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Abstract Characterizing population structure using neutral
markers is an important first step in association genetic
studies in order to avoid false associations between
phenotypes and genotypes that may arise from non-
selective demographic factors. Population structure was
studied in a wide sample of ∼1,300 coastal Douglas-fir
[Pseudotsuga menziesii (Mirb.) Franco var. menziesii] trees
from Washington and Oregon. This sample is being used
for association mapping between cold hardiness and
phenology phenotypes and single-nucleotide polymor-

phisms in adaptive-trait candidate genes. All trees were
genotyped for 25 allozyme and six simple sequence repeat
(SSR) markers using individual megagametophytes. Popu-
lation structure analysis was done separately for allozyme
and SSR markers, as well as for both datasets combined.
The parameter of genetic differentiation (θ or FST) was
standardized to take into account high within-population
variation in the SSR loci and to allow comparison with
allozyme loci. Genetic distance between populations was
positively and significantly correlated with geographic
distance, and weak but significant clinal variation was
found for a few alleles. Although the STRUCTURE
simulation analysis inferred the same number of popula-
tions as used in this study and as based on previous analysis
of quantitative adaptive trait variation, clustering among
populations was not significant. In general, results indicated
weak differentiation among populations for both allozyme
and SSR loci (θs=0.006–0.059). The lack of pronounced
population subdivision in the studied area should facilitate
association mapping in this experimental population, but
we recommend taking the STRUCTURE analysis and
population assignments for individual trees (Q-matrix) into
account in association mapping.
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Introduction

Coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco
var. menziesii] is the most economically important tree in
the Pacific Northwest and is the major object of our
association mapping study. Coastal Douglas-fir has a high
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level of phenotypic variation that is strongly associated
with geographic, topographic, and climatic features (Campbell
and Sugano 1975; Campbell and Sorensen 1978; Steiner
1979; Li and Adams 1993; Aitken and Adams 1997;
Anekonda et al. 2000; St. Clair et al. 2005; St. Clair 2006).
Clinal patterns of variation in growth and phenological traits
have been observed over latitudinal, longitudinal, and
elevational transects despite the appreciable gene flow
expected in this wind-pollinated species. Common garden
studies have found that adaptive patterns of variation can
occur among Douglas-fir populations within relatively small
local regions (Campbell 1979; St. Clair et al. 2005).
Populations can differ considerably for adaptive traits, in
particular for bud phenology and growth. Variation in bud
set timing and growth was strongly related to provenance
elevation and cool season temperatures. Variation in bud
burst and partitioning to stem diameter versus height was
related to provenance latitude and summer drought. Clinal
variation in response to microenvironmental heterogeneity
has also been found in the central part of the Oregon
Cascades (Campbell 1979).

The genes controlling adaptive traits in Douglas-fir are,
however, still largely unknown. Quantitative trait loci
(QTL) mapping studies have allowed us to begin dissecting
these complex traits (Jermstad et al. 2001a, b, 2003;
Wheeler et al. 2005; Carlson et al. 2007). Several genomic
regions responsible for genetic control of growth rhythm
and cold hardiness traits were found, but QTL mapping
does not reveal which individual genes are responsible for
these effects. Association mapping is a more powerful
population genomic approach that can identify individual
genes and alleles that are responsible for phenotypic
differences in adaptive traits (Krutovsky and Neale 2005a;
González-Martínez et al. 2006, 2007). Limited genetic
resources and the large genome of Douglas-fir, however,
prevent a full genome scan. Instead, we plan to carry out a
candidate gene-based association mapping study using
single-nucleotide polymorphisms (SNPs). To achieve this
goal, we developed SNP markers in numerous candidate
genes (Krutovsky and Neale 2005b; Pande et al. 2007).
However, unchecked population structure can result in false
positive, spurious associations and constrain the use of
association studies (see, for instance, Aranzana et al. 2005
for Arabidopsis and Yu and Buckler 2006 for maize). Such
false positives arise when testing random genetic markers
with different frequencies in subpopulations for a trait with
parallel phenotypic differences. To reduce this risk, esti-
mates of population structure must be included in associ-
ation analysis.

To address the issue of population structure in
population-based samples, the two most common methods,
genomic control (GC) and structured association (SA), are
utilized in both human and plant studies (e.g., Devlin and

Roeder 1999; Devlin et al. 2001; Yu and Buckler 2006).
With GC, a set of random markers is used to estimate the
degree of inflation of the test statistics generated by
population structure, assuming such structure has a similar
effect on all loci (Devlin and Roeder 1999). By contrast,
SA analysis first uses a set of random markers to estimate
individual population subdivision (Q-matrix) and then
incorporates this estimate into further statistical analysis
(Pritchard and Rosenberg 1999; Pritchard et al. 2000;
Falush et al. 2003). Genetic association models that account
for the different levels of relatedness found in natural
populations have recently been developed (Pritchard et al.
2000; Falush et al. 2003; Thornsberry et al. 2001; Yu et al.
2006; Camus-Kulandaivelua et al. 2007). For instance, in
several association studies in plants (Thornsberry et al.
2001; Liu et al. 2003; Wilson et al. 2004), population
genetic structure has been assessed using the software
STRUCTURE (Pritchard et al. 2000; Falush et al. 2003).

If, however, the distribution of functional alleles is
highly correlated with population structure, statistical
control for population structure can result in false negatives,
particularly for small sample sizes. Two recent studies in
maize illustrate the above scenario. In an attempt to validate
the function of the Dwarf8 (D8) locus, 71 elite European
inbred lines were genotyped for D8 polymorphism and
phenotyped for flowering time (Andersen et al. 2005).
Although significant association was detected without
controlling for population structure, no association resulted
when the population structure was controlled. By contrast,
the association of D8 polymorphism with flowering time
has been validated in a large association mapping popula-
tion of 375 maize inbred lines (Camus-Kulandaivelu et al.
2006). Association studies, therefore, are best carried out in
independent populations with a large sample size (see Ball
2007 for review).

The objectives of this study were to explore population
structure in coastal Douglas-fir populations using molecular
markers and trees sampled from these populations and to
justify further use of these samples as a large association
mapping population with Q-matrix corrections if needed.

Materials and methods

Population sampling

Wind-pollinated seeds were collected from 1,283 parent
trees of coastal Douglas-fir [P. menziesii (Mirb.) Franco var.
menziesii] in naturally regenerated stands at 1,048 locations
in western Oregon and Washington (Fig. 1). Most of the
seeds were obtained from previous collections of the USDA
Forest Service, USDI Bureau of Land Management,
Oregon Department of Forestry, and Northwest Tree
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Improvement Cooperative made in the early 1990s. The
range of coastal Douglas-fir in western Oregon and
Washington was well sampled, although sampling intensity
was lower along the Washington coast and in urban and
agricultural areas around Puget Sound and the Willamette
Valley (see St. Clair et al. 2005 for details).

Genetic markers

Allozyme loci Twenty-five allozyme loci (ACO-1, ACO-2,
CAT, DIA, F-EST, G-6PD, GDH, GOT-1, GOT-2, GOT-3,
GLYD, IDH, LAP-1, LAP-2, MDH-1, MDH-2, MDH-3,
MDH-4, 6-PGD-1, PGM-1, PGM-2, PGI-1, PGI-2, PMI,
and SOD) representing 16 different enzyme systems
(Electronic supplementary materials, Table 1S) were geno-
typed in 1,236 trees (298 from Washington and 938 from
Oregon). The genotypes of the trees were determined using
eight megagametophytes per tree. The allozyme analysis
was performed using starch gel electrophoresis and proce-
dures described in Adams et al. (1990). The inheritance and
linkage of these loci were studied earlier (El-Kassaby et al.
1982; Neale et al. 1984; Adams et al. 1990; Jermstad et al.
1994).

Microsatellite or SSR loci Six unlinked and highly poly-
morphic dinucleotide simple sequence repeat (SSR) loci
(PmOSU_1C3, PmOSU_2G12, PmOSU_3B2, PmO-
SU_3F1, PmOSU_3G9, and PmOSU_4A7) were selected
from a previous study (Slavov et al. 2004). For simplicity,
the generic prefix “PmOSU” is omitted further in the text
and tables. The 1,210 trees were genotyped using DNA
isolated from ten pooled megagametophytes per tree (287
from Washington and 923 from Oregon). This allowed us to
use the same seed collections that have been used for
allozyme genotyping also for both SSR and SNP genotyp-
ing. Different seeds from the same open-pollinated seed
collections were used for allozymes and for SSRs and SNPs
genotyping, but the same DNA samples were used for
SSRs and SNPs genotyping. A preliminary study pooling
DNA from megagametophytes with known genotypes to
make pools with ratios of different alleles 9:1, 8:2, 7:3, 3:7,
2:8, and 1:9 showed that the pooling had no effect on the
SNP genotyping (results are available upon request).
Pooling effects on SSR genotyping were not tested.
Theoretically, smaller size alleles may have an amplifica-
tion advantage over larger size alleles in uneven pools from
heterozygous trees when ratio of both alleles is biased in

WA Coast South Low (WaCoSoLo)[8] 

WA Cascades North High (WaCaNoHi)[18] 
WA Cascades North Low (WaCaNoLo)[17] 

OR Cascades Eastside High (OrCaEaHi)[14] 

OR Columbia Gorge Low (OrCoGoLo)[12] 

OR Cascades North High (OrCaNoHi)[13] 
OR Cascades North Low (OrCaNoLo)[12] 

OR Coast South High (OrCoSoHi)[4] 
OR Coast South Low (OrCoSoLo)[3] 

OR Klamath Mountains High (OrKlMoHi)[2] 
OR Klamath Mountains Low (OrKlMoLo)[1]

OR Coast North High (OrCoNoHi)[6] 
OR Coast North Low (OrCoNoLo)[5] 

OR Coast Eastside Low (OrCoEaLo)[7] 

WA Coast North Low 
(Olympics, WaCoNoLo)[9] 

WA Cascades South High (WaCaSoHi)[16] 
WA Cascades South Low (WaCaSoLo)[15] 

OR Cascades South High (OrCaSoHi)[11] 
OR Cascades South Low (OrCaSoLo)[10] 

Fig. 1 Coastal Douglas-fir (P. menziesii var. menziesii) source locations and regional classification used in analysis. Most regions were divided
into high and low elevations at 650 m (St. Clair 2006)
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favor of a smaller size allele. It may potentially lead to the so-
called large-allele dropout due to misgenotyping of hetero-
zygotes for uneven size alleles as homozygotes for small
alleles (DeWoody et al. 2006). In extreme cases, it may
decrease observed heterozygosity and overestimate homozy-
gosity. We addressed this potential problem by optimizing
polymerase chain reaction (PCR) conditions and increasing
PCR extension time to minimize competition between alleles,
re-amplifying, re-genotyping, and carefully rescoring samples
homozygous for short alleles. In addition, the MICRO-
CHECKER software was used to test the genotyping of
microsatellite (SSR) data and to identify various genotyping
and typographic errors (Van Oosterhout et al. 2004). MICRO-
CHECKER estimates the frequency of null alleles at a locus
using a series of algorithms. Importantly, MICRO-CHECKER
can also adjust the number of homozygote genotypes and allele
and genotype frequencies of the amplified alleles, which
allows the data to be used in further population genetic
analysis, such as GENEPOP (Raymond and Rousset 1995a;
Rousset 2008) and FSTAT (Goudet 1995, 2001).

Among 1,283 individual trees in this study, 1,236 trees
were genotyped for allozyme loci, 1,210 trees for SSR loci,
and 1,163 for both allozyme and SSR loci. Each set of
markers was analyzed separately first, and then, both sets
(allozyme and SSR loci) were analyzed jointly.

Population classification

Douglas-fir samples were assigned to specific eco-
geographic groups to study their genetic differentiation.
We used the 18 regions defined by St. Clair (2006) to
classify populations for purposes of looking at population
structure (Table 1 and Fig. 1). The regional classification is
derived from the high-resolution genecological maps con-
structed for Douglas-fir in Oregon and Washington (St.
Clair et al. 2005; St. Clair 2006). In the latter study, St.
Clair (2006) defined regions based on ecoregions, latitudi-
nal divisions within ecoregions, and elevational divisions
within ecoregion and latitudinal strata. This population
classification was designed to reflect known patterns of
quantitative variation (St. Clair et al. 2005) and are similar
to the breeding zones used in Douglas-fir breeding
programs in Oregon and Washington (Howe et al. 2006).
Regions were delineated using Omernik's level III eco-
regions (Omernik 1995; Pater et al. 1998), but the Coast
Range ecoregion was further divided at 44.2° N latitude, at
the Columbia River (∼46.2° N latitude), and at 47.8° N
latitude. The Cascade ecoregion was further divided at
44.2° N latitude and at the Columbia River (∼45.6° N
latitude). All ecoregion latitudinal strata were further
divided into low and high elevations at 650 m, although
the Washington Coast Range and the Willamette Valley
strata did not have high-elevation sources, and the Eastern

Cascades strata did not have low-elevation sources (Fig. 1).
The entire sample was also studied to infer population
structure without imposing any particular grouping a priori.

Statistical analysis

Descriptive gene diversity statistics, allelic richness, num-
ber of alleles, proportion of polymorphic loci, and observed
(Ho) and expected (He) heterozygosities (Nei 1987) were
calculated for each population using the FSTAT v. 2.9.3.2
software (Goudet 1995, 2001) and the Genetic Data
Analysis software by Lewis and Zaykin (2001). Allelic
richness is a measure of the number of alleles independent
of sample size (Petit et al. 1998).

Pairwise difference between populations was evaluated
using an unbiased estimate of the pairwise P values for
allele distribution difference between populations (Fisher
exact test) that was performed as described by Raymond
and Rousset (1995b) using the GENEPOP v.4.0 software
(Raymond and Rousset 1995a; Rousset 2008). In addition,
for pairwise tests of differentiation, multi-loci genotypes
were randomized between the two samples for each pair of
samples, contingency tables of alleles by samples were
generated, and the log-likelihood G statistics over all loci
were used to estimate significance at 5%, 1%, or 0.1%
levels using the FSTAT (Petit et al. 2001). The main
advantage of this test compared to Fisher's procedure to
combine individual loci P value is that loci are weighted
according to their “information” content, that is, the P
values for very polymorphic loci are weighted more than
those for nearly monomorphic loci, unlike Fisher's proce-
dure where each P value has the same weight. The standard
(not sequential) Bonferroni corrections were used to adjust
P value for each pair for multiple tests.

The genetic structure and differentiation between sam-
ples were estimated using the F statistics by Weir and
Cockerham (1984), which measures the genetic variance
among populations divided by the genetic variance of the
total population. Significance of F (FIT), θ (FST), and f (FIS)
was calculated using the FSTAT software and based on
proportion of randomizations that gave larger F values than
the observed. Testing for Hardy–Weinberg within samples
was based on 1,000 randomizations of alleles within
samples using f (FIS) statistic.

The use of both allozyme and SSR markers increases the
number of molecular markers and provides more data, but
while the SSR variation located in non-coding regions is
assumed to be selectively neutral, the allozyme variation
can be more affected by natural selection (Altukhov 1991,
2006). Therefore, before using them together, it is impor-
tant to compare results based on these two types of markers.
However, comparison of population structure between
allozyme and SSR loci can be difficult because the value
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of the FST statistic depends on the amount of genetic
variation within populations. A standardized measure of
population genetic differentiation was developed recently
that addressed this problem (Meirmans 2006). One of the
advantages of the method is that it can be used to compare
markers of different kinds and can be readily expanded to
include different hierarchical levels in the tested population
structure.

Regression analysis and the Mantel test were used to
analyze whether genetic differentiation between popula-
tions correlates with geographic distance between them

using the SPAGEDI v.1.2 software (Hardy and Vekemans
2002) and the PGMAN software by Saúl Lozano-Fuentes
(http://www.evolcafe.com/popgen/download.htm). Euclidi-
an distance was calculated from the Universal Transverse
Mercator coordinates X, Y, and Z using Franson CoordTrans
v.2.2 software (http://franson.com/coordtrans) and was used
as a measure of geographic distance between populations.
Genetic differentiation between populations was calculated
as θ/(1 − θ) [FST/(1 − FST)], which approximates relation-
ships between genetic and geographic distance better than
ordinary θ(FST) (Rousset 1997).

Table 1 Pacific Northwest ecoregions and coastal Douglas-fir regions and seed zones

Population Region (St. Clair 2006) Abbreviation Numbera Ecoregion (US DOI BLM 2005)b

1 Oregon Klamath Mountains Low OrKlMoLo 73 Klamath Mountains (78)
2 Oregon Klamath Mountains High OrKlMoHi 96

3 Oregon Coast South Low OrCoSoLo 101 Coast Range (1)
4 Oregon Coast South High OrCoSoHi 19

5 Oregon Coast North Low OrCoNoLo 128

2 Willamette Valley (3)

6 Oregon Coast North High OrCoNoHi 16 Coast Range (1)
7 Oregon Coast Eastside Low OrCoEaLo 1

38 Willamette Valley (3)

8 Washington Coast South Low WaCoSoLo 42 Coast Range (1)

13 Puget Lowland (2)

9 Washington Coast North Low (Olympics) WaCoNoLo 8 Coast Range (1)

6 Puget Lowland (2)

10 Oregon Cascades South Low OrCaSoLo 59 Cascades (4)

10 Willamette Valley (3)

11 Oregon Cascades South High OrCaSoHi 168 Cascades (4)
12 Oregon Cascades North Low OrCaNoLo 73

14 Willamette Valley (3)

1 Puget Lowland (2)

Oregon Columbia Gorge Lowc OrCoGoLo 4 Eastern Cascades Slopes and Foothills (9)

13 Oregon Cascades North High OrCaNoHi 120 Cascades (4)

14 Oregon Cascades Eastside High OrCaEaHi 37 Eastern Cascades Slopes and Foothills (9)

15 Washington Cascades South Low WaCaSoLo 56 Cascades (4)

3 Eastern Cascades Slopes and Foothills (9)

9 Puget Lowland (2)

16 Washington Cascades South High WaCaSoHi 79 Cascades (4)

6 Eastern Cascades Slopes and Foothills (9)

17 Washington Cascades North Low WaCaNoLo 12 Puget Lowland (2)

45 North Cascades (77)

18 Washington Cascades North High WaCaNoHi 44

Total 1,283

a Number of trees studied
b Ecoregion codes are in parentheses (see also EPA 2004). Based on Johnson et al. (2004), the ecoregions were divided into the following seed
zones included in the study:North Cascades—207, 208, 210, 211;Puget Lowland—203–205, 208;Eastern Cascades Slopes and Foothills—100,
116, 211, 212;Cascades—100, 106, 108–116, 205, 206, 208, 209, 211, 212;Coast Range—101, 102, 104–108, 201, 203, 204, 205, 206;
Willamette Valley—106, 108, 109, 114;Klamath Mountains—101, 102, 103, 106, 107, 110, 111, 116
c Due to limited sample size the Oregon Columbia Gorge Low (OrCoGoLo) population was combined with the neighboring Oregon Cascades
North Low (OrCaNoLo) population

Tree Genetics & Genomes (2009) 5:641–658 645

http://www.evolcafe.com/popgen/download.htm
http://franson.com/coordtrans


To visualize phylogenetic relationships between popula-
tions, the consensus neighbor-joining trees based on Nei's
(1972) genetic distance and 10,000 bootstraps were
generated using the PHYLIP software package (http://
evolution.genetics.washington.edu/phylip.html).

Coalescent simulations using the Island model (Strobeck
1987) to generate the theoretical distribution of FST and to
reveal outlier loci with unusually high or low differentiation
were performed following analyses described in Beaumont
and Nichols (1996) and the FDIST2 program (Beaumont
and Balding 2004). We used the LOSITAN program to
visualize the expected confidence intervals for FST vs. He

(expected heterozygosity) distribution computed by the
FDIST2 program under an Island model of migration with
neutral markers (Antao et al. 2008). LOSITAN was run first
using 10,000 simulations and all loci to estimate the mean
neutral FST. After the first run, all loci that were outside the
95% confidence intervals were removed, and the mean
neutral FST was computed again using only putative neutral
loci that were not removed. A second and final run of
LOSITAN, using all loci, was then conducted using the last
computed mean. This procedure lowers the bias on the
estimation of the mean neutral FST by removing the most
extreme loci from the estimation. All loci were present in
the last run, and their estimated selection status was
reported.

The population structure (number of potentially different
clusters) and proportion of membership of each predefined
population and each individual tree in each of the inferred
clusters (Q-matrix) were inferred via a model-based
clustering method implementing the Markov chain Monte
Carlo (MCMC) algorithm and a Bayesian framework. The
individuals were assigned to several genetic groups in a
way to minimize within-group linkage disequilibrium and
deviation from Hardy–Weinberg equilibrium using the
STRUCTURE v2.1 software (Pritchard et al. 2000; Pritchard
and Wen 2004). We set most of the parameters to their
default values as advised in the user's manual (Pritchard and
Wen 2004). We chose the admixture model and the option
of correlated allele frequencies between populations, as this
configuration is considered best by Falush et al. (2003) in
cases of subtle population structure, and let the degree of
admixture alpha be inferred from the data. Lambda, the
parameter of the distribution of allelic frequencies, was set
to 1, as the manual advises. We used long burn-in and
MCMC of 50,000 and 100,000 cycles, respectively,
although from preliminary tests, we found that 20,000
would be sufficient for both the burn-in and MCMC.
Several different runs were done to test the consistency of
the results. The number of possible clusters (K) was tested
from 1 to 28. St. Clair (2006) concluded that quantitative
variation best fits a subdivision into 18 populations. The
most likely number of populations is usually identified

using the maximal value of the posterior probability of the
data among given K, Pr(X|K) called LnP(D) in STRUC-
TURE output (Pritchard et al. 2000). However, Evanno et
al. (2005) found that in many cases, the estimated LnP(D)
does not help visualizing a correct number of clusters, K.
They demonstrated that using an ad hoc statistic ΔK based
on the rate of change in the log probability of data between
successive K values evaluated by STRUCTURE more
accurately detects the uppermost hierarchical level of
structure. Although the different population structure and
migration scenarios that they tested were more complex
than in Douglas-fir, we also applied their approach and
found that it indeed improved analysis of data generated by
STRUCTURE in our study.

Clinal allelic variation was tested using Spearman rank
correlation (STATISTICA software, v.6 StatSoft, Inc., Tulsa,
OK, USA; www.statsoft.com) and logistic regression (JMP
software; SAS Institute, Cary, NC, USA) with longitude,
latitude, and elevation as the continuous independent
variables and alleles as levels of the dependent variable.

Results

Genetic diversity

The observed (Ho) and expected (He) heterozygosities
varied from 0.005 to 0.692 among 25 allozyme loci
(Table 2) and from 0.187 to 0.223 between populations
for all loci (Electronic supplementarymaterials, Appendix 1).
The mean number of alleles per population (A=3.02;
Electronic supplementary materials, Appendix 1) and per
locus in the entire sample (A=4.96; Table 2) and heterozy-
gosity for allozyme loci (Ho=0.203, He=0.206) were
relatively high. The allelic richness and heterozygosity
were the highest in the Oregon Cascades South High
(OrCaSoHi) population and Washington Coast South Low
(WaCoSoLo), respectively, and the lowest in Oregon Coast
South High (OrCoSoHi) and Washington Coast North Low
(Olympics; WaCoNoLo; Electronic supplementary materi-
als, Appendix 1).

The mean number of alleles, as well as observed and
expected heterozygosities, were also very high for SSR loci
(A=24.3; Ho=0.639; He=0.936; Table 2 and Electronic
supplementary materials, Appendix 1). The mean fixation
indices, f (FIS), were significantly different from Hardy–
Weinberg expectation for some SSR loci in several
populations, but not for allozyme loci. A high frequency
of null alleles and allelic dropout in the SSR loci were the
most likely reasons for false homozygote genotyping that
inflated fixation indices. We minimized the problem by
using the MICRO-CHECKER software to adjust the
number of homozygous genotypes in each size class to
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Table 2 Genetic variation and differentiation in coastal Douglas-fir

Locus Alleles Allelic richness Ho He f (FIS)±SE
a θ (FST)±SE

a θS
b P±SEc

Allozyme loci

ACO-1 3 1.67 0.053 0.055 0.036±0.035 0.002±0.003 0.002 0.0374±0.0028

ACO-2 5 1.49 0.032 0.032 0.046±0.040 0.002±0.003 0.002 0.7257±0.0094

PGM-1 6 2.86 0.280 0.329 0.125±0.058 0.026±0.023 0.037 0.0000±0.0000

PGM-2 7 2.38 0.113 0.121 0.049±0.036 0.001±0.002 0.001 0.0915±0.0079

PGI-1 3 1.19 0.012 0.013 0.225±0.115 −0.006±0.002 −0.005 0.9130±0.0033

PGI-2 5 2.36 0.128 0.127 −0.010±0.018 0.002±0.003 0.002 0.1156±0.0071

LAP-1 7 4.55 0.657 0.692 0.044±0.019 0.004±0.002 0.010 0.0001±0.0001

LAP-2 6 2.42 0.130 0.127 −0.001±0.021 0.003±0.004 0.003 0.0922±0.0063

SOD 5 2.05 0.100 0.109 0.062±0.032 0.004±0.004 0.004 0.0080±0.0018

PMI 3 1.19 0.010 0.012 0.224±0.137 0.005±0.005 0.005 0.0007±0.0002

GDH 4 1.10 0.005 0.005 −0.010±0.000 0.000±0.001 0.000 0.7166±0.0097

GOT-1 3 1.11 0.007 0.007 −0.002±0.000 −0.001±0.001 −0.001 0.7289±0.0061

GOT-2 6 2.56 0.225 0.222 0.005±0.029 0.004±0.003 0.004 0.0014±0.0006

GOT-3 5 2.28 0.127 0.138 0.052±0.024 −0.001±0.002 −0.001 0.0928±0.0081

G-6PD 7 3.15 0.575 0.545 −0.050±0.024 −0.002±0.001 −0.003 0.8060±0.0145

GLY-D 4 2.48 0.490 0.490 0.038±0.030 0.001±0.002 0.002 0.2240±0.0129

CAT 6 2.07 0.439 0.427 −0.025±0.027 0.005±0.004 0.008 0.0408±0.0120

F-EST 4 1.33 0.028 0.029 0.056±0.067 0.001±0.002 0.001 0.0619±0.0042

6-PGD 5 2.32 0.139 0.139 0.041±0.033 0.001±0.003 0.001 0.0603±0.0062

IDH 7 3.13 0.338 0.345 0.008±0.023 0.001±0.002 0.001 0.0385±0.0055

DIA 5 2.45 0.388 0.388 0.017±0.016 0.004±0.003 0.006 0.0004±0.0002

MDH-1 4 1.75 0.059 0.063 0.076±0.043 0.003±0.003 0.003 0.0299±0.0029

MDH-2 4 1.95 0.072 0.085 0.099±0.039 0.001±0.002 0.001 0.4779±0.0100

MDH-3 5 2.45 0.346 0.333 −0.019±0.024 0.000±0.002 0.000 0.2184±0.0137

MDH-4 5 2.48 0.333 0.328 0.007±0.040 −0.003±0.002 −0.004 0.7103±0.0153

Overall 4.96 2.19 0.203 0.206 0.020±0.012 0.003±0.002 0.004 Highly significant

95% CI −0.002–0.044 0.001–0.007

99% CI −0.008–0.052 0.000–0.009

SSR loci

1C3 45 9.79 0.383 0.959 0.625±0.021 0.003±0.002 0.070 0.0000±0.0000

2G12 41 8.42 0.732 0.920 0.205±0.015 0.004±0.002 0.047 0.0000±0.0000

3B2 47 9.85 0.801 0.959 0.174±0.015 0.003±0.001 0.067 0.0000±0.0000

3F1 46 9.65 0.476 0.948 0.494±0.024 0.002±0.001 0.043 0.0000±0.0000

3G9 32 7.12 0.596 0.874 0.314±0.019 0.001±0.002 0.007 0.0000±0.0000

4A7 60 9.86 0.873 0.956 0.065±0.012 0.004±0.001 0.082 0.0000±0.0000

Overall 46.33 9.12 0.639 0.936 0.314±0.088 0.003±0.000 0.044 Highly significant

95% CI 0.164–0.479 0.002–0.004

99% CI 0.129–0.527 0.002–0.004

SSR loci after correction for null allelesd

1C3 46 9.14 0.710 0.942 0.186±0.028 0.004±0.003 0.057 0.0000±0.0000

2G12 42 8.63 0.810 0.927 0.111±0.010 0.004±0.001 0.052 0.0000±0.0000

3B2 48 9.94 0.823 0.960 0.146±0.011 0.003±0.001 0.070 0.0000±0.0000

3F1 47 9.31 0.702 0.935 0.160±0.028 0.007±0.001 0.111 0.0000±0.0000

3G9 33 7.53 0.776 0.890 0.073±0.012 0.003±0.001 0.026 0.0000±0.0000

4A7 61 9.86 0.876 0.956 0.064±0.011 0.004±0.001 0.082 0.0000±0.0000

Overall 46.17 9.07 0.783 0.935 0.122±0.019 0.004±0.001 0.057 Highly significant

95% CI 0.089–0.156 0.003–0.005

99% CI 0.079–0.165 0.003–0.006
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reflect the estimated “real” numbers of homozygotes. A
zero value was entered to replace one of the alleles in some
homozygous genotypes. Summary statistics of null allele
estimates across all loci is presented for all 18 populations
in Electronic supplementary materials, Appendix 2. Anal-
ysis of distribution of homozygote and allele frequencies
for six SSR loci together with adjusted genotypes and
corrected allele frequencies of amplified alleles based on
the four methods of null allele estimation were presented
only for the “OR Klamath Mountains Low” (OrKlMoLo)
population as an example (Appendix 2). Similar analysis
was done for all 18 populations (results are available upon
request).

Pairwise differentiation between populations

All individual pairwise P values for allele distribution
differences between populations are presented in Electronic
supplementary materials, Appendix 3. We tested the null
hypothesis of whether the allele distribution is identical
across populations using the log-likelihood G statistics and
Fisher exact test (see “Statistical analysis” in Materials and
Methods). Electronic supplementary materials, Appendix 3
also presents pairwise values for standardized θS. They
varied from 0 to 0.0506 (between OrCoEaLo and WaCo-
SoLo) for the allozyme loci, from 0 to 0.2623 (between
OrCoSoHi and WaCaNoLo) for the SSR loci, and from 0 to
0.0368 (between OrCoSoHi and WaCoSoLo) for the
combined loci. The WaCoSoLo and Washington Cascade
Mountain (WaCaSoLo, WaCaNoLo, and WaCaNoHi) pop-
ulations were the most different from other populations,
while the Oregon Coast North High (OrCoNoHi) popula-
tion was similar to all populations. SSR alone and

combined with allozyme markers corroborated these obser-
vations, although more pairwise comparisons became
significant based on the SSR or combined markers.

Allelic heterogeneity

Allelic differentiation was significant for the ACO-1, PGM-
1, LAP-1, SOD, PMI, GOT-2, CAT, IDH, DIA, and MDH-1
loci among populations (see P values in Table 2). The allele
frequencies were heterogeneous for all SSR loci, as well as
globally for both marker sets separately and combined.

Genetic differentiation between populations

θ and θS were relatively low for both allozyme (θ=0.000–
0.026; θS=0.000–0.037) and SSR (θ=0.001–0.004; θS=
0.007–0.082) loci and combined (θ=0.003; θS=0.004–
0.044), although values over all loci were statistically
significantly different from zero in all cases based on
confidence intervals (CI, 95%; Table 2). Coalescence
simulation using overall FST=0.005 as an expected value
for neutral markers and infinite allele model found the
upper and the low FST limits at the 0.95 probability level
(Fig. 2). The loci PGM-1 (He=0.342, FST=0.038, P=
0.9973), 1C3 (He=0.962, FST=0.018, P=0.9999), and 3F1
(He=0.955, FST=0.027, P=1.0) were candidates for posi-
tive selection and locus MDH-4 (He=0.327, FST=0.0, P=
0.039) for balancing selection (Fig. 2).

Genetic vs. geographic distance and clinal allelic variation

Neighbor-joining trees revealed no significant clustering
except a few clusters with bootstrap values more than 50%,

Table 2 (continued)

Locus Alleles Allelic richness Ho He f (FIS)±SE
a θ (FST)±SE

a θS
b P±SEc

Allozyme and SSR loci

Overall 12.71 3.20 0.289 0.348 0.177±0.059 0.003±0.001 0.004 Highly significant

95% CI 0.062–0.281 0.002–0.005

99% CI 0.035–0.316 0.001–0.006

Allozyme and SSR loci after correction for null allelesd

Overall 12.84 3.20 0.316 0.348 0.073±0.018 0.004±0.001 0.006 Highly significant

95% CI 0.037–0.103 0.002–0.006

99% CI 0.026–0.112 0.001–0.008

a Standard errors (SE) for f and θ for individual and all loci were obtained via jackknifing over populations and loci, respectively. Confidence
intervals (CI) were obtained via bootstrapping over loci
b Standardized θ (Meirmans 2006)
c A log-likelihood ratio based exact G test (modified Fisher’s exact probability test) for allelic differentiation (Goudet et al. 1996). Significant
values are highlighted in bold
d Corrected using MICRO-CHECKER (van Oosterhout et al. 2004) and algorithm that has been developed to estimate null allele frequencies
assuming that the population is in Hardy–Weinberg equilibrium (Chakraborty et al. 1992)

648 Tree Genetics & Genomes (2009) 5:641–658



but phylogenetic tree topography mostly followed geo-
graphic location of studied samples (Fig. 3), which was
more pronounced when both types of markers were
combined together (Fig. 3C). Elevation appeared to play a
significant role in clustering. The populations from the
same elevation had a tendency to cluster together, especial-
ly considering significant clusters. For instance, WaCa-
NoLo and WaCoNoLo, WaCoSoLo, and Oregon Coast
North Low (OrCoNoLo) and OrCoSoHi and OrCoNoHi
populations formed significant clusters (Fig. 3A, C).

The genetic distances were positively correlated with
geographic distance for both types of markers (Fig. 4), but
were statistically significant only for the SSR markers and
combined data (Fig. 4B, C). Weak but significant clinal
variation was found for several alleles (see Table 3 for
examples). For instance, frequency of the CAT allele 1
significantly increases, while allele 3 decreases from south
to north (Fig. 5A). The DIA alleles 2 and 3 gradually
increase from east to west (Fig. 5B), and the PGM-1 allele
3 significantly increases, while alleles 1 and 2 decrease with
elevation (Fig. 5C).

Population structure

Despite the non-random distribution of allelic variation in
the studied area, the simulation study using the STRUC-
TURE software found very weak subdivision for the
admixture ancestry and correlated allele frequency model
tested under assumptions of K=1, 2, 3,..., 28 (e.g., Figs. 1S

and 2S and Table 2S, Electronic supplementary materials;
Q-matrix with inferred ancestry of individuals in each of
the assigned 18 populations is available from the authors
upon request). The differences in LnP(D) were small for
allozyme and SSR markers (Fig. 6), there were no clear
geographic interpretation for the assignments, the assign-
ments were roughly symmetric to all populations tested,
and almost no individuals were strongly and unambiguous-
ly assigned. The LnP(D) was almost unchanging for SSR
markers for all K and for allozyme markers for K from 1 to
7. It dropped for allozyme markers for K>7. There was a
pronounced drop for combined markers for K=17. Al-
though the highest LnP(D) for combined markers was for
K=15, ΔK (Evanno et al. 2005) clearly demonstrated that
the uppermost K equaled 18 (Fig. 6), which corresponded
exactly to the same number of populations used in this
study and suggested in previous analysis of quantitative
adaptive trait variation (St. Clair 2006). There were a
couple of ΔK peaks for allozyme loci at K=13 and 17,
while ΔK was practically invariable for SSR markers.

Discussion

The mean number of alleles (A=3.02) and heterozygosity
for allozyme loci (Ho=0.203, He=0.206) were relatively
high compared to conifers studied for a similar number of
allozyme loci, but within the observed range (A=1.5–2.5,
He=0.120–0.220; see El-Kassaby 1991; Hamrick et al.

Fig. 2 FST and He distribution for 25 allozyme and six SSR loci based
on differentiation among 18 coastal Douglas-fir populations. The
LOSITAN (Antao et al. 2008) screen shot showing a graphical output
with the simulated confidence area for neutral loci (gray color, middle

band) with loci from the original empirical dataset represented as dots
and computed using the FDIST2 simulation program (Beaumont and
Nichols 1996; Beaumont and Balding 2004). Outliers are tagged with
labels
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1992; Krutovskii et al. 1995; Ledig 1986, 1998). They were
also higher than the mean expected heterozygosity (0.137)
observed in an earlier range-wide study based on 20
enzyme loci and 104 geographical locations throughout
the range of Douglas-fir (Li and Adams 1989), but also
within the range (0.021–0.239) observed in that study.
Relatively high genetic diversity within studied populations
and low differentiation among populations (as measured by
allozymes) were consistent with data for other conifers in
general and for those long-living woody plant species that
have large effective population size and are also wind-
dispersed and wind-pollinated (Hamrick et al. 1992).

The mean number of alleles, observed and expected
heterozygosities for SSR loci (A=11–36; Ho=0.549–0.718;
He=0.877–0.944; see Electronic supplementary materials,
Appendix 1) were also relatively higher than those
estimated with the same type and number of markers in
conifers with wide geographical distributions, such as Larix
occidentalis (A=5.5, Ho=0.521, He=0.580; Khasa et al.
2006), Pinus strobus (A=9.6, Ho=0.522, He=0.607; Rajora
et al. 2000; Marquardt and Epperson 2004), Pinus contorta
(A=21.0, He=0.425; Thomas et al. 1999), Picea glauca
(A=16.4, Ho=0.649, He=0.851; Rajora et al. 2005), and
also P. menziesii (A=7.5, He=0.673; Amarasinghe and
Carlson 2002) studied earlier. The difference can be
explained by the fact that the SSR loci in our study were
preselected as the most polymorphic.

The mean fixation indices f (FIS) were significantly
different from Hardy–Weinberg expectation for the SSR,
but not allozyme loci. Both types of markers were
genotyped in nearly the same samples, and this difference
attests that a high frequency of null alleles and allelic
dropout in the SSR loci were the major reasons for false
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homozygote genotyping that inflated fixation indices in our
study (e.g., Pompanon et al. 2005). Allelic dropout is the
most prevalent source of genotyping error in general (Miller
et al. 2002) and is the most likely case in our study due to
using the DNA isolated from pooled megagametophytes. If
the segregation ratio deviates much from 1:1 in a pooled
individual sample, then a prevalent allele can over-compete
an underrepresented allele during PCR, especially if a
former one represents a shorter DNA fragment (aka “short
allele dominance”). Several solutions were offered recently
to deal with this problem (see Dewoody et al. 2006 for
review), but most of them require multiple repeats or at
least duplicate microsatellite genotypes (e.g., Miller et al.
2002; Johnson and Haydon 2007). We used the MICRO-
CHECKER software that proved to be very efficient to
minimize the problem. The observed heterozygosity based
on the SSR genotypes corrected for null alleles increased,
and discrepancy between observed and expected heterozy-
gosity greatly decreased, respectively (Table 2). The
fixation index f (FIS) also decreased several folds, while
estimates of differentiation [θ(FST) and θS] remained almost
the same (Table 2).

Pairwise comparisons demonstrated that the OrCoNoHi
population was the most genetically similar to all popula-
tions. This population and the WaCoSoLo population were
also the most polymorphic for SSR loci. These data support
the hypothesis that southwestern Washington and western
Oregon could have been glacial age refugia for coastal
Douglas-fir (see papers discussed in St. Clair et al. 2005, p.
1212).

The values of standardized genetic differentiation (θS)
for the SSR loci were several folds higher than for the
allozyme loci (Table 2). One may suggest that the allozyme
loci represent important primary metabolism and house-
keeping genes that are likely under stabilizing selection that
generally unifies allele frequencies across the entire area,
while the SSR variation is apparently more selectively
neutral and more affected by genetic drift that increases
allelic heterogeneity. However, the distribution of individ-
ual values was relatively broad among the allozyme loci
(θ=0.000–0.026, θS=0.000–0.037). Coalescence simulation
study suggested that the PGM-1 locus with an especially
high level of differentiation could represent the outlier locus
that is probably under divergent or positive selection, while
the MDH-4 locus with relatively high heterozygosity but
lack of differentiation can be a candidate for the outlier
locus that is probably under balancing selection (Fig. 2).
The SSR loci 1C3 and 3F1 had not only a high level of
heterozygosity, but unexpectedly also a relatively high level
of differentiation. Additional analysis and data are needed
to determine whether their high differentiation is a result of
selection acting on a gene or genes closely linked to these
markers or is a sign of recent demographic events that

A:  Locus CAT

B:  Locus DIA

C:  Locus PGM-1

Fig. 5 Examples of logistic fit of the allozyme alleles by latitude
(LAT), longitude (LONG), and elevation (ELEV). The left y-axis
represents probability, and the proportions shown on the right y-axis
represent the relative sizes of each allele group in the total sample. At
each x value, the probability scale in the y direction is divided up
(partitioned) into probabilities for each response allele category. The
probabilities are measured as the vertical distance between the curves,
with the total across all Y category probabilities sum to 1. Dots
represent individual alleles that are drawn at their x-coordinate, with
the y position jittered randomly within the range corresponding to the
response allele category for that row. One can see that the dots tend to
push the lines apart and make vertical space where they occur in
numbers and allow the curves to get close together where there is no
data. If the x variable has no effect on the response, then the fitted
lines are horizontal and the probabilities are constant for each response
across the continuous factor range
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could lead to the violation of the Island model assumptions.
The observed variation was rather neutral in most loci
under the applied model of molecular evolution.

The relatively low genetic differentiation that was
observed between populations in the study is typical for
conifers for allozyme and SSR loci (see discussion and
references above), but direct comparison between allozyme
and SSR loci would be inappropriate without taking within-
population variation into account and calculating standard-
ized measures (Hedrick 2005; Meirmans 2006). The
ordinary GST and FST estimates dependent on the amount
of within-population genetic variation and high levels of
genetic variation therefore generally lead to lower FST

variation. This dependency makes it difficult to compare
genetic markers with different mutation rates, such as
microsatellites vs. allozymes. Standardized genetic differ-
entiation measures based on GST (Hedrick 2005) and FST

(Meirmans 2006) were suggested relatively recently. They
are independent of the amount of genetic variation and
therefore suitable for comparisons between studies that
employ different genetic markers. Although these measures
are relatively new, they were already used in a few recently
published studies that, together with our study, validated
their use (e.g., Criscione et al. 2007; Kettle et al. 2007;
Langergraber et al. 2007; Ryynänen et al. 2007; Leinonen
et al. 2008). Standardized FST was usually several times
higher than unstandardized FST for microsatellite loci (e.g.,
Criscione et al. 2007; Jordan and Snell 2008; González-Pérez
et al. 2009). Standardizing of FST became now a required
procedure when different markers are compared or combined

for analysis (e.g., Langergraber et al. 2007; Ryynänen et al.
2007). Therefore, our study as well as other published
studies confirmed a necessity of using a standardized
measure of genetic differentiation when measures are based
on different genetic markers.

The elevation played a significant role in clustering.
Similar elevations from different populations tended to
cluster together in the dendrogram that was based on
allozyme loci, which are probably under selection
(Fig. 3A). This interesting observation confirmed results
from the common garden study that indicated considerable
differentiation in bud set, emergence, and growth associated
with elevation (e.g., St. Clair et al. 2005). On the other
hand, the dendrogram based on the neutral SSR markers
followed mostly geographic distribution so that high and
low elevations within populations tended to cluster together
(Fig. 3b). It appears that natural selection for adaptive traits
and some allozyme loci has been strong despite high levels
of gene flow between elevations within populations.
Differentiation of adaptive variation as found in common
garden studies and differentiation based on some suppos-
edly selective allozyme loci compared to the lack of
differentiation based on neutral molecular markers point
to the importance of adaptive trait related genetic markers
and common garden studies for delineating seed and
breeding zones. For example, population differentiation at
quantitative traits (QST) related to adaptive traits, such as
cold hardiness, bud burst, and bud set were from threefold
to 15-fold greater than differentiation at anonymous and
presumably neutral SSR markers (FST), suggesting the
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the likelihood function with re-
spect to K (Evanno et al. 2005)
computed separately for allo-
zyme and SSR loci and for all
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action of natural selection acting upon these traits (QST=
0.15–0.66, see Table 2 in St. Clair 2006, vs. standardized
FST, θS=0.044, Table 2).

Considering that different evolutionary factors may
affect variation in allozyme and SSR markers, it is also
important to note here that one should be cautious when
combining allozyme and SSR genotypic data for phyloge-
netic analysis. We would recommend doing a separate
analysis first for each type of marker.

The positive and significant correlation between genetic
and geographic distances for the SSR markers, but not for
the allozyme loci (Fig. 4), suggests that isolation by
distance may play an important (if not the most important)
role in the coastal Douglas-fir differentiation in neutral SSR
markers, while allozyme variations are under different
(mostly stabilizing) forms of selection. Weak but significant
clinal variation observed in several alleles may also suggest
a subtle gradual genetic adaptation along ecological
gradients (Table 3). It would be interesting to study whether
any particular climatic factors are associated with observed
clinal variation, but ecological data are very dynamic and
much more complex than geographic variables and would
need a separate analysis, which is beyond the scope of this
paper. However, the geographic gradients are likely to
couple with ecological ones in this range-wide study.
Anyway, these observations corroborate results of the exact
allelic differentiation tests that revealed a significant allelic
differentiation (P<<0) among populations for many loci
(Table 2). The genetic differentiation between populations
(θ), although very low, was also significant in most cases
(Appendix 3, Electronic supplementary materials). All these
observations suggest that despite relatively low differenti-
ation, genetic variation is not absolutely randomly distrib-
uted across the studied area. However, the simulation study
using the STRUCTURE program failed to infer population
substructure for supposedly selectively neutral SSR
markers. Adding allozyme loci changed analysis, and the
STRUCTURE program suggested that the uppermost
number of clusters equaled the same number of populations
used in this study and suggested in previous analysis of
quantitative adaptive trait variation (St. Clair 2006). It
demonstrated that the non-random distribution of allelic
variation in the studied area was also due to supposedly
selective allozyme variation, but in general was apparently
insufficient to generate significant population subdivision,
especially among neutral markers. In the association study
of the same samples genotyped for 384 SNPs representing
117 genes, only seven SNPs demonstrated a significant
differentiation (A. J. Eckert et al., unpublished).

However, only seven populations could be unambiguous-
ly assigned to a particular cluster each. Another five and six
populations could be likely assigned to more than one or two
clusters, respectively (Table 3S, Electronic supplementary

materials). Many individuals from the same population also
had often memberships in different clusters. This indicates
that the 18 genetic groups assigned by STRUCTURE did not
necessarily correspond to those 18 populations delineated by
St. Clair (2006). This can be explained by the sampling
strategy used in this continuously distributed species with
gradual isolation by distance. There is apparently no “true
number” of populations and clear-cut divisions within the
continuously distributed species range that more or less
effectively partition variation and thus are more likely or less
likely to be appropriate. The sampling strategy used in this
study makes this more likely the case, unlike most other
population genetic studies that used sampling of individuals
at fewer geographic locations more isolated from each other
and then studied if individuals are reassigned to their
populations at those discrete locations.

Earlier published tests and comparative studies using
empirical datasets have proven STRUCTURE’s ability
in assigning individuals to their known cluster of origin
for highly differentiated populations (e.g., Pritchard and
Donnelly 2001; Rosenberg et al. 2001; Manel et al. 2002;
Turakulov and Easteal 2003), especially for populations
that are relatively evenly distributed in space and with
migration patterns not departing much from Wright’s island
model such as in Douglas-fir. Although little is known on
the discriminating power of STRUCTURE to detect the real
number of clusters (K) which composes a dataset (Evanno
et al. 2005), it is unlikely that STRUCTURE would fail to
detect clusters in Douglas-fir, if they would exist in reality.
However, Evanno et al. (2005) found that in many cases,
the estimated posterior probability of the data for a given K,
Pr(X|K) that is called LnP(D) in STRUCTURE output and
based on the log-likelihood of the data (Pritchard et al.
2000) does not help visualizing a correct number of
clusters, K. They suggested an ad hoc statistic ΔK based
on the rate of change in the log probability of data between
successive K values evaluated by STRUCTURE and
demonstrated that it accurately detects the uppermost
hierarchical level of structure for population structure and
migration scenarios that were more complex than Douglas-
fir. Therefore, we analyzed the STRUCTURE results using
also an ad hoc statistic ΔK. This method showed a clear
peak at the “true” value of K=18 when both marker sets
were combined (Fig. 6).

Conclusion

Our study demonstrated that the allozyme and SSR
genotypic data can be combined for joint analysis of
population structure and can improve results, but first, they
should always be analyzed also separately due to their
different nature. The SSR markers should be checked for
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the allelic dropout and presence of null alleles, and specific
corrections should be made if needed to mitigate their
effects. To make comparisons between two types of
markers legitimate, the standardized measures of differen-
tiation should be calculated first.

Although genetic distance between populations positively
and significantly correlated with geographic distance, cluster-
ing made geographic sense, and a weak but significant clinal
variation was found for a few alleles, the results demonstrated
a subtle differentiation (θs=0.003–0.044) for both allozyme
and SSR loci in general. The STRUCTURE simulation
analysis inferred a weak population subdivision in the
studied area that should not interfere much with association
mapping but has to be taken into account. Results confirmed
previous observations that coastal Douglas-fir has relatively
little within-population substructure based on allozyme loci
(Merkle and Adams 1987; Moran and Adams 1989; Aagaard
et al. 1998a, b; Viard et al. 2001). The studied coastal
Douglas-fir populations apparently represent large and rather
continuous populations with practically unobstructed gene
flow that prevent strong genetic differentiation due to genetic
drift alone. More importantly, our study suggests that the
samples used in the analysis can be used together efficiently
as a single association mapping population. Douglas-fir is an
excellent perennial plant species for studying adaptive
phenotypic traits and genetic adaptation using association
mapping. It is evolutionarily old; phenotypically and
genetically highly diverse; and distributed in large, out-
crossed, natural populations with high gene flow. All these
should facilitate the association mapping in this experimental
population, which is currently in progress.
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