ 34 pa-
rameters. Fifteen genetic effects were included in the model,
with eight markers used as cofactors (Table 2). Although some
of the selected cofactors are informative, only in one parent (D1

or D2), dominance effects were retained in some cases because
when the multipoint approach is employed to obtain the prob-
abilities, the genotype information is recovered, even for
markers that are not fully informative.

Composite interval mapping

The results from CIM (Fig. 2) were more consistent in com-
parison to those obtained from IM, because all simulated QTL

were mapped. False positives, detected using interval map-
ping, were eliminated. It is also noteworthy that virtually all
QTL mapped using CIM exhibited higher LOD Scores than
those mapped using IM, which indicates a higher statistical
power of CIM. Therefore, our results are in agreement with
those from Zeng (1994) that presented the advantages of CIM.

For chromosome 1, both simulated QTL were detected by
CIM at 15 and 111 cM. The first QTLwasmapped to the exact
location of the simulated one, and the second one was located
within the same interval.

The QTL at 15 cM, which was detected by both methods,
had a higher LOD Score for CIM analysis, indicating the
greater statistical power of this model.

The CIM model displayed good results for chromosome 2
as well because it could identify all three simulated QTL,
which were not obtained using IM. The QTL positioned at
44 cM was also mapped with higher resolution by the CIM
approach. In the case of chromosome 3, the results were also
substantially improved using CIM because IM showed one
large region spanning 80 cM, providing an imprecise location
of the QTL, while CIM analysis correctly pointed out two
distinct peaks at 20 and 68 cM.

The use of CIM for chromosome 4 removed the false QTL
at 10 cM detected by IM and also detected a QTL at 61 cM
with a higher LOD Score. The simulated QTL was located at

LO
D

C A D
2 C B
3

B
3 C C A D
1 A B
1

D
1 A A

    cM

Chrom. 1

CIM
IM
Threshold
Simulated QTL
Estimated QTL
Marker

B
2

B
1 A D
2

D
1

B
3

D
1

B
1 C D
2 A D
2

D
2 A D
2

Chrom. 2

A D
2

B
3 C D
1

D
2

B
2

D
1 A C B
3 A D
1 A D
1

Chrom. 3

0 20 50 80 110 140

0
2

4
6

8
10

12

0 20 50 80 110 140 0 20 50 80 110 140 0 20 50 80 110 140

A B
2 C A C B
1

B
2

D
1 C D
2

B
1

D
2 A D
1

B
2

Chrom. 4

Fig. 2 QTL mapping for the simulated population without inclusion of cofactors (IM) and with inclusion of cofactors (CIM). Genetic markers are
indicated by green triangles; the corresponding types (A, B1, B2, B3, C, D1, and D2) follow the notation of Wu et al (2002a)

Tree Genetics & Genomes (2014) 10:791–801 797



55 cM, which is outside, but adjacent, to the range of the
simulated interval. Eye inspection of Fig. 2 allowed us to infer
that the confidence interval for the QTL spans the simulated
position, and that during an actual mapping situation, this
would not compromise practical applications of the results.

QTL segregation pattern and linkage phases

The QTL segregation patterns result was satisfactory for all
tested situations (Table 3). All QTL that segregated in a 1:1
fashion (i, ii, vii) were correctly characterized, with only one
hypothesis rejected at step 1. The estimatedQTLwere very close
to the simulated ones. QTL with a 1:2:1 segregation pattern (iii,
v, viii) were also correctly inferred. For QTL with a 3:1 fashion
(iv), the segregations were well estimated, with three hypothesis
rejected at step 1, and three not rejected at step 2.

QTL vi, which was simulated as 1:1:1:1 with additive
effects larger than dominance effects, was mapped with a
1:2:1 segregation pattern and with two significant effects
αp
*=−αq* and without dominance effect δpq

* . In this case, the
inferred segregation was distinct from the simulated one, most
likely due to the small magnitude of the effects, which may
have impaired the correct identification.

In general, the CIM model was very effective at estimating
the linkage phases between QTL and markers. In all situations
where QTL effects were significant, the linkage phases were
always correctly estimated.

Discussion

In this work, we have presented a model for QTL mapping
using full-sib progeny obtained from two diploid, non-inbred
individuals. The model takes into account the distinct segrega-
tion patterns that the molecular markers and QTL may assume
in the investigated context. The approach is based on the
composite interval mapping model (Zeng 1993, 1994) that
was first developed for inbred-based populations (BC, F2,

Table 2 Location of the cofactors in relation to the simulated QTL

QTL Cofactors

Chrom. cM Segreg. cM Segreg. Significant effects

1 15 1:1 10 A αp

1 115 1:1 120 D1 αq

2 45 1:2:1 40 D1 αp and δpq
2 75 3:1 80 C αp, αq, and δpq
2 105 1:2:1 110 D2 αp and δpq
3 25 1:1:1:1 20 B3 αp and αq

3 65 1:1 60 D1 αp and δpq
4 55 1:2:1 60 B2 αp and αq
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RILs). To validate the model, we have simulated a quantitative
trait with a 0.70 heritability controlled by eight QTL exhibiting
distinct effects, segregation, and linkage phases.

In general, the model allowed us to map the simulated QTL
with their correct characterizations. The model also provided
correct estimates of the linkage phases for all QTL with
significant effects, meaning that it was possible to identify
the origin of the alleles that increased or reduced the pheno-
type. The main advantage of this feature is that the mapping
results may be useful for marker-assisted selection in plant
breeding programs, even if the inferences for segregation and/
or the estimates of QTL effects are eventually incorrect.

The proposedmodel exhibits advantages over the approach
devised by Lin et al (2003). In contrast to that previous work,
we have not considered the linkage phases as parameters to be
estimated by the model, but instead obtained them by
interpreting the signals of the estimates, αp

* and αq
*. This

change sensibly reduced the complexity of the EM algorithm,
which allowed the model to be easily expanded to the CIM
context. More complex situations found in multiple interval
mapping (Kao and Zeng 1997; Kao et al 1999) and multiple
trait and environmental mapping (Jiang and Zeng 1997) may
also be easily investigated using the proposed model. Future
studies may include investigations on epistatic interactions,
interactions between QTL and environments and correlation
between traits.

Lin et al (2003) noted that the 1:1 segregation is tested by
the assumption that one of the additive effects is zero and that
the 1:2:1 pattern, similar to that found in F2, occurs when
marginal effects are statistically equal. However, the present
model allows for the identification of the possible segregation
patterns via a procedure to identify these situations and a
bypass to avoid multiple testing problems.

A great advantage of the proposed model is that it is based
on multipoint conditional probabilities, and therefore, the
presence of informative markers along the linkage groups
allows the detection of QTL exhibiting distinct segregation
patterns (1:1:1:1, 1:2:1, 3:1), even for regions with less infor-
mative markers. As an example, in the work by Lin et al
(2003), the authors did not present effective means to estimate
the conditional probabilities among less informative markers,
such as those with 1:1 or 3:1 segregation patterns. In the
current model, the information on adjacent markers is recov-
ered and the probabilities are estimated in a more precise way.
Jiang and Zeng (1997) have proven the effectiveness of the
model for inbred lines, but to our knowledge, our work is the
first to use multipoint conditional probabilities through HMM
for QTL genotypes with a full-sib progeny.

The successful use of the strategy suggested for identifying
QTL segregation and linkage phases depends on correctly esti-
mating their location. Thus, models allowing higher control of
the residual variance are advantageous. Zeng (1994) notes that
the use of multiple linear regressions combined with interval

mapping (Lander and Botstein 1989) provides more reliable
estimates for QTL effects. In the present work, the CIM model
more precisely positioned the QTL in comparison to the IM
approach and also displayed higher statistical power for QTL
mapping. In the model proposed by Lin et al (2003), the inclu-
sion of cofactors is complicated because the extension of the EM
algorithm is not straightforward in their model. Moreover, by
modeling QTL effects based on multipoint QTL probabilities,
we were able to easily expand from IM to CIM. This method is
also valid for more sophisticated models, such as multiple inter-
val mapping (Kao and Zeng 1997; Kao et al 1999). Thus, the
suggested model provided a sound basis for future research. An
R package named fullsibQTL to implement the models hereby
presented is under development and will be released soon.
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Appendix

Table 4 Matrices to obtain the constrained estimates of parameters,
required for Step 2 of the testing procedures

Hypotheses T

H04 : αp
* = αq

*or − αp
* = − αq

*
1=2 0
1=2 0

0 1

24 35
H04 : αp

* = − αq
*or − αp

* = αq
*

1=2 0
−1=2 0

0 1

24 35
H05 : αp

* = δpq
* or − αp

* = − δpq
*

1=2 0
0 1

1=2 0

24 35
H05 : αp

* = − δpq
* or − αp

* = δpq
*

1=2 0
0 1

−1=2 0

24 35
H06 : αq

* = δpq
* or − αq

* = − δpq
*

0 1
1=2 0
1=2 0

24 35
H06 : αq

* = − δpq
* or − αq

* = δpq
*

0 1
1=2 0

−1=2 0

24 35
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