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Abstract
Objectives We examine the potential effects of gunshot detection technology longi-
tudinally in Chicago through a synthetic control quasi-experiment.
Methods Police districts receiving gunshot detection technology were compared 
to a synthetic control unit via a staggered difference-in-difference design. Across 
eleven unique gunshot detection technology deployment phases, the analyses pro-
duce results for aggregate, initial versus expanded, and phase-specific deployment 
effects across five gun violence outcome measures.
Results Gunshot detection technology had no effect on fatal shootings, non-fatal 
shootings, general part I gun crimes, or shots fired calls for service. Gun recoveries 
significantly increased in the aggregate, initial, and expanded models, and in several 
individual phases relative to controls.
Conclusions The results align with prior literature that has found a procedural bene-
fit, but not a crime prevention benefit, of gunshot detection technology. Law enforce-
ment agencies seeking crime prevention or reduction solutions may be better served 
by investing in other options.

Keywords Gunshot detection technology · Gun violence · Crime prevention · 
Matched quasi-experiment · Synthetic control
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Introduction

An honest assessment of the literature indicates that police have come to privilege 
technological approaches to crime prevention to the point where modern police 
operations are largely centered within technology and data systems (Ariel, 2019; 
Gaub & Koen, 2021). Gunshot detection technology (GDT) is a recent addition 
to the portfolio of technology-centered gun violence prevention programs. GDT 
functions through a network of acoustic sensors that detect sounds from firearm 
muzzle blasts that can be audibly distinguished from other loud noises (Chacon-
Rodriguez et al., 2011; Maher, 2007). Often managed by third-party companies 
like SoundThinking (formerly ShotSpotter), GDT provides a way for law enforce-
ment to respond to shots fired events without relying on citizen calls for service, 
which may be plagued by inconsistencies such as inaccurate information or fail-
ure to report (Carr & Doleac, 2016; Huebner et al., 2022). In the case of Sound-
Thinking, all GDT alerts are manually reviewed by an offsite team of acoustic 
experts at the company headquarters. GDT alerts confirmed as gunfire events are 
relayed to the dispatch center of the law enforcement agency in question, which 
may result in a more efficient and effective deployment of police personnel and 
emergency resources than what results from traditional approaches that exclu-
sively rely on citizen calls for service to the 9–1-1 emergency line.

Despite the increased popularity of GDT, empirical research has yet to answer 
several key questions related to its effects on gun violence outcomes. Further, in 
the GDT evaluation research produced, the generalizability of results has often 
been limited by design quality and data limitations and/or contradictory conclu-
sions (Doucette et al., 2021; Mares, 2022). Even amidst an underdeveloped and 
inconclusive evidence base, and increasingly negative community sentiments 
surrounding GDT, law enforcement agencies have continued to adopt GDT. The 
need for rigorous, longitudinal evaluations of GDT effects is paramount.

The current study examines potential GDT effects across a target area that 
increasingly expanded between 2012 and 2018 in Chicago, IL. The study includes 
the simultaneous examination of several gun violence outcomes of interest that 
may be impacted by GDT. The outcomes tested include fatal shootings, non-
fatal shootings, general part I gun crimes, shots fired calls for service, and gun 
recoveries. The analyses quantitatively measure changes in associated metrics 
across pre- and post-GDT time periods using a quasi-experimental design with an 
empirically derived control group through synthetic control matching techniques. 
The approach ensures that GDT target areas are effectively matched to approxi-
mately equivalent control areas for comparison through the sequencing of empiri-
cal covariates in a synthetic control matching model. The unique GDT deploy-
ment phases in Chicago were then evaluated for aggregate, initial and expanded, 
and phase-specific treatment effects using difference-in-difference analyses. The 
methods used strengthen the validity of the conclusions derived, adding neces-
sary clarity to the evidence base on the potential effects of GDT on gun violence.

The findings indicate that GDT had no effect on fatal shootings, non-fatal 
shootings, part I gun crimes, or shots fired calls for service in Chicago. There 
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was some variation in the phase-specific effects, but no significant changes were 
recorded in the aggregate model (phases 1–11), the initial model (phase 1 only), 
or the expanded model (phases 2–11) when comparing pre- and post-GDT deploy-
ment periods relative to controls. However, significant increases in gun recoveries 
were observed in the target areas relative to the controls. Significant gun recov-
ery increases were observed in the aggregate, initial, and expanded models, as 
well as across several individual phases. The implications of the results for future 
research and practice on GDT and other relevant law enforcement technology are 
discussed in detail.

Literature review

Police technology

The ongoing development of technologies has been identified as a promising solu-
tion for law enforcement (Ariel, 2019). However, research has generated mixed 
findings on the level to which technology achieves intended public safety goals. 
For example, CCTV has demonstrated a limited impact on measurable outcomes, 
with effects varying greatly across geographic settings and operational contexts 
(Piza et  al., 2019). Meta-analyses on body-worn cameras have also determined 
that officer and citizen behavior is largely unchanged (Lum et  al., 2019, 2020) 
with no discernible effect on prosecutorial or court-related outcomes (Petersen & 
Lu, 2023). Research on Crime Gun Intelligence Centers (CGICs) and Real-Time 
Crime Centers have found that CGICs are associated with increases in case clear-
ance (Arietti, 2024; Flippin et al., 2022; Guerette & Przeszlowski, 2023; Koper 
et  al., 2019), but that effects on crime reduction are mixed (Hollywood et  al., 
2019; Mei et al., 2019; Uchida et al., 2019).

With the recent proliferation of GDT in law enforcement, the continued devel-
opment of a scientific research literature situating the effects of technology on 
crime is necessary. Research on GDT has traditionally focused on the technol-
ogy’s performance in detecting gunfire events, identifying the locations of gun-
fire, and measuring officer responses to GDT alerts (Carr & Doleac, 2016; Choi 
et al., 2014; Irvin-Erickson et al., 2017; Mazerolle et al., 1998; Piza et al., 2023a; 
Watkins et al., 2002). In this sphere of the research, results suggest GDT poses 
observable benefits related to a number of procedural aspects of policing, such 
as the accelerated detection and response to gunfire and increased collection of 
ballistic evidence (Cook & Soliman, 2024; Mares & Blackburn, 2012, 2021; Piza 
et  al., 2023a, 2023b). Though, research on GDT’s impact on gun violence out-
comes has remained more inconclusive. While some studies have found reduced 
levels of shots fired calls for service following the installation of GDT, most 
research has found that GDT does not impact part I gun violence categories 
involving confirmed crime victims (Lawrence et  al., 2019; Mares & Blackburn, 
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2012, 2021; Piza et al., 2023b; Vovak et al., 2021). However, the research designs 
typically used have not provided empirical clarity.

Prior GDT research

Several GDT studies have been plagued by issues with spatial delineation. Litch 
and Orrison (2011) explored the impact of GDT on crime in Hampton, VA, and 
Newport News, VA. Their study compared outcomes in the GDT coverage areas 
to control areas with similar population density and crime rates, for a 5-month 
pre- and post-intervention period in each city. The authors found no evidence of 
a crime prevention effect for violent, weapons, and other offenses in GDT cover-
age areas during the post-intervention periods. However, the GDT coverage and 
control areas were approximated due to crime data only being available at the dis-
trict level, making it difficult to operationalize more precise boundaries. Doucette 
et al. (2021) conducted a similar evaluation of GDT effects across 68 large metro-
politan counties from 1999 to 2016. No significant differences were observed in 
firearm homicides across counties with and without GDT. However, the authors 
were also unable to operationalize precise areas covered by GDT as this informa-
tion was not publicly available, which may have biased the results in the direction 
of null findings.

Other GDT studies may be less generalizable due to a lack of an empirically 
derived counterfactual. Mares and Blackburn (2012) examined the impact of GDT 
on reported gun crimes and shots fired calls for service in St. Louis, MO. St. Louis’ 
GDT system was installed in August 2008 and covered an area of approximately 
1 square mile. The study compared two neighborhoods where the technology was 
installed to four comparison neighborhoods with similar crime, demographic, and 
economic patterns. Results indicated that GDT was associated with a decrease in 
shots fired calls for service in the experimental neighborhoods. However, the authors 
found no discernable impact on reported gun crimes. Mares and Blackburn (2021) 
then conducted a follow-up study to evaluate the expansion of the St. Louis GDT 
system across three time periods. Each study period focused on pairing expanded 
GDT areas with similar untreated administrative areas absent GDT based on demo-
graphic similarities. Mares and Blackburn (2021) found around 30% reductions in 
shots fired calls for service, with no reduction being observed for violent crime. 
Each of these evaluations did not employ an empirical matching technique in the 
comparison of targeted areas relative to controls.

Several studies have utilized more empirical matching strategies and have con-
sidered GDT expansion. Lawrence et  al. (2019) evaluated the impact of GDT on 
violent crimes and calls for service in Denver, CO, Milwaukee, WI, and Richmond, 
VA. They assessed differences in outcomes pre- and post-implementation in GDT 
coverage areas compared to statistically matched control areas. In Milwaukee, GDT 
effects were also considered across three additional expansion areas, while in Rich-
mond the initial GDT deployment and two additional expansion areas were con-
sidered. GDT was associated with increased calls for service for shooting-related 
crimes across the three cities, and an increase in firearm-related crime in Denver. In 
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Richmond, there was some evidence of reductions in firearm-related crime, although 
no significant change was observed in Milwaukee. The studies indicated bi-direc-
tional GDT effects for shots fired calls for service, and inconclusive evidence sur-
rounding potential effects on the gun violence outcomes tested.

Other GDT research has also yielded inconsistent conclusions surrounding crime 
and gun violence outcomes. Vovak et al. (2021) assessed the impact of an integrated 
GDT/CCTV system in Wilmington, DE on homicide and non-fatal shootings. The 
study found that crime was lower in the post-intervention period, but homicides and 
non-fatal shootings increased in the post-intervention period. Though, the models 
only considered city-level effects through a comparison of Wilmington to similar 
cities (close in proximity, population, socio-demographics, and crime rates). How-
ever, even studies incorporating more micro-level designs with rigorous control 
groups have found limited evidence of GDT’s gun violence prevention effects. For 
example, Piza et  al. (2023b) analyzed the effects of GDT in Kansas City, MO by 
comparing cumulative crime changes across street segments in the GDT target area 
to a weighted control group of street segments without GDT. The study found that 
shots fired calls for service were 22% lower in the GDT target area than the weighted 
control area, but no changes were observed for shootings, gun assaults, or robberies 
committed with a firearm (i.e., incidents with confirmed victims).

Two recent studies present exceptions to the results that have generally been 
observed in the GDT literature. While most evaluations have suggested GDT has a 
limited effect on gun violence outcomes, the Center for Crime Science and Violence 
Prevention (CCSVP) found that GDT reduced violent firearm crimes by about 24% 
in Winston-Salem, NC. Mares (2023) used a longitudinal difference-in-differences 
model to estimate the effect of GDT on citizen-reported gunshots and aggravated 
assault with a firearm in Cincinnati, OH. Results indicated that GDT was associ-
ated with a 45% reduction in reported shots fired and a 46% reduction in aggravated 
assaults with a firearm in targeted census tracts compared to controls.

GDT research overview

The present state of the evidence base surrounding GDT is inconclusive due to 
design quality and data limitations and inconsistent effects on key outcomes of inter-
est. As public safety agencies continue to invest in technology as a possible way 
to enhance public safety (Ariel, 2019) and support reform (Task Force and on 21st 
Century Policing Solutions, 2023), it is critical that GDT research ascertains accu-
rate program effects. The growing demand for GDT research is compounded by 
the proliferation of evidence for other technologies like BWCs (Lum et  al., 2020) 
and CCTV (Piza et  al., 2019), both of which have been subjected to meta-analy-
ses examining program effects with a total of 30 and 76 original evaluation studies 
included, respectively. The GDT literature is not nearly as developed, with only nine 
evaluation studies testing the technology’s crime prevention capacity identified dur-
ing our literature search, despite the first GDT study being published over 25 years 
ago (Mazerolle et al., 1998). At present, the capacities of GDT as a crime prevention 
mechanism may be overstated (Niner, 2022), and negative community perceptions 
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of GDT continue to increase (City of Chicago Office of the Inspector General, 2021; 
Stanley, 2021). GDT has high deployment and upkeep costs, and there is some 
mounting resentment in law enforcement circles surrounding the continued expecta-
tion to readily integrate new technology into existing police culture (Willis, 2022).

The scientific knowledge on GDT is further hindered by limitations in common 
methodological approaches used in prior GDT evaluation studies. Matched quasi-
experiments that use quantitative methods to identify treatment and control areas 
are nearly absent from the GDT literature, with the lone exception of a recent 
project conducted in Kansas City, MO (Piza et  al., 2023b, 2023c). Study peri-
ods of GDT evaluations are also often relatively short, with research analyzing 
program effects in as short as 5 months after GDT implementation. Other con-
cerns center on the common expansion of GDT in cities. Outside of Mares and 
Blackburn’s (2021) evaluation of GDT in St. Louis and Lawrence et al.’s (2019) 
study of Milwaukee, WI, and Richmond, VA, research has focused on static tar-
get areas, providing little insight on what police should expect as GDT coverage 
areas expand. Target areas in previous studies have also focused on small-scale 
deployment ranging from 1 to 13 square miles. Research has yet to evaluate GDT 
systems that expand across larger target areas. In the current study setting of Chi-
cago, GDT coverage expanded from just over 3 square miles to nearly 137 square 
miles across a 7-year period. It is with these issues in mind that we approached 
the current study.

The current study

Study scope

The present study aims to evaluate the effectiveness of GDT on multiple gun vio-
lence outcomes in Chicago, IL. The study advances upon several prior attempts 
to assess the effects of GDT by (1) including a multitude of gun violence outcome 
measures, (2) using a rigorous quasi-experimental research design with empirical 
controls, (3) testing for aggregate GDT effects across Chicago deployments lon-
gitudinally with appropriate pre and post-period lengths, (4) considering both ini-
tial and expanded GDT deployment effects over time, (5) and examining potential 
heterogeneity in phase-specific GDT effects. These inquiries are particularly sali-
ent in the present climate as the debate surrounding law enforcement use of GDT 
endures.

Four research questions are examined through unique statistical models, as speci-
fied below.

1. Aggregate model: Does GDT significantly impact gun violence outcomes in 
GDT-targeted Chicago police districts compared to controls across all aggregate 
deployments (phases 1–11)?
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2. Initial model: Does GDT significantly impact gun violence outcomes in GDT-
targeted Chicago police districts compared to controls in the initial deployment 
(phase 1)?

3. Expanded model: Does GDT significantly impact gun violence outcomes in GDT-
targeted Chicago police districts compared to controls across subsequent deploy-
ments (phases 2–11)?

4. Phase-specific models: Does GDT significantly impact gun violence outcomes in 
GDT-targeted Chicago police districts compared to controls in individual phases 
(phases 1–11 separately)?

Methodology

Study setting

Chicago is the third largest city in the USA and has a population of over 2.75 mil-
lion people according to the 2022 census. US Census Bureau figures indicate 33% 
of Chicago residents are Black and 29% Latino. Approximately 21% of all persons 
subsist below the poverty level. The Chicago Police Department (CPD) employed 
13,160 sworn officers and 855 civilians in 2019 (the final year of the current study 
period) according to FBI figures.1

Chicago provides a unique backdrop for a study on the efficacy of police technology 
in light of its long history of contentious police and community relations and marked 
increase in gun violence patterns (Grimm & Schuba, 2022). Previous strategies used in 
Chicago like the Strategic Subjects List, which used an in-house generated algorithm 
to identify and monitor persons of interest, have generated extensive controversy (City 
of Chicago Office of the Inspector General, 2020). In 2020, the CPD discontinued the 
Strategic Subjects List largely in response to both community and city government 
groups. The current state of relations between the police and the community has also 
been weakened following lethal police encounters such as the fatal shooting of Laquan 
McDonald by CPD officers in 2014 and the reverberations of the death of George Floyd 
across the US in 2020. Perhaps unsurprisingly in the context of Chicago, the original 
deployment of GDT and the subsequent contract extension signed in 2023 were both 
met with vocal opposition (see, e.g., www. cance lshot spott er. com and www. stops hotsp 
otter. com).

Chicago Mayor Brandon Johnson partially campaigned on a promise to termi-
nate the City’s ShotSpotter contract, citing concerns the system was unreliable, 
overly suspectable to human error, and played a pivotal role in the police killing 
of 13-year-old Adam Toledo.2 Johnson delivered on his promise on February 13, 
2024, by announcing his decision to discontinue the use of ShotSpotter, with a 

1 https:// ucr. fbi. gov/ crime- in- the-u. s/ 2019/ crime- in- the-u. s.- 2019/ tables/ table- 78/ table- 78- state- cuts/ illin 
ois. xls
2 See pages 2 and 8 in the Johnson campaign’s Plan for a Safer Chicago: https:// uploa ds- ssl. webfl ow. 
com/ 63508 047b9 98ed2 c03e7 e37d/ 63e1d ee8fd 3b411 c43aa 72dc_ Plan% 20for% 20a% 20Saf er% 20Chi cago-
2. pdf

http://www.cancelshotspotter.com
http://www.stopshotspotter.com
http://www.stopshotspotter.com
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/table-78/table-78-state-cuts/illinois.xls
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/table-78/table-78-state-cuts/illinois.xls
https://uploads-ssl.webflow.com/63508047b998ed2c03e7e37d/63e1dee8fd3b411c43aa72dc_Plan%20for%20a%20Safer%20Chicago-2.pdf
https://uploads-ssl.webflow.com/63508047b998ed2c03e7e37d/63e1dee8fd3b411c43aa72dc_Plan%20for%20a%20Safer%20Chicago-2.pdf
https://uploads-ssl.webflow.com/63508047b998ed2c03e7e37d/63e1dee8fd3b411c43aa72dc_Plan%20for%20a%20Safer%20Chicago-2.pdf
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phasing out of the technology set to begin September 2024.3 In the sake of trans-
parency, the corresponding author presented the findings of the current study to 
members of the Johnson administration before the decision to cancel ShotSpotter 
was announced. However, given Mayor Johnson’s prior campaign promises and 
the timing of the presentation, which occurred only a couple of weeks prior to the 
cancelation announcement, we are unable to say how much this research influ-
enced the decision.

Chicago also provides an interesting case study for examining GDT effects as 
many other GDT deployments were more concentrated in nature. In our litera-
ture search, the largest GDT coverage area reported was 12.68 square miles in 
Milwaukee, WI (Lawrence et  al., 2019). Most prior research has reported GDT 
target areas of approximately 5 square miles or less. CPD first deployed GDT in a 
pilot phase in September 2012, covering an approximately 3-square mile area. In 
2017, CPD began extending GDT coverage across the city through ten additional 
deployment phases (11 total).4 Figure 1 depicts GDT coverage in Chicago police 
districts across each of the eleven total unique phases, as well as the timing of 
each phase deployment.5 The cost of Chicago’s current GDT coverage area (~ 136 
square miles) is between $8.8 and $12.3 M annually based upon on the advertised 
annual subscription cost of between $65 and $90 K per square mile for the Shot-
Spotter system.6

The initial GDT target area accounted for about 1.4% of Chicago’s total geogra-
phy and housed approximately 5% of the city’s shots fired calls for service (13,811 
of 271,985), fatal shootings (104 of 2,117), non-fatal shootings (876 of 18,470), and 
part I gun crimes (1,576 of 36,460) between 9/1/2012 and 2/5/2017. The propor-
tion of residents who are non-white (90.10% vs. 51.13%) and households under the 
poverty rate (33.88% vs. 21.59%) were higher in the initial GDT target area than in 
Chicago as a whole. The fully installed GDT system covers approximately 60% of 
Chicago. From the beginning of the GDT system expansion (2/6/2017) to the end of 
our study period (12/31/2019), the full GDT coverage area housed approximately 
60% (48,829 of 69,252) of shots fired calls for service, over 80% (1,268 of 1,578) of 
fatal shootings, and nearly 80% of non-fatal shootings (11,034 of 14,069) and part 
I gun crimes (18,276 of 23,675) in Chicago. The proportion of residents who are 
non-white (67.94% vs. 49.84%) and households under the poverty rate (23.81% vs. 
18.31%) were higher in the full GDT target area than Chicago as a whole, although 
the differences were not as pronounced as those observed for the initial target area 
(see Table 1).

4 Phase 1, 9/1/2012; phase 2, 2/6/2017; phase 3, 4/24/2017; phase 4, 7/14/2017; phase 5, 9/26/2017; 
phase 6, 10/30/2017; phase 7, 12/31/2017; phase 8, 1/31/2018; phase 9, 3/7/2018; phase 10, 4/11/2018; 
phase 11, 5/16/2018.
5 The CPD only started tracking GDT detections after several expansion phases. 40,445 gunfire events 
were detected via ShotSpotter from 11/3/2017 to 12/31/2019.
6 See Sect.  8 in the ShotSpotter Frequently Asked Questions document: https:// www. shots potter. com/ 
system/ conte nt- uploa ds/ SST_ FAQ_ Janua ry_ 2018. pdf

3 See: https:// www. chica go. gov/ city/ en/ depts/ mayor/ press_ room/ press_ relea ses/ 2024/ janua ry/ city- of- chica 
go- state ment- on- shots potter- contr act. html

https://www.shotspotter.com/system/content-uploads/SST_FAQ_January_2018.pdf
https://www.shotspotter.com/system/content-uploads/SST_FAQ_January_2018.pdf
https://www.chicago.gov/city/en/depts/mayor/press_room/press_releases/2024/january/city-of-chicago-statement-on-shotspotter-contract.html
https://www.chicago.gov/city/en/depts/mayor/press_room/press_releases/2024/january/city-of-chicago-statement-on-shotspotter-contract.html
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Data sources and unit of analysis

Data for the study were sourced by the CPD. The data include crimes occurring in 
Chicago from 2008 to 2019, with individual incidents recorded at the address-level. 
Crime-related outcomes of interest for the study were identified as fatal shootings, 
non-fatal shootings, and part I gun crimes, which were filtered by querying shooting 

Fig. 1  Chicago police districts and GDT deployment
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and weapon columns provided in the official CPD data.7 Other data includedg shots 
fired call for service events, GDT alerts, and gun recoveries, which were also meas-
ured at the incident-level.8 Other forms of district and city-level data were also 
collected to inform the study. Census data from the American Community Survey 
(ACS) were used to derive disadvantage and demographic measures at the block-
group level, and LandScan data from the Oak Ridge National Laboratory weres used 
to account for the ambient population (estimates for the on-street population actively 
mobile in a 1 × 1  km2 area). Other relevant data like CCTV camera locations and 
law enforcement activity indicators like field contacts and arrest levels were also 
obtained from the CPD in the initial data delivery.

All point-level data were geocoded and aggregated to official police district 
boundaries to reflect GDT deployment geographies for the analysis. There are 23 
unique police districts in Chicago, and the GDT deployments were administered to 
cover a police district in its entirety.9 The district level was also used as the unit 

Table 1  Study area characteristics

Initial GDT installation occurred on 9/1/2012. Full installation began on 2/6/2017, ending on 5/16/2017. 
For the initial installation, crime and shots fired data cover the period 9/1/12–2/5/2017. For the full instal-
lation, crime and shots fired data cover the period 2/6/2017–12/31/2019. The gun assaults and robberies 
category also includes battery incidents to reflect Illinois law. All incidents involving shooting victims 
are excluded from the gun assault and robbery category so that the crime categories are mutually exclu-
sive. GDT target area demographics are measured from the 31 (initial installation) to 474 (full installation) 
intersecting census tracts. American Community Survey 2016 and 2019 5-year estimates are reported

Measures Initial installation (9/1/2012–2/5/2017) Full installation (2/6/2017–12/31/2019)

GDT target area Chicago GDT target area Chicago

Area 3.05  mi2 227.63  mi2 136.70  mi2 227.63  mi2

Shots fired calls for service 13,811 271,985 48,829 69,252
Fatal shootings 104 2,117 1,268 1,578
Non-fatal shootings 876 18,470 11,034 14,069
Part 1 gun crime 1,576 36,460 18,276 23,675
Non-white population 90.10% 51.13% 67.94% 49.84%
Poverty rate 33.88% 21.59% 23.81% 18.31%

9 The phase 1 GDT deployment was the only GDT target area that did not directly coincide with the 
boundaries of an existing police district. Parts of police district 7 and police district 11 were in the initial 
GDT area. These areas were clipped to form new “districts” separate from the remaining non-targeted 
areas of districts 7 and 11. Several of the later phases included deployment in multiple districts simulta-
neously, but the entire district geography was in the coverage area. In total, 14 police districts (12 origi-
nal districts plus two clipped district boundaries for phase 1) of the 25 total operationalized police dis-
tricts (23 original districts plus two clipped district boundaries) received GDT.

7 The part I gun crimes variable consisted of reported assaults, batteries, and robberies involving guns 
that were not jointly classifiable as a fatal or non-fatal shooting to ensure mutually exclusive classifica-
tion.
8 A custom Chicago address locator was built by the research team to spatially plot incident-level data 
with address information when XY coordinates were not provided. The geocoding was executed and 
manually reviewed by the research team, with hit rates above 99% for all data types included.
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of analysis to facilitate the synthetic control matching approach, which enabled the 
comparison of changes in target areas relative to empirical controls.

The study period spanned from January 2008 to December 2019. Each district that 
received GDT was assigned as GDT activated in the first full month after the ShotSpot-
ter system was installed (1-month lag). The lag coincides with the monthly intervals 
used as study time periods and ensures that the technology was up and running for a full 
uniform time block before being operationalized as active. After accounting for GDT 
assignment, the gun violence outcome variables of interest were aggregated to calcu-
late police district-level counts for fatal shootings, non-fatal shootings, part I gun crimes, 
shots fired calls for service, and gun recoveries. Events were categorized as having 
occurred either pre- or post-GDT by month and district. Districts and months were used 
to increase event counts, to improve pre-period matching performance, and to align with 
common spatial (districts) and temporal (months) law enforcement delineations.

Synthetic control matching

The present study employed synthetic control matching methods (Abadie & 
Gardeazabal, 2003; Abadie et al., 2010, 2011) to improve upon prior GDT evalu-
ations that have predominately used less empirical techniques to generate controls. 
Synthetic control methods synthetically create a control unit from the pool of avail-
able, non-treated control units (non-targeted police districts) via weighting. Instead 
of generating a one-to-one match with a real existing unit, or coarsening and binning 
donor pools, the synthetic unit generated is an equivalent match (or nearly equiva-
lent) to the target area based on pre-period outcome variable trends and selected 
covariates through weighted sampling (Saunders et al., 2015). The method is par-
ticularly adept at generating an empirical match for target areas without a true coun-
terfactual (Abadie et al., 2015) or in treatment areas that may not have comparable, 
untreated control boundaries within the same jurisdiction (Piza et al., 2020). Syn-
thetic control methods are robust to covariates and can be rigorously balance tested 
to ensure the matching is appropriately sequenced (Ferman, 2021).

Staggered treatment adoption

Recent developments in synthetic control methods and difference-in-difference 
(DID) have recognized the need to develop techniques that can account for stag-
gered treatment adoption in which treatment timing and/or locations are deployed 
over time (Porreca, 2022). Traditional DID methods using two-way fixed effects do 
not account for treatment variations or temporally delineated effects among units 
with longer treatment exposures (Goodman-Bacon, 2021). Several approaches have 
since been developed that attempt to assess program effects for staggered adoption, 
including synthetic difference-in-difference (Arkhangelsky et  al., 2021), partially 
pooled staggered synthetic control methods (Ben-Michael et  al., 2021, 2022), and 
group time averages for two-way fixed effects for difference-in-difference with mul-
tiple time periods (Callaway & Sant’Anna, 2021). Each method conceptualizes a 
novel way to estimate treatment effects for multiple time periods and treated units. 
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We determined that the group time averages method is best situated for the present 
study’s application (Callaway & Sant’Anna, 2021).

The staggered synthetic control method proposed by Callaway and Sant’Anna 
(2021) allows for traditional synthetic control methods to be applied to multiple tar-
get units emerging at different time periods in a longitudinal design. The method was 
recently used in a prior criminal justice application that examined the potential for 
treatment heterogeneity across CCTV deployment locations in Detroit (Circo et al., 
2023). The approach is similarly applicable in the present setting, as Chicago intro-
duced GDT across eleven unique phases from the initial 2012 pilot test through May 
of 2018. GDT was deployed in entire police districts in Chicago at differing phases 
and timepoints, and the coverage areas were not uniformly sized or time sequenced. 
The staggered synthetic control method is flexible to different target area opera-
tionalizations and uses a weighting schema that minimizes variation in the average 
pre-treatment outcome trends between treated and control units. Model results can 
also indicate both aggregate and phase effects of GDT in Chicago using different 
specifications. The technique is also robust to the inclusion of matching covariates, 
includes options for specifying the control donor pool as “never treated” or “not yet 
treated” units, and allows bootstrapping of standard errors for result corroboration.

The following formula depicts the staggered DID design:

The average treatment effect on the treated (ATT) is calculated through the group-
time combination (g, t), which is reflected as the difference between the target units and 
all control units for every instance of time. The staggered DID approach also includes 
a dynamic modeling strategy that is weighted based on the amount of time a target unit 
is exposed to the treatment. This is especially relevant to the present study as GDT was 
first administered in Chicago in 2012 before steadily expanding again in 2017 across 
additional deployments. The extension of the DID framework across other model speci-
fications also allows for heterogeneous effects to be estimated at each delineation of 
time (every month) instead of exclusively relying on a singular average treatment effect.

The R package did was used following the procedures outlined in Callaway and 
Sant’Anna (2021), and in accordance with the application of the method to the prior 
study of CCTV camera deployment in Detroit (Circo et al., 2023). Pre-treatment trends 
and auxiliary covariates were used to match target units to donor pools of control units 
via propensity scores and inverse probability tilting (Graham et al., 2012).10 Once par-
allel trend assumptions were satisfied (Cunningham, 2021), the synthetic control DID 

ATT(g, t) = E[Yt(1) − Yt(0)|G8 = 1]

10 For each outcome measure of interest, the treated units were compared to donor pool models of 
“never treated” and “not yet treated” control units separately. Prior DID research has yet to operational-
ize a best practice for selecting from donor pools (Callaway & Sant’Anna, 2021). However, the current 
study reports findings from the “not yet treated” models due to the increased size of the control pool, the 
robust use of future treated units as controls, to maximize the potential equivalency of treated and control 
units to satisfy parallel trends assumptions, to reduce volatility in model standard errors, and in accord-
ance with prior staggered DID research (Circo et  al., 2023). Additionally, the “never treated” models 
often failed to converge due to low control unit counts. This may be an artifact of model fit, though, as 
the never treated control unit pool was smaller, leading to higher ATT values and percent differences, but 
unreliably high standard errors.
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method allowed for staggered adoption to be accounted for in the model by averaging 
GDT effects across all recorded deployment phases. The aggregate treatment effect 
value was calculated by conditioning on exposure length through dynamic modeling 
(i.e., some target units were treated earlier). After deriving an aggregate effect, phase-
specific effects were ascertained using the group modeling technique.

Synthetic control model covariates

The modeling strategy involved examining each outcome of interest in a separate 
model. The covariates used were consistent across models and were incorporated to 
generate an empirical match for the target area using weights derived from the donor 
pool of operationalized control units. Each model creates a near equivalent pre-treat-
ment trend between target and control areas in the pre-period, so that the potential 
for differences attributable to treatment in the post-period can be better isolated. The 
covariates used are detailed below. All study outcomes achieved a balanced match in 
their respective model according to parallel trend assumptions.

1. Pre-period outcome measures: pre-GDT monthly counts of fatal shootings, non-
fatal shootings, part I gun crimes, shots fired calls for service, and gun recoveries.

2. Non-firearm crime: monthly count of non-firearm part I crimes recorded in each 
district.

3. Concentrated disadvantage index (CDI): a summated, standardized, census block 
group-level measure for percentages of; households receiving public assistance, house-
holds below the poverty line, persons unemployed, households with a single female 
head and child under the age of 18, and residents under 18, as measured in the annual 
American Community Survey 5-year estimates (for each study year). The index was 
operationalized as the district average for all block groups within the district.

4. Demographic index: a summated, standardized, census block group-level measure 
for percentages of; non-White residents, residents aged 15–29, vacant properties, 
and renter-occupied properties, as measured in the annual American Community 
Survey 5-year estimates (for each study year). The index was operationalized as 
the district average for all block groups within the district.

5. Ambient population index: a summated, standardized 1 km by 1 km measure of the 
active on-street population as measured in the annual Oak Ridge Laboratory Land 
Scan Data (for each study year). The index was operationalized dichotomously with 
district units classified as being above or below the total district average.

6. CCTV count: monthly count of all CCTV cameras recorded in each district.
7. Enforcement activity: monthly count of field contacts and arrests recorded by district.

Analysis and outputs

To answer research question one, average treatment effects were ascertained to 
indicate the aggregate effect of GDT on each outcome. The models produce a sim-
ple result, which is calculated as the average of effect of all deployments, and a 
dynamic result, which calculates the average treatment effect conditioned on length 
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of exposure to treatment. In this case, the dynamic result represents a more appro-
priate measure because the timing of GDT target deployment varied substantially, 
and there is reason to assume that higher activity, or higher-risk, districts may have 
received GDT first (Circo & McGarrell, 2021).11 To answer research questions two 
and three, additional models were executed to test the effects of the initial phase 
one pilot GDT deployment (simple—this technique applies with just one treatment 
time) versus expanded GDT deployments across phases 2–11 (dynamic—multiple 
phases). The results from these models account for the delay between phase one and 
all other subsequent phases and may speak to the potential of an immediate versus 
a sustained, delayed, or diminished GDT effect. To answer research question four, 
phase-specific effects were calculated using the group modeling specification. The 
group modeling specification calculates unweighted average effects for each phase 
after treatment activation. To corroborate the observed results, a multitude of tables, 
plots, and figures depicting aggregate treatment effects, initial and expanded effects, 
and phase-specific effects were produced.12

Results

Aggregate treatment effects—research question 1

Table 2 includes the results for the gun violence outcomes tested in the synthetic 
DID aggregate models. The dynamic model results indicate that GDT led to sig-
nificant increases in gun recoveries in the target areas relative to the controls. There 
were about 172 more gun recoveries in targeted districts compared to controls, trans-
lating to 11.17% more gun recoveries in GDT target districts than controls. The 
results indicate that GDT did not have a significant effect on fatal shootings, non-
fatal shootings, part I gun crimes, or shots fired calls for service.

The dynamic plots in Fig. 2 depict the length of exposure on the x-axis in monthly 
intervals (every month/year combination in the study period) and the average effect 
on the treated on the y-axis. The x-axis position of − 1 coincides with the time period 
just before treatment (1 month before), and the position of 1 corresponds to the first 
month after treatment. At 0 on the x-axis (where red turns to blue in the plot—each 
vertical bar represents 1  month) the average treatment effect at first exposure is 
indicated and the prolonged effect of exposure to treatment is mapped across sub-
sequent time periods on the x-axis. The effects for the insignificant outcomes (fatal 
shootings, non-fatal shootings, part I gun crimes, shots fired calls for service) are 
highly unstable and vary in direction across intervals over time. Alternatively, the 
gun recovery effects trend post-GDT held a pattern of significant increase after first 

11 Of particular interest to the study was the phase one GDT deployment, which took place in Septem-
ber 2012 (the next deployment was February 2017). Conditioning on timing and exposure length in the 
dynamic model controlled for the variation of GDT delivery and allowed us to examine all phase deploy-
ments aggregately.
12 All results were calculated using 95% confidence intervals for the not yet treated models.
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exposure. However, the dynamic plots do reveal some potentially unique and high 
individual monthly gun recovery values, which may be evidence of time-specific 
GDT effects driving the observed significant increase.

Initial GDT effects—research question 2

Due to the substantial time gap between the initial deployment and the subsequent 
expansion of GDT, the potential for differential effects across time was important 
to test. Two separate models were examined with just phase one13 (simple speci-
fication) and phases 2–1114 (dynamic specification) to account for possible differ-
ences in GDT effects over time. The results of the initial GDT model are included 
in Table 3. The analyses yielded no significant GDT effects for fatal shootings, non-
fatal shootings, part I gun crimes, or shots fired calls for service. Like the aggre-
gate models, gun recoveries did significantly increase in the initial GDT model. The 
results indicate that there were nearly 21 more total gun recoveries on average in 
each of the two targeted districts in phase one than expected relative to controls, and 
that there were about 8.29% more-gun recoveries in targeted districts than controls. 
This finding suggests that gun recoveries significantly increased in the target areas 
following the first GDT deployment.

Expanded GDT effects—research question 3

The results of the expanded model for phases 2–11 are included in Table  4. The 
results test if the expansion of GDT led to a delayed or sustained effect on the gun 
violence outcomes of interest following the initial model. There was no evidence 

Table 2  Dynamic aggregate average treatment effects (phases 1–11)

*= Statistically significant at p< 0.05
The count column reflects the expected difference in the count of total events in targeted GDT districts 
(14 total target district areas in phases 1–11, including 12 actual police districts and two phase 1 clipped 
area districts) compared to controls in the post-period. The percent column indicates the percent differ-
ence in event levels for all targeted districts relative to control units in the post-period

Outcomes ATT SE Count % difference Lower CI Upper CI

Gun recoveries 12.331* 3.502 172.634 11.17% 5.468 19.194
Fatal shootings 0.910 0.821 12.740 0.78%  − 0.699 2.518
Non-fatal shootings 2.633 2.533 36.862 3.43%  − 2.332 7.597
Part I gun crimes 0.689 3.801 9.646 1.03%  − 6.760 8.138
Shots fired CFS 21.017 56.671 294.238 3.17%  − 90.056 132.090

13 The initial model used a pre-period spanning 1/1/2008–9/30/2012. The first deployment phase (with 
the lag) started 10/1/2012 and the post-period ran through 12/31/2014.
14 The expanded model used a pre-period spanning 1/1/2008–2/28/2017. The second deployment phase 
with the lag started on 3/1/2017 and the post-period ran through 12/31/2019. The phase 1 districts and 
treated areas were excluded from the model.
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Fig. 2  Dynamic average treat-
ment effects plot
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Shots Fired Calls for Service

Gun Recoveries

Fig. 2  (continued)

Table 3  Initial simple aggregate average treatment effects (phase 1)

*= Statistically significant at p.<0.05
The count column reflects the expected difference in the count of total events in targeted GDT districts (2 
targeted districts in phase 1) compared to controls in the post-period. The percent column indicates the 
percent difference in event levels for all targeted districts relative to control units in the post-period

Outcomes ATT SE Count % difference Lower CI Upper CI

Gun recoveries 10.483* 4.333 20.966 8.29% 1.990 18.976
Fatal shootings 1.628 1.811 3.256 6.93%  − 1.921 5.176
Non-fatal shootings 5.110 2.825 10.220 2.68%  − 0.426 10.647
Part I gun crimes  − 5.126 6.009 10.252  − 2.35%  − 16.903 6.652
Shots fired CFS 106.832 55.425 213.664 3.47%  − 1.800 215.464
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of a delayed effect for fatal shootings, non-fatal shootings, part I gun crimes, or 
shots fired calls for service in the expanded model. As GDT was deployed across 
more target areas and phases, there was no observable effects on the gun violence 
outcomes tested. Though, the significant gun recovery increases were sustained in 
the expansion model, with targeted districts accounting for about 12.28% more-gun 
recoveries than control units in the post-period. tfooter>

Phase specific effects—research question 4

Lastly, the study sought to determine if there were any specific phases that resulted 
in significant changes in the outcome measures. The examination of group-specific 
effects is not conditioned dynamically by treatment time and length of exposure 
to the treatment, instead unweighted phase-specific effects are calculated for each 
phase individually following treatment activation. The models indicated that there 
was a substantial amount of phase-specific heterogeneity in both the strength and 
direction of effects, and there was little consistency across GDT effects in Chicago.

The results of the phase-specific analyses are detailed in Fig.  3.15 Most phases 
did not experience significant changes following GDT deployment and phases with 
observable significant changes were often inconsistent and bi-directional in effect.16 
Fatal shootings exhibited significant increases in three phases. GDT-targeted dis-
tricts experienced significantly more fatal shootings than control districts during 
phase 3 (ATT = 2.21), phase 5 (ATT = 6.31), and phase 7 (ATT = 5.55). Significant 
effects for non-fatal shootings were observed in four phases. GDT-targeted districts 
experienced significantly fewer non-fatal shootings than control districts during 
phase 3 (ATT =  − 14.17) and significantly more non-fatal shootings than controls 
in phase 7 (ATT = 4.75), phase 8 (14.58), and phase 11 (13.41). Significant effects 
were only observed for part one gun crime in one phase, with significant decreases 
recorded in phase 4 (ATT =  − 17.37). For shots fired calls for service, significant 

Table 4  Expanded dynamic aggregate average treatment effects (phases 2–11)

*= Statistically significant at p.<0.05
The count column reflects the expected difference in the count of total events in targeted GDT districts 
(12 in phases 2–11) compared to controls in the post-period. The percent column indicates the percent 
difference in event levels for all targeted districts relative to control units in the post-period

Outcomes ATT SE Count % difference Lower CI Upper CI

Gun recoveries 16.636* 7.900 199.632 12.28% 1.153 32.119
Fatal shootings 1.821 1.363 21.852 1.51%  − 0.850 4.492
Non-fatal shootings  − 0.962 5.673 11.544  − 1.03%  − 12.081 10.157
Part I gun crimes 0.849 6.720 10.188 1.02%  − 12.323 14.020
Shots fired CFS  − 20.795 34.880 249.540  − 2.65%  − 89.158 47.570

15 The tabular results of the “not yet treated” phase specific effects models are included in the appendix.
16 The ATT values for the phase specific models generally reflect the observed difference between target 
and control units. Since these models examine singular phases, there is no count multiplier or percent dif-
ference metrics that extrapolate the effect across other targeted deployment areas (the ATTs would only 
be multiplied if there were multiple district target areas treated at the same time).
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Fig. 3  Phase average treatment 
effects plot
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decreases were observed in four phases, including phase 3 (ATT =  − 85.36), phase 
7 (ATT =  − 20.69), phase 8 (− 115.65), and phase 11 (− 11.38). Despite significant 
increases in the aggregate model, gun recoveries also experienced phase heteroge-
neity. Significant gun recoveries were observed in phase 2 (ATT = 35.36), phase 3 
(ATT = 8.08), phase 4 (ATT = 10.96), phase 5 (ATT = 9.52), phase 6 (ATT = 29.79), 
and phase 10 (ATT = 17.48). Alternatively, a significant decrease in gun recoveries 
was observed for phase 9 (ATT =  − 38.51).

Discussion

The results demonstrate that GDT did not significantly impact fatal shootings, non-
fatal shootings, part I gun crimes, or shots fired calls for service. This result was 
observed across aggregate average treatment effects conditioned dynamically over 
time, initial effects of GDT deployment in phase one, expanded effects of GDT 

Shots Fired Calls for Service

Gun Recoveries

Fig. 3  (continued)
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deployment in phases 2–11, and in most individual phase-specific effects. Following 
the rigorous testing of multiple deployment locations and time periods in Chicago, 
the findings are consistent with recent rigorous evaluations of GDT that have found 
the technology possesses limited effectiveness as a crime prevention tool (Piza et al., 
2023b). Future implementation of GDT may need to be predicated on the benefits 
proposed beyond crime reduction, as GDT may not inherently possess deterrent 
effects or work as a standalone crime reduction solution.

GDT did lead to increased levels of gun recoveries, with results indicating GDT-
targeted police districts experienced about 11.17% (aggregate), 8.29% (initial), and 
12.28% (expanded) more gun recoveries than control units. However, this may be a 
function of crime trends, enforcement practices above and beyond the scope of GDT 
deployment, or individual phase-specific effects. For example, the phase-specific 
models indicate that the general pattern reflected significant gun recovery increases 
across phases, with phases two and six reporting especially high ATT values that 
may have driven some of the observed increases. However, a few phases also pro-
duced insignificant or bi-directional effects. A cursory review of the non-significant 
phases indicates that many were later-stage deployments (phases 7, 8, 9, and 11) and 
may have reflected target areas with comparatively lower levels of gun violence that 
are less likely to be subjected to additional enforcement strategies. Similarly, it may 
also suggest that GDT produces diminishing returns across subsequent expansions 
into lower priority areas. Results from the current study are contextualized for both 
practitioners and researchers in the following paragraphs.

Law enforcement personnel have continued to vocally contend for the benefits of 
GDT and related technologies in law enforcement practice (Lawrence et al., 2019). 
The procedural benefits of GDT including accuracy in gunfire detection, spatial pre-
cision for gunfire event locations, improved response times to gunfire events, and 
increased evidence collection are noteworthy. However, these prescribed impacts of 
GDT have not consistently materialized into additional crime reduction-related ben-
efits. Agencies seeking crime reduction effects may experience better returns from 
other law enforcement solutions, or by using GDT in a complimentary capacity with 
other solutions in highly localized, micro-level scales.

It should also be noted that Chicago is a unique study location to consider the 
impacts of GDT on crime levels for several reasons. First, Chicago has long strug-
gled with some of the highest violence levels (particularly for gun violence) in the 
nation. The level of violence, coupled with adverse relations between the police, poli-
ticians, and the community may create barriers to crime prevention regardless of the 
technologies or initiatives available. Second, the staggered deployment of GDT in 
Chicago is rare when compared to the documented experiences of other jurisdictions. 
GDT is more often used to target smaller, more precise locations that are discernible 
hot spots for gunfire. Cities like Winston-Salem, NC, and Cincinnati, OH, that expe-
rienced some measurable degree of crime reduction from GDT deployment observed 
the effect at much smaller locales than the coverage area size tested in Chicago. The 
eleven distinguishable GDT phases in Chicago ultimately resulted in over 60% of the 
city being covered by GDT. Third, and perhaps most important, is that GDT may not 
be designed to be a crime reduction tool. The technology is predicated on responding 
to gunfire events after the event occurs. This is further exacerbated by the discrete 
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operation of GDT, which often requires GDT sensors and locations to not be disclosed 
to ensure the expensive technology is not discovered or damaged (see Piza et  al., 
2023a, 2023b). Although coverage areas may be publicly disclosed—as was the case 
in Chicago—the specific locations of GDT sensors and the locations under GDT pro-
vision are not directly visible to individuals to facilitate a potential deterrence effect. 
This is dissimilar to other surveillance technology, such as CCTV.

Despite such concerns and the lack of observable GDT effects on several gun violence 
outcomes, the significant increase in gun recoveries is important and noteworthy. GDT 
may assist law enforcement personnel in responding quicker to gunfire events and getting 
more guns off the street. The results indicate that significant gun recovery increases were 
observed across all model conceptualizations. However, the consistency of this finding 
may demonstrate an overall strategy to target guns in Chicago. The observed results may 
be contingent on patrol and personnel capacities, as the ability to recover a gun—even in 
a GDT target area—may not be intrinsically or causally tied to the identification of a gun-
fire event. GDT may represent one aspect of a larger initiative to recover guns.

Increasing gun recoveries is meaningful, but even the seemingly positive and ben-
eficial increases in gun recoveries may lead to contentious community relations if 
residents perceive GDT as a justification for overly enforcement-centric approaches. 
Such concerns recently culminated in Chicago, as the controversy surrounding the 
technology, the high-dollar cost, and the lack of GDT effects on key gun violence 
outcomes led to a mayoral decision to terminate ShotSpotter. Beyond Chicago, other 
cities investing in, or considering, GDT should state their intended goals and objec-
tives prior to purchase and deployment. The evidence continues to indicate that 
GDT may hold some resource benefits related to founded incidents and response 
times but has less merit for gun violence outcomes or case clearance.

Researchers should continue to prioritize the rigorous evaluation of GDT and 
related police technologies for a multitude of different outcomes. Rigorous evalua-
tion, including experimental and quasi-experimental designs with empirical control 
groups, is necessary to ensure the technology is meeting key deliverables. There are 
many additional deliverables and potentially unrealized benefits of GDT that remain 
unknown. For example, GDT may influence evidence collection on-scene (see Piza 
et al., 2023b), or the use of the acoustic sensors could be extended to other appli-
cations. The improved response times and spatial precision of GDT could also be 
leveraged to improve case clearance rates if police are able to secure the scene with 
increased efficiency, though recent research on GDT in Kansas City found GDT did 
not improve gun violence clearance rates (Piza et al., 2023c).

Future research should also undertake cost–benefit analyses, especially with third 
party contracted technology that has continued renewal and maintenance costs. A recent 
cost–benefit analysis by The Center for Crime Science and Violence Prevention (CCSVP) 
found that the cost of GDT (ShotSpotter) was offset by reported crime reductions and 
may generate a return of $15–$25 per $1 spent on GDT. The crime reduction capacity, 
or dollar-for-dollar benefit, of higher price technologies like GDT may be better realized 
in localized target areas. In contrast, the annual $8–$12 M cost in Chicago may be much 
more difficult to offset via crime prevention. As police budgets are being called into ques-
tion, the support for police funding and the allocation of already scarce resources could 
potentially go farther if more strategically distributed.
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Conclusion

Several manuscript limitations warrant mention. First, the study timeline proved chal-
lenging, as the approach required accounting for both aggregate and phase-specific 
effects over a prolonged time period. The modeling strategy included the ability to 
examine aggregate and phase-specific effects and initial and expanded effects, although 
other plausible alternative methods exist. Second, the synthetic control designs used to 
model each set of phases were chosen due to their robustness for empirical matching. 
Matching with covariates and balancing testing was prioritized to advance prior litera-
ture on GDT. This resulted in the decision to use synthetic control method approaches, 
though, there are a multitude of difference-in-difference analyses that can test for treat-
ment effects over time. Third, the research team elected to test the effects of GDT 
deployment using police districts, as GDT was deployed at that spatial extent. More 
micro-level units of analysis may have led to more analytical granularity (see, e.g., Piza 
et al., 2023b), but the present approach reflects Chicago’s operationalized geographies.

The results from Chicago indicate that GDT had no effect on several key gun vio-
lence outcomes across deployment phases. However, GDT may possess other ben-
efits, including previously demonstrated benefits like increased response precision 
and efficiency, the significant increases in gun recoveries observed in this study, or 
possibly other presently untested investigatory benefits. The deciding factor on the 
use of GDT may be jurisdiction specific and contingent on community climate, cost, 
target area size, and deployment goals.
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