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Abstract Plant-mediated interactions between below-
ground (BG) and aboveground (AG) herbivores have
received increasing interest recently. However, the
molecular mechanisms underlying ecological conse-
quences of BG–AG interactions are not fully clear yet.
Herbivore-induced plant defenses are complex and
comprise phytohormonal signaling, gene expression and
production of defensive compounds (defined here as
response levels), each with their own temporal dynamics.
Jointly they shape the response that will be expressed.
However, because different induction methods are used
in different plant-herbivore systems, and only one or two
response levels are measured in each study, our ability to
construct a general framework for BG–AG interactions
remains limited. Here we aim to link the mechanisms to
the ecological consequences of plant-mediated interac-
tions between BG and AG insect herbivores. We first
outline the molecular mechanisms of herbivore-induced
responses involved in BG–AG interactions. Then we
synthesize the literature on BG–AG interactions in two
well-studied plant-herbivore systems, Brassica spp. and
Zea mays, to identify general patterns and specific dif-
ferences. Based on this comprehensive review, we con-
clude that phytohormones can only partially mimic
induction by real herbivores. BG herbivory induces
resistance to AG herbivores in both systems, but only in
maize this involves drought stress responses. This may
be due to morphological and physiological differences

between monocotyledonous (maize) and dicotyledonous
(Brassica) species, and differences in the feeding strate-
gies of the herbivores used. Therefore, we strongly rec-
ommend that future studies explicitly account for these
basic differences in plant morphology and include
additional herbivores while investigating all response
levels involved in BG–AG interactions.

Keywords Root herbivory Æ Herbivore-induced
defenses Æ Plant–insect interactions Æ Glucosinolates Æ
Defense signaling

Introduction

About half of the 3–6 million insect species use plants as
a food source, thus constituting the most diverse taxon
of plant attackers (Schoonhoven et al. 2005). Most of
these phytophagous insects are specialized on a narrow
range of plant species belonging to the same genus or
family, contrary to generalists which feed on plant spe-
cies from different plant families (Bernays and Chapman
1994). To cope with their enemies, plants possess an
arsenal of chemical weapons, the so-called plant sec-
ondary metabolites (Schoonhoven et al. 1998). Some
plant secondary metabolites are characteristic of specific
plant families. For example, glucosinolates are typical
secondary metabolites serving as defensive compounds
in Brassicaceae plants (Halkier and Gershenzon 2006),
benzoxazinoids in Poaceae (Gierl and Frey 2001) and
alkaloids in Solanaceae (Wink 2003).

Some defensive compounds are constitutively ex-
pressed in plants, while others are induced only in re-
sponse to a herbivore attack (Wu and Baldwin 2010).
Many defensive compounds (i.e. glucosinolates) can be
constitutively present in plants and be induced to even
higher levels in response to herbivore feeding (Wittstock
and Halkier 2002). Inducible defenses can directly affect
the development or behavior of the attacker (direct de-
fenses), or attract natural enemies of the attacking her-
bivore, known as indirect defenses (Turlings et al. 2002;
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Schoonhoven et al. 2005; Gols et al. 2008a; Dicke and
Baldwin 2010). Inducible defenses are especially
intriguing, as in general, it has been postulated that they
reduce production costs and provide a regulatory
mechanism that allows plants to trade-off between de-
fense and growth (Herms and Mattson 1992; Karban
and Baldwin 1997; Heil and Baldwin 2002). Further-
more, specific signals, such as volatile organic com-
pounds (VOCs) released by neighboring plants in
response to herbivore attack, can prime plant inducible
defenses. The primed plant does not activate defenses
immediately, but is prepared for faster and stronger
defense responses after subsequent herbivore attack
(Conrath et al. 2006; Frost et al. 2007).

Herbivore attack can induce plant defenses locally in
damaged tissues or systemically in undamaged plant
parts (Heil and Ton 2008). Thus, plant defenses induced
in response to one attacker may affect plant defenses
against another attacker that feeds sequentially or
simultaneously on distal parts of the same plant (Kar-
ban and Baldwin 1997; Soler et al. 2007; Vos et al. 2013).
In nature, attack by a single herbivore species is unusual
and inducible defenses against multiple attackers have
been extensively studied (Rodriguez-Saona et al. 2005;
Poelman et al. 2008; Ali and Agrawal 2014). Although
most of these studies were constrained to aboveground
herbivores, plant-mediated interactions occur also be-
tween belowground (BG) and aboveground (AG) her-
bivores (Hol et al. 2004; Bezemer and van Dam 2005;
van Dam et al. 2005; Soler et al. 2007; Erb et al. 2009b).
Interactions between BG–AG herbivores affect the
preference or performance not only of the herbivores
that share the same plant, but also of organisms at
higher trophic levels (Masters et al. 2001; Soler et al.
2005; Rasmann and Turlings 2007) affecting composi-
tion and dynamics of plant-associated communities (van
der Putten et al. 2001; Bezemer et al. 2004; Wardle et al.
2004).

The main aim of this review is to link the molecular
and chemical mechanisms driving BG–AG plant–insect
interactions with the ecological implications for the AG
herbivores. We first discuss the key aspects of the
molecular mechanisms governing inducible defenses,
such as the role of phytohormones, in the context of
BG–AG interactions. Furthermore, we synthesize the
current knowledge on different response levels, such as
gene expression, phytohormonal signaling and metabo-
lomics. Additionally, we discuss the effect of plant
morphology and physiology on BG induced plant de-
fenses and the ecological consequences on AG herbi-
vores. Although AG herbivory can also affect BG plant
defenses as well as the performance of BG herbivores
(Erb et al. 2008), the focus of this review is on how BG
herbivory affects AG inducible defenses and herbivore
performance as there are currently more data available
for a comprehensive analysis. Moreover, as the mecha-
nisms and the ecological consequences of BG–AG
interactions are complex and vary depending on many
different factors, we primarily focus on direct defenses.

We also limit our review to interactions between plants
and insect herbivores, though we acknowledge the
interconnection of signaling pathways underlying plant–
microbe and plant–insect interactions, as well as inter-
active effects on higher trophic levels (Pieterse et al.
2012; Pangesti et al. 2013). We compared two of the
best-studied plant-herbivore systems with regards to
BG–AG interactions between herbivore induced direct
defenses, i.e. maize (Zea mays) and Brassica spp. The
former species is a monocotyledon whereas the latter
belong to the dicotyledons. So far, this aspect has never
been explicitly considered in comparative studies or re-
views on BG–AG interactions, making our synthesis
even more relevant. In general, BG induction of defenses
increases AG resistance against herbivores in both
Brassica spp. and maize. However, the molecular
mechanisms underlying BG–AG interactions differ sig-
nificantly between the two systems. Differences in leaf,
stem and root morphology and physiology of mono-
cotyledonous and dicotyledonous plants likely are key
factors responsible for the different mechanisms of BG–
AG interactions in Brassica spp. and maize plants.
Including such basic aspects may help us to better
understand differences and generalities of BG–AG
interactions via herbivore-induced plant responses.

Aboveground and belowground inducible defenses—the
role of phytohormones

The activation of plant inducible defenses by herbivores
consists of different consecutive steps. The first step is
the recognition of herbivore- (herbivore-associated
molecular patterns; HAMPs) or plant-derived signals
(damage-associated molecular patterns; DAMPs), serv-
ing as elicitors (Felton and Tumlinson 2008; Heil 2009).
Second, herbivore detection activates a network of sig-
naling pathways consisting of different phytohormones
(Pieterse et al. 2012). Eventually, this signal transduction
cascade results in the upregulation of defense-related
genes and the production of defensive compounds
(Berenbaum and Zangerl 2008; Wu and Baldwin 2010).

Apart from their role in plant growth and develop-
ment, phytohormones are important regulators of plant
inducible defenses after an herbivore has been perceived
by a plant. It is well known that jasmonic acid (JA) and
salicylic acid (SA) are the main regulators of plant in-
ducible defenses, while ethylene (ET), abscisic acid
(ABA), auxins and cytokinins (CKs) play an important
modulatory role. Moreover, antagonistic and synergistic
interactions (crosstalk) between different signaling
pathways, provide plants with another layer of plasticity
and allow them to fine-tune their defenses (Jaillais and
Chory 2010; Pieterse et al. 2012; Thaler et al. 2012).

JA is a key player in plant inducible defenses against
chewing insects from a wide range of taxa, such as
Lepidoptera, Diptera, Coleoptera, Thysanoptera,
Homoptera and Heteroptera (Kessler and Baldwin 2002;
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Bostock 2005; Howe and Jander 2008; Verhage et al.
2011; Erb et al. 2012). Several studies have shown the
important role of JA in BG–AG interactions (Erb et al.
2008; Soler et al. 2013; Fragoso et al. 2014). For
example, JA application on roots of Brassica spp. (van
Dam et al. 2001, 2004) and methyl-JA (Me-JA) appli-
cation on Nicotiana attenuata roots induces AG plant
defenses (Baldwin 1996). Thus, jasmonate application
on one organ affects plant defenses in the other organ.
Interestingly, only local increases in jasmonate levels
have been observed in maize plants (Zea mays) after BG
herbivory by western corn rootworm (Diabrotica vir-
gifera virgifera) or AG herbivory by cotton leafworm
Spodoptera littoralis. However, JA levels remained un-
changed in systemic tissues of the same plants after BG
or AG herbivory, suggesting the importance of other
long-distance signals, at least in some plant-herbivores
systems (Erb et al. 2009a). Alternatively, induced de-
fense compounds may be produced locally and then be
transported into the shoots (Baldwin et al. 1994; Morita
et al. 2009; Andersen et al. 2013).

In Arabidopsis the phytohormones ABA and ET are
known to act as modulators of two distinct and antag-
onistic branches of the JA signaling pathway, the MYC-
and the ERF-branch, respectively (Fig. 1) (Anderson
et al. 2004; Lorenzo and Solano 2005; Pré et al. 2008).
Moreover, interactions of both ABA and ET with other
molecular players of the signaling network have been
reported and thus these phytohormones may affect plant
defenses against insect herbivores (de Torres-Zabala
et al. 2009; Jiang et al. 2010; Kazan and Manners 2012;
Pieterse et al. 2012). The role of ABA and ET in BG–AG
interactions has been shown (Jackson 1997; Erb et al.
2009a). For example, ABA levels were increased sys-
temically after BG herbivory in maize plants (Erb et al.
2011). It is known that ABA plays a role in plant re-
sponses to both wounding and abiotic stresses including
drought (Christmann et al. 2006; Hauser et al. 2011;
Nguyen et al. 2016). Since herbivory by BG or AG
chewing insects is accompanied by wounding and water
loss (Aldea et al. 2005; Erb et al. 2009a; Consales et al.
2011), it seems likely that root herbivore-mediated abi-
otic stress may result in systemic induction of AG ABA
levels, which may affect AG induced defenses (Erb et al.
2011).

SA regulates plant defenses against pathogens,
phloem-sucking insects and plant responses to insect
oviposition (de Vos et al. 2005; Zarate et al. 2007; Vlot
et al. 2009; Bruessow et al. 2010). SA alone does not
seem to play a signaling role, neither in plant defenses
induced by BG insect herbivores (Erb et al. 2009a; Pierre
et al. 2012), nor in BG–AG interactions in Brassica spp.
(van Dam et al. 2004). Nonetheless, SA application
could activate some root maggot-induced genes in the
roots of Beta vulgaris (Puthoff and Smigocki 2007).
Interactions of SA with JA, ET and ABA are well
known (Pieterse et al. 2012) and thus SA could affect BG
and/or BG–AG plant defenses via interactions with
other phytohormones.

In addition, auxins and cytokinins (CKs) seem to
play an important role in BG–AG interactions. Auxins
have been shown to be translocated from AG to BG
plant parts where they regulate root growth and BG
plant defenses (Shi et al. 2006; Benjamins and Scheres
2008). The biosynthesis of the auxin indole-3-acetic acid
(IAA) is closely connected to that of indole glucosino-
lates, providing a direct link between the two metabolic
pathways, those of phytohormones and plant defensive
compounds in Brassicaceae (Bak et al. 2001; Radojčić
Redovniković et al. 2008). Changes in CKs levels and
CKs-regulated gene expression in response to herbivory
have been found not only locally but also systemically
(Schäfer et al. 2015). Schäfer et al. (2015) have shown
that AG simulated herbivory by wounding and appli-
cation of oral secretions, resulted in changes in CKs le-
vels in systemic leaves as well as in roots of N. attenuata

Fig. 1 Schematic representation of interactions between the most
relevant signaling pathways in plants. Necrotrophic pathogens
induce the ET-regulated ERF-branch (ERF1/ORA59), while
herbivorous insects and wounding induce the ABA-regulated
MYC branch (MYCs) of JA signaling pathway. The two branches
of the JA pathway are mutually antagonistic. Arrows represent
positive effects, blocked lines represent negative effects. ET
ethylene, JA jasmonic acid, ABA abscisic acid, SCFCOI1 E3
ubiquitin ligase SKP1-Cullin-F-box complex, JAZ JASMONATE
ZIM transcriptional repressor proteins, VSP2: VEGETATIVE
STORAGE PROTEIN2, PDF1.2 PLANT DEFENSIN1.2 Mod-
ified from Pieterse et al. 2012)
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and Arabidopsis thaliana plants (Schäfer et al. 2015).
Mobility of both auxins and CKs between leaves and
roots has been reported (Reed et al. 1998; Kudo et al.
2010). Therefore it is imperative to further investigate
the role of these phytohormones as mobile signals or as
modulators of interactions between BG–AG plant in-
ducible defenses.

Integrating different response levels of inducible
defenses

Despite the extensive knowledge on the different re-
sponse levels of inducible defenses and many observa-
tions of ecological effects, the exact molecular
mechanisms driving BG–AG plant-herbivore interac-
tions are not fully understood. One main reason is that
different plant-herbivore systems are used for experi-
ments. It is generally accepted that plant defenses are
attacker-specific (Howe and Jander 2008; Erb et al.
2012), and even closely related, congeneric, plant species
differ in their defenses against the same herbivore (van
Dam and Raaijmakers 2006; Agrawal et al. 2014). In
addition, individual genotypes of the same species were
shown to differ in the allocation of defensive compounds
to AG or BG tissues when exposed to herbivory (Birch
et al. 1992, 1996; Hol et al. 2004).

Even studies on the same or similar plant-herbivore
systems can yield different emerging patterns. For a part,
this may be due to different experimental approaches
used, such as application of phytohormones to simulate
herbivory versus real herbivory. Although phytohor-
mones are commonly used to simulate herbivory and the
defense responses they elicit are broadly similar to those
induced by real herbivory (Baldwin 1990; Dicke and Vet
1999; Loivamäki et al. 2004; Bruinsma et al. 2008), some
differences may still occur (Bruinsma et al. 2009; van
Dam et al. 2010). Moreover, as there are differences in
the temporal dynamics between response levels within a
plant, the link between the mechanisms and the eco-
logical consequences of BG–AG interactions may be
missed when focusing only on one response level or
one time point. To gain a more comprehensive over-
view of general patterns that may emerge, we con-
ducted an extensive literature review on inducible
defenses in response to BG and AG herbivores in two
well studied systems, Brassica spp. and Zea mays. By
doing so, we could overcome some of the limitations
related to single studies and reveal general as well as
species-specific patterns emerging from these study
systems. Furthermore, it enabled us to discuss the
possible link between the mechanisms and the conse-
quences of BG–AG interactions on the performance
of AG herbivores in a broader ecological context. The
relevant literature (see Tables 1 and 2) was searched
on the Web of Science platform with search terms such
as roots, shoots, belowground, aboveground, her-
bivory, defense, defence, maize, Brassica, in different
combinations.

Below- and aboveground interactions of inducible de-
fenses in Brassica spp. plants

Different Brassica species have been exposed to herbi-
vores or phytohormone applications BG and/or AG
(Table 1). We investigated studies where AG inducible
defenses were analyzed after BG induction only, or BG
as well as AG herbivory/phytohormone application. A
literature search revealed that the vast majority of
studies focused on changes in GLS levels, which are
characteristic defensive compounds of Brassicaceae
plants. Much less attention has been paid to other re-
sponse levels, such as gene expression and metabolomics
(Table 1). Surprisingly, we are not aware of any study
measuring changes in BG and/or AG phytohormone
levels in Brassica spp. in the context of BG–AG inter-
actions, though it is well-known that they play an
important role in the regulation of plant inducible de-
fenses (Fig. 2).

The first pattern that is observed among Brassica spp.
is that BG insect herbivory or JA application increases
total GLS levels in shoots (Griffiths et al. 1994; van Dam
et al. 2004; Soler et al. 2005; van Dam and Raaijmakers
2006; van Dam and Oomen 2008; Qiu et al. 2009; Pierre
et al. 2012). In the few studies showing that BG induc-
tion results in a decrease (van Dam et al. 2005) or has a
no effect (van Dam and Raaijmakers 2006; Pierre et al.
2012; Tytgat et al. 2013), GLS were either measured at
earlier time points (less than 3 days) after BG induction
or show a trend for an increase that is not statistically
significant (yet). Thus, the observed differences may be
mostly attributed to the timing of induction, at least for
the different Brassica species that have been tested so far.
Interestingly, although BG JA application has been
shown to increase total GLS levels in B. oleracea shoots
under greenhouse conditions (van Dam et al. 2004; van
Dam and Oomen 2008; Qiu et al. 2009; Pierre et al.
2012), no effect was found under field conditions when
the same plant species and phytohormone application
methods were used (Pierre et al. 2013). Therefore, pat-
terns observed under controlled greenhouse conditions
cannot be directly translated to the effect under field
conditions without further testing.

The second observed pattern is that inducible de-
fenses in Brassica spp. show organ-specificity for both
the induction and the response. Interestingly, this organ-
specificity was observed for different response levels,
such as transcriptome profiles of defense-related genes,
specific classes of GLS and VOCs, that were induced
after JA application or insect herbivory (van Dam et al.
2004; Soler et al. 2007; van Dam and Oomen 2008;
Jansen et al. 2009; van Dam et al. 2010; Pierre et al.
2011a; Tytgat et al. 2013). Regarding GLS profiles, for
example, BG JA application increased the expression of
genes involved in the aliphatic GLS pathway and the
levels of aliphatic GLS in B. oleracea shoots (van Dam
et al. 2004; van Dam and Oomen 2008; Tytgat et al.
2013). In contrast, AG application increased mainly
indole GLS levels and the expression of related genes in
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shoots (van Dam et al. 2004; van Dam and Oomen 2008;
Tytgat et al. 2013). This pattern was also observed in B.
rapa plants, where only AG and not BG JA application
increased indole GLS in shoots (Tytgat et al. 2013).
Contrasting responses of aliphatic GLS (increase) and
indole GLS (decrease) were also found in B. oleracea
and B. napus leaves in response to BG herbivory by the
turnip root fly Delia floralis (Birch et al. 1992). It is
important to mention that the two classes of GLS (ali-
phatic and indole) are produced from different amino
acids in two independently regulated biosynthetic path-
ways (Gigolashvili et al. 2007; Beekwilder et al. 2008).
These results indicate that plant defense profiles in
Brassica shoots are highly dependent on the initial side
of induction.

However, whether or not specific GLS are induced is
also species dependent. In B. nigra shoots, which GLS
consists for >98% of aliphatic GLS, both BG and AG
JA application increased AG aliphatic GLS levels (van
Dam et al. 2004). Moreover, BG herbivory by the cab-
bage root fly Delia radicum increased AG aliphatic as
well as indole GLS levels in B. nigra, underscoring once
more the difference between phytohormone applications
and real herbivory (van Dam and Raaijmakers 2006). In
contrast to the abovementioned studies on feral B.
oleracea, a study using cultivated B. oleracea has shown
that BG JA application resulted in much stronger AG

induction of indole, and not of aliphatic GLS (Pierre
et al. 2012). Although these studies have used similar
induction methods (i.e. same concentrations of phyto-
hormones), the differences in the GLS induction pat-
terns observed may be attributed to the different plant
accessions that were used. Therefore, whether organ-
specificity for the induction of different classes of GLS is
a general phenomenon among Brassica spp. needs fur-
ther investigation.

Interestingly, organ-specificity in B. oleracea, B. nigra
and B. rapa also occurs for some classes of VOCs after
JA application or insect herbivory (Soler et al. 2007; van
Dam et al. 2010; Pierre et al. 2011a). For example, B.
nigra plants exposed only to BG and not to AG insect
herbivory emit volatile blends containing high levels of
sulfur compounds and low levels of terpenes (Soler et al.
2007). Similarly, AG JA application on B. oleracea in-
creased AG emissions of sesqui-and homoterpenes,
whereas BG application did not (van Dam et al. 2010).
These results show that different VOC biosynthetic
pathways are activated in plants induced in BG and AG
organs. Therefore, even when organ-specificity is not
observed for one type of defense (i.e. the GLS profile),
another type of defense in the same system may still
show organ specificity.

So far, data from gene expression, GLS and VOCs
analyses have shown that BG induction of defenses

Fig. 2 Overview of the different levels of inducible defense
responses studied in Brassica spp. (left) and maize (right) plants
and their effects on aboveground (AG) insect herbivores. Response
levels were measured in AG tissues after belowground (BG) or BG
and subsequent AG induction by insect herbivores or phytohor-
mone application. › increase, fl decrease, = symbol no effect; ? not

studied, unknown; � the effect on the particular response level is
not clear; + changes in a response level have been observed but not
in an uniform direction, GLS glucosinolates, VOCs volatile organic
compounds. The position of the BG herbivores shows their
preferred feeding sites. See text and tables for details
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generally affect AG induced defenses in Brassica species
(Fig. 2). These changes are likely to affect defenses in-
duced by AG herbivores as well as AG herbivore per-
formance. As discussed before, BG induction increases
total, and particularly aliphatic GLS levels in the shoots
of different Brassica spp.. Aliphatic GLS are found to be
more toxic than indole GLS as they produce isothio-
cyanates (ITC), which are more toxic than the break-
down products of indole GLS (Bones and Rossiter
2006). This matches with the general observation that
BG-induced changes in AG GLS profiles negatively af-
fect the performance of AG generalist herbivorous in-
sects, as generalists are more sensitive to GLS and their
ITCs (Hopkins et al. 2009). For example, the perfor-
mance of the generalist cabbage moth Mamestra bras-
sicae was negatively affected by BG JA-induced increase
in AG aliphatic GLS levels of B. oleracea plants (van
Dam and Oomen 2008). However, BG induced increases
in shoot aliphatic GLS had no effect on the performance
of the specialist small white butterfly Pieris rapae reared
on B. oleracea plants subjected to BG JA application
(van Dam and Oomen 2008). On the other hand, P.
rapae performed worse when reared on B. nigra plants
previously exposed to D. radicum herbivory (van Dam
et al. 2005). Although specialist herbivores, such as P.
rapae, are known to use GLS as feeding stimulants
(Schoonhoven et al. 1998) and to be able to deal with
this major defense weapon of Brassicaceae plants
(Wittstock et al. 2004), negative effects of GLS and their
hydrolysis product on the performance of specialist
herbivores have also been reported (Agrawal and Kur-
ashige 2003). Interestingly, it was shown that the initial
GLS levels in B. nigra shoots were lower after D. radi-
cum attack but were strongly induced after subsequent
P. rapae herbivory (van Dam et al. 2005). Moreover,
other defenses, such as phenolic compounds, to which
the specialists are not well adapted may be induced by
BG induction as well (Jansen et al. 2009). This may
explain why the performance of another specialist large
cabbage white butterfly Pieris brassicae was also nega-
tively affected when developing on B. nigra plants pre-
viously exposed to BG D. radicum herbivory. In this
system GLS levels were reduced to that of plants with-
out previous BG herbivory, ruling out a role for GLS as
the causal agent (Soler et al. 2005). Moreover, when P.
brassicae developed on B. oleracea plants previously
exposed to BG JA application, the performance was not
affected, despite the increased AG aliphatic GLS levels
(Qiu et al. 2009). These studies show that the perfor-
mance of the two closely related specialists, P. rapae and
P. brassicae, was differentially affected when grown on
two different Brassica species exposed to different BG
induction methods. Although it is hard to discriminate
whether these differences were due to differences be-
tween plant species or induction methods, it can be
concluded that the consequences of BG induction on the
performance of both AG specialist herbivores cannot
solely be attributed to changes in GLS levels and pro-
files.

Induction of BG plant tissues has been also shown to
change AG levels of plant primary compounds, such as
amino acids, proteins, sugars or N (Soler et al. 2005; van
Dam and Oomen 2008; Qiu et al. 2009). In Brassica, BG
herbivory did not affect the water content in AG tissues,
even though root herbivory may reduce the capacity for
water uptake (van Dam et al. 2005). Whether and how
BG herbivory affects AG levels of defensive compounds
other than GLS (i.e. protease inhibitors) in Brassica spp.
plants has not been extensively studied. Increased total
phenolic levels were found in B. nigra plants exposed to
D. radicum and subsequent P. rapae feeding (van Dam
et al. 2005). Phenolics are not as toxic as hydrolysis
products of GLS; nevertheless, they are known to have
anti-feedant properties and to reduce protein digestibil-
ity by herbivorous insects (Duffey and Stout 1996;
Schoonhoven et al. 1998). Therefore, BG herbivorous
insects may also affect food quality for the AG feeders
via more global changes in plant chemistry. A more
comprehensive analysis of these changes is required in
order to link the physiological mechanisms with the
ecological consequences of plant-mediated interactions
between BG and AG insect herbivores.

Below- and aboveground interactions of inducible de-
fenses in maize plants

A similar literature review on maize (Zea mays) revealed
that the same response levels have been studied in maize
plants as in Brassica spp., with the exception of an
untargeted metabolomics approach (Table 2). Although
metabolomics has been used to assess changes in AG
and BG maize tissues in response to AG herbivory by
Spodoptera littoralis (Marti et al. 2013), we are not
aware of any study using metabolomic approach to
investigate AG changes in response to BG herbivory
(Fig. 2).

Laboratory and field experiments have shown that
BG herbivory by larvae of Diabrotica virgifera virgifera
induces resistance against AG herbivores (Erb et al.
2009a, 2011). Field observations revealed that leaf
damage was reduced on plants that were exposed to BG
herbivory compared to uninfested plants (Erb et al.
2011). Moreover, under laboratory conditions, the per-
formance of S. littoralis was reduced when developed on
plants previously infested with D. v. virgifera (Erb et al.
2009a; 2011). In an attempt to understand the mecha-
nisms governing this interaction, different response le-
vels have been studied in D. v. virgifera-maize–S.
littoralis system (Table 2; Fig. 2). Phytohormone anal-
ysis has shown that D. v. virgifera feeding increases AG
ABA levels, while the levels of SA, JA, JA-Ile and
12-oxo-phytodienoic acid (OPDA, a biosynthetic pre-
cursor of JA) are not affected (Erb et al. 2009a, 2011).
Not only did BG herbivory increase these levels, but also
it primed the AG ABA levels induced by S. littoralis
feeding. Moreover, BG ABA application as well as D. v.
virgifera feeding primed the AG production of the
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defensive phenolic compound chlorogenic acid in re-
sponse to S. littoralis feeding (Erb et al. 2009a, c).
Therefore, ABA is a good candidate for a systemic sig-
nal governing BG–AG interactions. Eventually, it was
shown that D. v. virgifera causes AG responses similar to
drought stress, such as reduced water content, increased
ABA levels and increased levels of defensive compounds
that were also found in response to water stress
(Richardson and Bacon 1993; Hura et al. 2008; Erb et al.
2009a, c). It was concluded that D. v. virgifera–mediated
induction of AG defenses results from a combination of
drought-stress dependent and independent mechanisms.
First, D. v. virgifera–mediated water stress induces some
of the AG defense markers, including ABA biosynthetic
gene transcription and ABA levels. Second, increases in
ABA levels caused by D. v. virgifera-induced water
stress, activated some, but not all of the AG defense
markers, such as the anti-feedant secondary metabolite
2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one
(DIMBOA). Third, some of the defense markers, such as
putative cystatin protease genes, were induced by ABA,
but not by water stress. This comprehensive analysis of
different response levels shows that water stress and the
ABA signaling pathway are important, but not the only
players in D. v. virgifera-mediated changes in AG de-
fenses (Erb et al. 2011).

Interestingly, D. v. virgifera feeding activates ABA
signaling in AG tissues; nevertheless, D. v. virgifera-in-
duced resistance against S. littoralis seems to occur
irrespective of ABA signaling (Erb et al. 2009a, 2011).
Although AG ABA levels and gene expression profiles in
plants exposed to D. v. virgifera and BG ABA applica-
tion were similar, BG ABA treatment did not affect the
performance of S. littoralis (Erb et al. 2009a). Further-
more, D. v. virgifera reduced S. littoralis performance
even more strongly in plants inhibited in ABA signaling.
Thus it was suggested that ABA-independent changes in
AG water content also contribute to resistance against
S. littoralis (Erb et al. 2011).

In maize plants, the effect of BG induced AG resis-
tance studies has been mainly studied using S. littoralis
(Table 2). However, a field experiment has shown that
D. v. virgifera infestation resulted in an overall increase
in resistance, including to other AG herbivores such as
European corn borer Ostrinia nubilalis and fall army-
worm Spodoptera frugiperda (Erb et al. 2011). Therefore,
it would be interesting to investigate whether BG-in-
duced changes in water content affects resistance against
these other AG herbivores directly or via changes in AG
plant inducible defenses.

Mechanisms and ecological implications of below-
and aboveground interactions in Brassica spp. and maize

When comparing Brassica and maize as the most com-
prehensively studied systems for the BG–AG interac-
tions to date, both differences and general patterns

emerge. In both systems, induction with phytohormones
cannot fully mimic the responses induced by real her-
bivory. Phytohormone application is an important tool
in studies on plant inducible defenses, for example when
investigating the role of the specific phytohormonal
signals in plant defense responses. In studies on BG–AG
interactions, phytohormone application is particularly
useful in understanding, for instance, the organ speci-
ficity of inducible defenses. In nature, the same insect
species usually do not feed on both BG and AG plant
tissues, at least not in the same developmental stage.
However, single phytohormones can only partly mimic
the responses induced by real root herbivores and the
effect they may have on AG herbivore performance (Erb
et al. 2009a; van Dam et al. 2010). This highlights the
involvement of multiple signaling pathways in BG–AG
interactions. The contributions of these pathways and
their interactions, can be best investigated by infesting
plants with—different species of—real insect herbivores,
after which changes in phytohormone levels and marker
gene expression levels in the plants are assessed at dif-
ferent time points after onset of herbivory.

Studies using real insect herbivores as inducers of BG
plant defenses have identified some consistent differences
between Brassica and maize plants regarding the mecha-
nisms governing BG–AG interactions. While in Brassica
spp. BG-induced changes in AG plant responses do not
seem to be related to drought stress, BG herbivory on
maize plants changes AG water content. This discrepancy
may be attributed to elementary morphological and
physiological differences in leaves, stems and root of
monocotyledonous (maize) and dicotyledonous (Bras-
sica) plants (Fig. 3). In monocotyledonous plants the
vascular system is scattered throughout the stem, while
the vascular system of dicotyledonous plants is neatly
organized in vascular bundles arranged in a ring around
the edge of the stem. In roots of monocotyledonous
plants, the xylem and phloem are interspersed and ar-
ranged in a wide ring around a central non-vascular pith,
while in dicotyledonous plants the xylem is located in the
center of the vascular bundle with the phloem sur-
rounding the xylem (Purves et al. 1994). Studies on dif-
ferent plant species have shown that the systemic
induction of defenses in AG tissues is controlled by vas-
cular architecture (Davis et al. 1991; Rhodes et al. 1999;
Schittko and Baldwin 2003; Ferrieri et al. 2015). For
example, phyllotactic arrangements and vascular con-
nectivity was shown to affect the among and within leaf
variation of systemic induction of defensive compounds
proteinase inhibitors (PIs) in tomato and Solanum dul-
camara (Orians et al. 2000; Viswanathan and Thaler
2004). Vascular anatomy was also shown to affect the
movement or accumulation of signals required for the
systemic induction of defenses in leaves, such as SA in
tobaccoNicotiana tabacum (Shulaev et al. 1995). Stronger
systemic induction of defenses has been found in leaves
directly connected via the vasculature to the damaged
leaves than leaves without vascular connections.
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While the importance of vascular architecture for the
systemic induction of defenses in AG tissues has been
studied (Orians 2005), to date the effect of vascular
architecture on the systemic induction of defenses be-
tween BG and AG plant tissues has received little or no
attention. The correlation of BG-induced changes in AG
plant responses with drought stress in maize but not in
Brassica spp. suggest that differences in morphology and
physiology play an important role in BG–AG interac-
tions. In contrast to Brassica, the root system of maize
plants possess crown roots, also known as adventitious
or post-embryonic roots, in addition to primary and
secondary roots (Fig. 3) (Hochholdinger and Tuberosa
2009). The BG herbivore D. v. virgifera which has been
used in the majority of studies reviewed here, shows a
strong preference and performs better when feeding on
crown roots than on primary or secondary roots (Fig. 2)
(Robert et al. 2012). As the crown roots morphologically
directly originate from the stem, their vascular system is
directly connected to the main central cylinder of the
stem (Hochholdinger and Tuberosa 2009). Damage
caused during D. v. virgifera feeding thus is likely to
directly affect water status in AG plant tissues. Brassica
plants do not possess crown roots and the larvae of the
root fly Delia, the commonly used BG insect herbivore
to induce Brassica species, preferably feed on the pri-
mary root (Fig. 2). In addition, different feeding strate-
gies of the BG herbivores could also be responsible for
the drought-dependent (maize) and drought-indepen-
dent (Brassica) BG-induced resistance against AG her-
bivores. The larvae of D. v. virgifera are chewers that
may feed on the entire crown root of maize plants, while

root fly larvae are mining into the cortex of Brassica
(tap) roots (Gratwick 1992). This rather superficial
mining feeding behavior of the root fly larvae prevents
them from reaching the central cylinder of the root
immediately and thus interfering with water transport to
the AG tissues.

Despite these differences between maize and Brassica
plants and their respective herbivores, in the majority of
the cases induction of BG tissues increases AG resis-
tance leading to root herbivore-induced shoot resistance,
(RISR—Erb et al. 2011) in both systems. Two
hypotheses have been discussed regarding the possible
ecological reasons underlying RISR (van Dam 2009).
First, RISR could simply be a consequence of the
morphological and physiological integration of BG and
AG plant tissues. According to this hypothesis the sig-
nals or defensive compounds produced in response to
BG herbivory are passively transferred from the BG to
AG tissues following water transportation via the xylem.
In maize plants, BG-induced changes in water content of
AG tissues are likely to be a result of such morpholog-
ical constraints (Erb et al. 2011). The second hypothesis
states that RISR could have an adaptive value for plants
when the BG and AG herbivory have an additive neg-
ative effect on plant fitness (van Dam 2009). Thus it
would be crucial for plants to increase the response le-
vels or to prepare AG tissues for an herbivore attack
directly or via priming after BG herbivory. This
hypothesis could apply to Brassica plants, where the two
mostly studied insect herbivores D. radicum (BG) and P.
brassicae (AG) often co-occur in the field (Pierre et al.
2011b). BG herbivore feeding may have a severe impact

Fig. 3 Schematic representation of morphological differences in
root and shoots/stems of Brassica (left) and maize (right) plants.
The elementary morphological and physiological differences
between the two most studied systems might be responsible for
the drought-independent (in Brassica) and drought-dependent (in
maize) belowground (BG)-induced changes in aboveground (AG)
plant responses. In contrast to Brassica, the root system of maize

plants possess crown roots. The most studied root herbivore of
maize plants Diabrotica virgifera virgifera usually feeds on crown
roots that morphologically originate directly from the stem. The
different arrangements of Brassica and maize stem and root
vascular bundles may also partially explain differences in the
mechanisms governing BG–AG interactions between the two plant-
herbivore systems. See text for details
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on plant growth, depending on which part of the roots is
damaged (Tsunoda et al. 2014). However, whether the
presence of BG and AG herbivores has a more than
additive negative effect on plant fitness remains to be
investigated.

Conclusion and future directions

In conclusion, our understanding of the mechanisms and
the ecological consequences of BG–AG interactions is
currently constrained due to the limited amount of data
that is available. Moreover, different response levels are
studied in different systems using different plant species,
induction methods and herbivores. The morphology and
physiology of plants belonging to different phylogenetic
groups affects the mechanisms underlying BG–AG
interactions and thus these aspect should be considered,
or even specifically studied. As plant responses vary
depending on the system, future studies should prefer-
ably integrate several response levels in the same plant-
herbivore system. A good example are maize plants,
where the mechanisms underlying BG–AG interactions
are better (although not completely) understood as
many response levels were studied using the exact same
plant-herbivore complex. The next step then would be to
explore what the discrepancies in plant responses to
different herbivorous insects (such as AG insects from
different taxa, specialists, generalists, etc.) are. Further-
more, it would be interesting to explore the differences in
responses of plant species belonging to the same genera
or family against the same insect herbivores. In this
perspective, Brassica provides a good study system as
several of its defenses have been deeply investigated in
different species within the family. Moreover, higher
trophic level interactions and the herbivore communities
associated with Brassica species have been charted out
very well (Gols et al. 2008b; Poelman et al. 2008; Ahuja
et al. 2010; Kugimiya et al. 2010). With such a global
model system it may be more likely to gain a much
deeper understanding of interactions between plants (as
a whole organism) and their BG–AG insect communi-
ties.
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