Skip to main content
Log in

Dissection of complex traits in forest trees — opportunities for marker-assisted selection

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Due to their long reproductive cycles and the time to expression of mature traits, marker-assisted selection is particularly attractive for tree breeding. In this review, we discuss different approaches used for developing markers and propose a method for application of markers in low linkage disequilibrium (LD) populations. Identification of useful markers for application in tree breeding is mainly based on two approaches, quantitative trait locus (QTL) mapping and association genetic studies. While several studies have identified significant markers, effect of the individual markers is low making it difficult to utilize them in breeding programs. Recently, genomic selection (GS) was proposed for overcoming some of these difficulties. In GS, high density markers are used for predicting phenotypes from genotypes. Currently small effective populations with high LD are being tested for GS in tree breeding. For wider application, GS needs to be applied in low LD populations which are found in many tree breeding programs. Here we propose an approach in which the significant markers from association studies may be used for developing prediction models in low LD populations using the same methods as in GS. Preliminary analyses indicate that a modest numbers of markers may be sufficient for developing prediction models in low LD populations. GS based on large numbers of random markers or small numbers of associated markers is poised to make marker-assisted selection a reality in forest tree breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Estimated using the Eucalyptus Genome Database browser (http://eucalyptusdb.bi.up.ac.za/).

References

  • Allona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci U S A 95(16):9693–9698

    PubMed  CAS  Google Scholar 

  • Beaulieu J, Doerksen T, Boyle B, Clement S, Deslauriers M, Beauseigle S, Blais S, Poulin PL, Lenz P, Caron S, Rigault P, Bicho P, Bousquet J, MacKay J (2011) Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics 188(1):197–214

    PubMed  CAS  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  • Benyamin B, Visscher PM, McRae AF (2009) Family-based genome-wide association studies. Pharmacogenomics 10(2):181–190

    PubMed  CAS  Google Scholar 

  • Bradshaw HD, Stettler RF (1995) Molecular-genetics of growth and development in Populus: 4. Mapping qtls with large effects on growth, form, and phenology traits in a forest tree. Genetics 139(2):963–973

    PubMed  CAS  Google Scholar 

  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.): III. QTL verification and candidate gene mapping. Genetics 164(4):1537–1546

    PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101(42):15255–15260

    PubMed  CAS  Google Scholar 

  • Calus MPL, Veerkamp RF (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124(6):362–368

    PubMed  CAS  Google Scholar 

  • Clement K, Cl S, Meirhaeghe A, Dechartres A, Ferrieres J, Basdevant A, Boitard C, Amouyel P, Bougneres P (2009) In obese and non-obese adults, the cis-regulatory rs361072 promoter variant of PIK3CB is associated with insulin resistance not with type 2 diabetes. Mol Genet Metab 96(3):129–132

    PubMed  CAS  Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185(3):1021–1031

    PubMed  CAS  Google Scholar 

  • Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) Inbreeding in genome-wide selection. J Anim Breed Genet 124(6):369–376

    PubMed  CAS  Google Scholar 

  • Daly MJ, Rioux JD, Schaffner SE, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29(2):229–232

    PubMed  CAS  Google Scholar 

  • Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM, Pabial J, Dibling T, Tinsley E, Kirby S, Carter D, Papaspyridonos M, Livingstone S, Ganske R, Lohmmussaar E, Zernant J, Tonisson N, Remm M, Magi R, Puurand T, Vilo J, Kurg A, Rice K, Deloukas P, Mott R, Metspalu A, Bentley DR, Cardon LR, Dunham I (2002) A first-generation linkage disequilibrium map of human chromosome 22. Nature 418(6897):544–548

    PubMed  CAS  Google Scholar 

  • Devey ME, Carson SD, Nolan MF, Matheson AC, Riini CT, Hohepa J (2004) QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection. Theor Appl Genet 108(3):516–524

    PubMed  CAS  Google Scholar 

  • Dillon SK, Brawner JT, Meder R, Lee DJ, Southerton SG (2012) Association genetics in Corymbia citriodora subsp. variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield. New Phytol 195(3):596–608

    PubMed  CAS  Google Scholar 

  • Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG (2010) Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics 185(4):1477–1487

    PubMed  CAS  Google Scholar 

  • Doerge RW (2002) Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52

    PubMed  CAS  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St. Clair JB, Neale DB (2009a) Association genetics of coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae): I. Cold-hardiness related traits. Genetics 182(4):1289–1302

    PubMed  CAS  Google Scholar 

  • Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183(1):289–298

    PubMed  Google Scholar 

  • Eldridge K, Davidson J, Harwood C, van Wyk G (1994) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  • Eveno E, Collada C, Guevara MA, Leger V, Soto A, Diaz L, Leger P, Gonzalez-Martinez SC, Cervera MT, Plomion C, Garnier-Gere PH (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25(2):417–437

    PubMed  CAS  Google Scholar 

  • Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170:739–752

    PubMed  CAS  Google Scholar 

  • Freeman J, Potts B, Downes G, Thavamanikumar S, Pilbeam D, Hudson C, Vaillancourt R (2011) QTL analysis for growth and wood properties across multiple pedigrees and sites in Eucalyptus globulus. BMC Proc 5(Suppl 7):O8

    Google Scholar 

  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genet Genomes 5(4):713–722

    Google Scholar 

  • Friedmann M, Ralph SG, Aeschliman D, Zhuang J, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2007) Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. J Exp Bot 58(3):593–614

    PubMed  CAS  Google Scholar 

  • Garcia-Gil MR, Mikkonen M, Savolainen O (2003) Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol Ecol 12(5):1195–1206

    PubMed  CAS  Google Scholar 

  • Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165(2):759–769

    PubMed  Google Scholar 

  • Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15(7):1502–1506

    PubMed  CAS  Google Scholar 

  • Goddard KAB, Hopkins PJ, Hall JM, Witte JS (2000) Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet 66(1):216–234

    PubMed  CAS  Google Scholar 

  • Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136(2):245–257. doi:10.1007/s10709-008-9308-0

    PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10(6):381–391

    PubMed  CAS  Google Scholar 

  • Goldstein DB (2009) Common genetic variation and human traits. N Engl J Med 360(17):1696–1698

    PubMed  CAS  Google Scholar 

  • Gonzalez-Martınez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172(3):1915–1926

    PubMed  Google Scholar 

  • Gonzalez-Martınez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L.: II. Carbon isotope discrimination. Heredity 101(1):19–26

    PubMed  Google Scholar 

  • Gonzalez-Martınez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood Property Traits. Genetics 175:399–409

    PubMed  Google Scholar 

  • Goyenechea E, Collins LJ, Parra D, Abete I, Crujeiras AB, O'Dell SD, Martinez JA (2009) The −11391 GA/polymorphism of the adiponectin gene promoter is associated with metabolic syndrome traits and the outcome of an energy-restricted diet in obese subjects. Horm Metab Res 41(1):55–61

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff RR (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144(3):1205–1214

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Bradshaw HD Jr (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24(5):1074–1078

    Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179(4):911–929

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12(2):148–156

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7(2):241–255

    Google Scholar 

  • Groover A, Devey M, Fiddler T, Lee J, Megraw R, Mitchel-Olds T, Sherman B, Vujcic S, Williams C, Neale D (1994) Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of Loblolly pine. Genetics 138(4):1293–1300

    PubMed  CAS  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177(4):2389–2397

    PubMed  CAS  Google Scholar 

  • Hagenblad J, Nordborg M (2002) Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics 161(1):289–298

    PubMed  CAS  Google Scholar 

  • Haley CS, Visscher PM (1998) Strategies to utilize marker-quantitative trait loci associations. J Dairy Sci 81:85–97

    PubMed  CAS  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92(2):433–443

    PubMed  CAS  Google Scholar 

  • Heffner E, Sorrells M, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49(1):1

    CAS  Google Scholar 

  • Heuertz M, De Paoli E, Kallman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174(4):2095–2105

    PubMed  CAS  Google Scholar 

  • Holliday JA, Ritland K, Aitken SN (2010) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol 188(2):501–514

    PubMed  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilbrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics 169(2):945–953

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics 180(1):329–340

    PubMed  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2008) Nucleotide polymoirphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178(4):2217–2226

    PubMed  CAS  Google Scholar 

  • Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 7(4):747–758

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9(2):166–177

    CAS  Google Scholar 

  • Johnson GCL, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RCJ, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SCL, Clayton DG, Todd JA (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29(2):233–237

    PubMed  CAS  Google Scholar 

  • Kado T, Matsumoto A, Ujino-Ihara T, Tsumura Y (2008) Amounts and patterns of nucleotide variation within and between two Japanese conifers, sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) (Cupressaceae sensu lato). Tree Genet Genomes 4(1):133–141

    Google Scholar 

  • Kado T, Ushio Y, Yoshimaru H, Tsumura Y, Tachida H (2006) Contrasting patterns of DNA variation in natural populations of two related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes Genet Syst 81(2):103–113

    PubMed  CAS  Google Scholar 

  • Kado T, Yoshimaru H, Tsumura Y, Tachida H (2003) DNA Variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164(4):1547–1559

    PubMed  CAS  Google Scholar 

  • Kidd KK, Pakstis AJ, Speed WC, Kidd JR (2004) Understanding human DNA sequence variation. J Hered 95(5):406–420

    PubMed  CAS  Google Scholar 

  • Koller DL, Peacock M, Lai D, Foroud T, Econs MJ (2004) False positive rates in association studies as a function of degree of stratification. J Bone Miner Res 19(8):1291–1295

    PubMed  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171(4):2029–2041

    PubMed  CAS  Google Scholar 

  • Kulheim C, Yeoh SH, Wallis IR, Laffan S, Moran GF, Foley WJ (2011) The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol 191(4):1041–1053

    PubMed  CAS  Google Scholar 

  • Lan MY, Chang YY, Chen WH, Kao YF, Lin HS, Liu JS (2009) Serotonin transporter gene promoter polymorphism is associated with body mass index and obesity in non-elderly stroke patients. J Endocrinol Investig 32(2):119–122

    CAS  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    PubMed  CAS  Google Scholar 

  • Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2011) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8(1):113–126

    Google Scholar 

  • Lin PI, Vance JM, Pericak-Vance MA, Martin ER (2007) No gene is an island: the flip-flop phenomenon. Am J Hum Genet 80(3):531–538

    PubMed  CAS  Google Scholar 

  • Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731

    PubMed  CAS  Google Scholar 

  • Long AD, Lyman RF, Langley CH, Mackay TFC (1998) Two sites in the delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149(2):999–1017

    PubMed  CAS  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120(1):151–161

    PubMed  Google Scholar 

  • Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE (2009) The accuracy of genomic selection in norwegian red cattle assessed by cross-validation. Genetics 183(3):1119–1126

    PubMed  Google Scholar 

  • Lyman RF, Lai C, Mackay TFC (1999) Linkage disequilibrium mapping of molecular polymorphisms at the scabrous locus associated with naturally occurring variation in bristle number in Drosophila melanogaster. Genet Res 74(03):303–311

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Ma X-F, Hall D, St. Onge, Jansson S, Ingvarsson PK (2010) Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics 186(3):1033–1044

    PubMed  CAS  Google Scholar 

  • Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2011) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity:1–7

  • Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragones A, Perez DD, Harvengt L, Espinel S, Ritter E (2003) Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.). Silvae Genet 52(1):8–15

    Google Scholar 

  • Marques CM, Brondani RPV, Grattapaglia D, Sederoff R (2002) Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor Appl Genet 105:474–478

    PubMed  CAS  Google Scholar 

  • Marquet S, Doumbo O, Cabantous S, Poudiougou B, Argiro L, Safeukui I, Konate S, Sissoko S, Chevereau E, Traore A, Keita MM, Chevillard C, Abel L, Dessein AJ (2008) A functional promoter variant in IL12B predisposes to cerebral malaria. Hum Mol Genet 17(14):2190–2195

    PubMed  CAS  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2(5):370–381

    PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  CAS  Google Scholar 

  • Nadeau JH, Frankel WN (2000) The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 25(4):381–384

    PubMed  CAS  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122

    PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330

    PubMed  CAS  Google Scholar 

  • Neale DB, Sewell MM, Brown GR (2002) Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci 59(5–6):595–605

    Google Scholar 

  • Newcombe G, Bradshaw HD, Chastagner GA, Stettler RF (1996) A major gene for resistance to Melampsora medusae f sp deltoidae in a hybrid poplar pedigree. Phytopathology 86(1):87–94

    CAS  Google Scholar 

  • Nordborg M, Tavare S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18(2):83–90

    PubMed  CAS  Google Scholar 

  • Olson MS, Robertson AL, Takebayashi N, Silim S, Schroeder WR, Tiffin P (2010) Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytol 186(2):526–536

    PubMed  Google Scholar 

  • Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Mol Biol 55(2):263–280

    PubMed  CAS  Google Scholar 

  • Pavy N, Namroud MC, Gagnon F, Isabel N, Bousquet J (2012) The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity 108(3):273–284

    PubMed  CAS  Google Scholar 

  • Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen WV, Meyer KC, Paus R, Jahoda CAB, Amos CI, Gregersen PK, Christiano AM (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466(7302):113–117

    PubMed  CAS  Google Scholar 

  • Pot D, McMillan L, Echt C, Le Provost G, Garnier-Gere P, Cato S, Plomion C (2005) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167(1):101–112

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    PubMed  CAS  Google Scholar 

  • Pyhajarvi T, Garcia-Gil MR, Knurr T, Mikkonen M, Wachowiak W, Savolainen O (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177(3):1713–1724

    PubMed  CAS  Google Scholar 

  • Pyhajarvi T, Kujala ST, Savolainen O (2011) Revisiting protein heterozygosity in plants —nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris. Tree Genet Genomes 7(2):385–397

    Google Scholar 

  • Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Southerton SG (2008) Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytol 179(1):94–103

    PubMed  CAS  Google Scholar 

  • Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of Loblolly pine (Pinus taeda L.). Genetics 186(2):677–686

    PubMed  CAS  Google Scholar 

  • Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20(2):103–111

    PubMed  CAS  Google Scholar 

  • Rengel D, San Clemente H, Servant F, Ladouce N, Paux E, Wincker P, Couloux A, Sivadon P, Grima-Pettenati J (2009) A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biol 9:36

    PubMed  Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012a) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194(1):116–128

    PubMed  Google Scholar 

  • Resende MFR, Munoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M (2012b) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193(3):617–624

    PubMed  Google Scholar 

  • Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012c) Accuracy of genomic selection methods in a standard dataset of Loblolly pine (Pinus taeda L.). Genetics 190(4):1503–1510

    PubMed  Google Scholar 

  • Rocha RB, Barros EG, Cruz CD, Rosado AM, Araujo EF (2007) Mapping of QTLs related with wood quality and developmental characteristics in hybrids (Eucalyptus grandis × Eucalyptus urophylla). Rev Arvore 31(1):13–24

    Google Scholar 

  • Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123(4):218–223

    PubMed  CAS  Google Scholar 

  • Scotti-Saintagne C, Bertocchi E, Barreneche T, Kremer A, Plomion C (2005) Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Ann For Sci 62(4):369–374

    CAS  Google Scholar 

  • Sewell MM, Neale DB (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 1. Kluwer Academic Publishers, The Netherlands, pp 407–423

    Google Scholar 

  • Sexton TR, Henry RJ, McManus LJ, Henson M, Thomas DS, Shepherd M (2010) Genetic association studies in Eucalyptus pilularis Smith (blackbutt). Aust For 73(4):254–258

    Google Scholar 

  • Shepherd M, Huang SW, Eggler P, Cross M, Dale G, Dieters M, Henry R (2006) Congruence in QTL for adventitious rooting in Pinus elliottii × Pinus caribaea hybrids resolves between and within-species effects. Mol Breed 18(1):11–28

    CAS  Google Scholar 

  • Shepherd M, Kasem S, Lee DJ, Henry R (2008) Mapping species differences for adventitious rooting in a Corymbia torelliana × Corymbia citriodora subspecies variegata hybrid. Tree Genet Genomes 4(4):715–725

    Google Scholar 

  • Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173(4):2237–2245

    PubMed  CAS  Google Scholar 

  • Solberg T, Sonesson A, Woolliams J, Meuwissen T (2009) Reducing dimensionality for prediction of genome-wide breeding values. Genet Sel Evol 41(1):29

    PubMed  Google Scholar 

  • Southerton SG, MacMillan CP, Bell JC, Bhuiyan N, Downes G, Ravenwood IC, Joyce KR, Williams D, Thumma BR (2010) Association of allelic variation in xylem genes with wood properties in Eucalyptus nitens. Aust For 73(4):259–264

    Google Scholar 

  • Stelkens R, Seehausen O (2009) Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63(4):884–897

    PubMed  Google Scholar 

  • Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3(5):391–396

    PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.). Proc Natl Acad Sci U S A 98(16):9161–9166

    PubMed  CAS  Google Scholar 

  • Terwilliger JD, Weiss KM (1998) Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol 9(6):578–594

    PubMed  CAS  Google Scholar 

  • Thavamanikumar S, McManus LJ, Tibbits JFG, Bossinger G (2011) The significance of single nucleotide polymorphisms (SNPs) in Eucalyptus globulus breeding programs. Aust For 74(1):23–29

    Google Scholar 

  • Thumma B, Sharma N, Southerton S (2012) Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BMC Genomics 13(1):364

    PubMed  CAS  Google Scholar 

  • Thumma BR, Baltunis BS, Bell JC, Emebiri LC, Moran GF, Southerton SG (2010a) Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. Tree GenetGenomes 6(6):877–889

    Google Scholar 

  • Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM, Southerton SG (2009) Identification of a cis-acting regulatory polymorphism in a Eucalypt COBRA-like gene affecting cellulose content. Genetics 183(3):1153–1164

    PubMed  CAS  Google Scholar 

  • Thumma BR, Nolan MR, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171(3):1257–1265

    PubMed  CAS  Google Scholar 

  • Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF (2010b) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree GenetGenomes 6(2):305–317

    Google Scholar 

  • Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RAE, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465(7298):632–636

    PubMed  CAS  Google Scholar 

  • Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, Kremer A (1997) Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet 95(4):597–608

    Google Scholar 

  • Wachowiak W, Balk PA, Savolainen O (2009) Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree GenetGenomes 5(1):117–132

    Google Scholar 

  • Whetten R, Sun Y-H, Zhang Y, Sederoff R (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47(1):275–291

    PubMed  CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, Wallingford

    Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565–569

    PubMed  CAS  Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    PubMed  CAS  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    PubMed  CAS  Google Scholar 

  • Zhang Z, Liu J, Ding X, Bijma P, de Koning D-J, Zhang Q (2010) Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One 5(9):e12648

    PubMed  Google Scholar 

  • Zhao KY, Aranzana MJ, Kim S, Lister C, Shindo C, Tang CL, Toomajian C, Zheng HG, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLos Genet 3(1):e4

    PubMed  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163(3):1123–1134

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala R. Thumma.

Additional information

Communicated by A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thavamanikumar, S., Southerton, S.G., Bossinger, G. et al. Dissection of complex traits in forest trees — opportunities for marker-assisted selection. Tree Genetics & Genomes 9, 627–639 (2013). https://doi.org/10.1007/s11295-013-0594-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0594-z

Keywords

Navigation