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Abstract Community ecology is traditionally species-
based and assumes that species comprise identical indi-
viduals. However, intraspecific variation is ubiquitous in
nature because of ontogenetic growth and critical in
food-we dynamics. To understand individual interac-
tion-mediated food webs, researchers have recently fo-
cused on body size as the most fundamental biological
aspect and assessed a parameter called the predator—
prey mass ratio (PPMR). Herein, I review the concep-
tual development of the PPMR and suggest four major
concerns regarding its measurement: (1) PPMR should
be measured at the individual level because species-av-
eraged values distort actual feeding relationships, (2)
individual-level PPMR data on gape-unconstrained
predators (e.g., terrestrial carnivores) are limited because
previous studies have targeted gape-limited fish preda-
tors, (3) predators’ prey size selectivity (preferred
PPRM) is conceptually different from dietary prey size
(realized PPMR) and should be distinguished by incor-
porating environmental prey abundance information,
and (4) determinants of preferred PPMR, rather than
those of realized PPMR, should be identified to describe
size-dependent predation. Future studies are encouraged
to explore not only predation but also other interaction
types (e.g., competition, mutualism, and herbivory) at
the individual level. However, this is not likely to occur
while ecological communities are still considered to be
interspecific interaction networks. To resolve this situa-
tion and more comprehensively understand biodiversity
and ecosystem functioning, I suggest that community
ecology requires a paradigm shift in the unit of inter-
action from species to individuals, similar to evolution-
ary biology, which revolutionized the unit of selection,
because interactions occur between individuals.
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Introduction

Ecology, particularly community ecology, has tradi-
tionally been species-based. That is, researchers classify
organisms according to species-specific representative
traits, measure interaction strengths among species, and
enumerate coexisting species or quantify their functional
diversity (Begon et al. 2006; Verhoef and Morin 2010).
An implicit assumption in this approach is that species
comprise identical individuals with invariant traits or
that trait variations within species are virtually negligible
compared with those between species. However,
intraspecific trait variations are common in nature and
sometimes substantially exceed interspecific variations.
This suggests that our current understanding of biodi-
versity and ecosystem functioning based on species-level
community ecology is fundamentally flawed or at least
incomplete (Bolnick et al. 2011; Violle et al. 2012; Hart
et al. 2016).

To address this issue, some ecologists have recently
emphasized body size as the most fundamental func-
tional trait of an organism. The reason for this is two-
fold. First, many organisms are multicellular and exhibit
ontogenetic growth, indicating that intraspecific size
variation is ubiquitous. Second, and more importantly,
body size is associated with other biological aspects,
such as morphology, physiology, and behavior (LaBar-
bera 1989; Brown et al. 2004). Therefore, body size
largely determines demographic performances (e.g.,
birth, death, and mobility) and ecological niches (e.g.,
diet and habitat) as well as interactions with other
organisms (e.g., predation, competition, and mutualism)
(Wilbur 1980; Werner and Gilliam 1984). Currently,
there is a growing interest in how the ontogenetic growth
of organisms mediates community structure and
dynamics (Hildrew et al. 2007; Miller and Rudolf 2011;
de Roos and Persson 2013; Nakazawa 2014, 2015a).
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Herein, I review recent progress and problems
regarding this ontogenetic perspective in community
ecology. More specifically, I focus on a key parameter in
this research field, the predator—prey mass ratio
(PPMR). The PPMR measures the body mass ratio of
interacting predators and prey. Body size can be linked
with interaction strength, which allows us to describe
food webs mediated by size-dependent predation (Brose
2010; Nakazawa et al. 2011). In this review, body size
represents individual size, including the concept of age
or developmental stage, rather than species-specific
representative body size, because this review concerns
the community consequences of ontogenetic growth.
The main problem with the PPMR is that very few
studies have appropriately quantified it. Thus, reliable
theoretical predictions accompanied by empirically
supported assumptions are not available for any food
web patterns. The objective of this review is to address
this problem by introducing recent empirical measure-
ments of PPMR and stimulating further research efforts
toward its solution.

Ontogenetic niche shift matters in community ecology

First, before beginning the review of PPMR studies, 1
remark that ontogenetic niche shifts critically affect
community dynamics (see Miller and Rudolf 2011; de
Roos and Persson 2013; Nakazawa 2014, 2015a for
more details). Studies have predicted that an ontogenetic

Species-based food-web topology

shift of a predator species between the juvenile and adult
stages can generate alternative community states,
thereby reducing community resilience and causing re-
gime shifts under environmental changes (Schreiber and
Rudolf 2008; Guill 2009; Nakazawa 2011a, b). The
mechanism involves positive feedback caused by the
apparent competition-like interactions between the re-
sources of the juveniles and adults. Suppose that the
resource of juveniles increases. This promotes matura-
tion of the juveniles and negatively affects the resource
of the adults, which in turn leads to a decrease in
reproduction and a further increase in the resource of
the juvenile. Thus, a positive feedback loop is created
(see Schreiber and Rudolf 2008; Guill 2009; Nakazawa
2011a, b for details). This represents the simplest pos-
sible scenario (i.e., trophic module) for a stage-struc-
tured community. However, the concept applies to
various community contexts, such as aquatic food webs,
in which ontogenetic diet shifts of predatory fish from
planktivore to benthivore couple energy flows in the
surface and bottom waters (Nakazawa et al. 2010, Bri-
ones et al. 2012), plant—insect interactions, in which
stage structures entangle herbivory and pollination net-
works (Altermatt and Pearse 2011; Ke and Nakazawa,
unpublished data), and interface areas, in which meta-
morphosis of amphibians or aquatic insects connect
aquatic and terrestrial ecosystems (Baxter et al. 2005;
Nakazawa 2015b).

However, little is known about the community con-
sequences of ontogenetic niche shifts because previous
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Fig. 1 Schematic example of a food web network based on the
ontogenetic perspective. The upper network represents the topol-
ogy of the conventional species-based view of interactions. Arrows
represent interactions between species. The lower bipartite net-
work represents individual feeding links in a predator—prey species

pair, in which predator and prey individuals are arranged
according to different ontogenetic stages. Some stages of individ-
uals may interact with other species because of ontogenetic niche
shifts (dashed lines)



community models have used the simple assumption
that only a single species undergoes an ontogenetic niche
shift only once at the timing of maturation (Schreiber
and Rudolf 2008; Guill 2009; Nakazawa 201la, b).
However, the reality is more complex. Nearly all species,
including plants (Barton and Koricheva 2010; Boege
et al. 2011), exhibit ontogenetic niche shifts. Further-
more, ontogenetic niche shifts may occur more than
once or continuously in an organism’s lifespan, irre-
spective of maturation, due to increasing body mass
(e.g., Nakazawa et al. 2010, Briones et al. 2012). In such
situations, an ecological community can be considered a
network of interactions among individuals rather than
of species because each interspecific interaction is rede-
fined as a network of individuals at different ontogenetic
stages (Fig. 1). This community view is in sharp contrast
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the PPMR or tested its fundamental assumptions. To
illustrate this point, I present four practical considera-
tions that must be addressed in empirical measurements
of the PPMR: (1) definition dependence, (2) gape-un-
constrained predation, (3) prey size preference, and (4)
variability determinants.

Definition dependence of the predator—prey mass ratio

First, it is important to recognize that the PPMR can be
defined at various biological scales depending on the
manner in which the predator and prey body masses are
measured (Nakazawa et al. 2011). Ideally, the PPMR
should be measured using the individual body masses of
the predator and prey as follows:

Mass of an individual predator that consumed a prey individual

Mass of the prey individual that was consumed by the predator individual

to the conventional view that species comprise identical
individuals. How can we describe such a complex system
(i.e., individual interaction-mediated food web) and
understand its dynamics or environmental responses?

Predator—prey mass ratio as a tool for describing size-
based food webs

A promising approach for describing individual
interaction-mediated food webs is to analyze the
PPMR in a focal system (Brose 2010; Nakazawa et al.
2011). This idea is reasonable because a predator
cannot efficiently utilize excessively large prey because
of physical constraints on feeding (e.g., gape limita-
tion) and because a predator should not target
excessively small prey because of their limited nutri-
tional values (Brose 2010). In brief, interaction
strength will be maximized at a moderate PPMR
(Fig. 2). Based on this expectation, numerous studies
have examined the predator—prey size relationship
(Cohen et al. 1993, 2005; Brose et al. 2005, 2006a;
Woodward and Warren 2007; Barnes et al. 2008, 2010;
Owen-Smith and Mills 2008; Scharf et al. 2010; de
Visser et al. 2011; Naisbit et al. 2011; Nakazawa et al.
2011; Riede et al. 2011; Lurgi et al. 2012; Reum and
Hunsicker 2012; Klecka and Boukal 2013; Nakazawa
et al. 2013; Tsai et al. 2016) and applied the PPMR to
food web models (Andersen and Beyer 2006; Brose
et al. 2006b; Otto et al. 2007; Blanchard et al. 2009,
2011; Hartvig et al. 2011; Thierry et al. 2011; Zhang
et al. 2013; Guiet et al. 2016).

Nevertheless, according to my review of relevant lit-
erature, very few studies have appropriately quantified

This is called the individual-link PPMR and it is
typically obtained using gut content analysis that can
provide body size information for both predators and
prey (Barnes et al. 2008, 2010; Scharf et al. 2010; Na-
kazawa et al. 2011; Reum and Hunsicker 2012; Tsai
et al. 2016).

However, individual-link PPMR data are very limited
because most previous studies have evaluated the PPMR
at the scale of predator—prey species pairs using species-
averaged body masses (Cohen et al. 1993; Brose et al.
2005, 2006a; Owen-Smith and Mills 2008; de Visser et al.
2011; Lurgi et al. 2012). This is called the species-aver-
aged PPMR:
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Fig. 2 Expected relationship between the predator—prey mass ratio
and interaction strength. Interaction strength is low when the
predator—prey mass ratio is excessively small or large and
maximized when the ratio is at an intermediate level
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Fig. 3 Definition dependence of the predator—prey mass ratio.
Suppose a simple scenario in which three individuals of one
predator species feed on four individuals of two prey species, as
shown here. Light and dark gray circles indicate species and
individual identities, respectively. Arrows represent individual
feeding links. M; and m; denote individual body masses of
predators and prey, respectively. For example, suppose that
my =1, my =2, my = 3, and my = 3 for prey and M, = 5,

Species — averaged PPMR
B Mean mass of predator individuals of a species
" Mean mass of the prey individuals of the predator species

This PPMR definition only requires descriptive
information about species-based food web topology and
independent information on species-averaged body
masses. In brief, the species-averaged PPMR does not
require time-consuming gut content analysis. Mathe-
matically, these different definitions yield different values
(Fig. 3). Previous studies have reported that the indi-
vidual-link PPMR is larger than the species-averaged
PPMR by approximately one order of magnitude in
freshwater invertebrates (Woodward and Warren 2007)
and marine fish predators (Nakazawa et al. 2011).
However, this is not always the case (see Fig. 3 for an
example of the opposite case). Nakazawa et al. (2013)
reported that individual-link and species-averaged
PPMRs were comparable for aquatic hemipteran bugs.
Theoretically, whether species averaging underestimates
or overestimates the PPMR depends on the elements of
the data used, such as body masses and sample numbers
of predator and prey individuals and species (Nakazawa
et al. 2011). Although other definitions are also possible
(not shown), the individual-link PPMR is considered to
represent the most realistic definition (see Nakazawa
et al. 2011 for details).

The definition problem raises another concern: what
determines PPMR? In contrast to the original theoretical
assumption, PPMRs may not be identical among preda-
tors. The individual-link PPMR typically varies with
individual predator size (i.e., ontogenetic changes in
PPMR) (Barnes et al. 2010; Nakazawa et al. 2011, 2013;
Reum and Hunsicker 2012; Tsai et al. 2016). By contrast,
species-averaged PPMR tends to be size-invariant (Na-
kazawa et al. 2011, 2013) but varies according to other
factors, such as ecosystem type (e.g., aquatic versus ter-
restrial), taxonomic identity (e.g., vertebrate versus
invertebrate), trophic level, and climatic conditions
(Brose et al. 2006a; Naisbit et al. 2011; Riede et al. 2011;
Lurgi et al. 2012). These patterns imply that species
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M, = 10, and M3 = 15 for predators. The individual-link
predator—prey mass ratio (PPMR) is calculated as M;/m; = 5
for each feeding event. By contrast, the species-averaged PPMR is
calculated as Wi/ﬁj = 10 and 3.75 for two interspecific
interactions, respectively, where the bars denote the average body
sizes. In this example, the mean value of species-averaged PPMRs
is greater than that of individual-link PPMRs

averaging masks the size-dependent variability of the
PPMR, thereby generating a misleading picture of actual
feeding relationships (Fig. 3; also see Nakazawa et al.
2011, 2013). Overall, the PPMR should ideally be mea-
sured at the individual level (Woodward and Warren
2007, Nakazawa et al. 2011, 2013) and great caution
should be exercised when using species-averaged PPMR
to parameterize food web models (Andersen and Beyer
2006; Brose et al. 2006b; Otto et al. 2007; Blanchard et al.
2009, 2011; Hartvig et al. 2011; Thierry et al. 2011; Zhang
et al. 2013; Guiet et al. 2016).

Predator—prey mass ratio of gape-unconstrained predators

The available data sets on individual-link PPMR are
highly biased toward aquatic predators such as fish
(Barnes et al. 2008, 2010; Scharf et al. 2010; Nakazawa
et al. 2011; Reum and Hunsicker 2012; Tsai et al. 2016).
This is because fish predators are typically gape-limited
and swallow smaller prey whole; thus, gut content
analysis can be used to estimate the individual body
masses of prey in predator guts. However, this is not
feasible for gape-unconstrained predators (e.g., terres-
trial carnivores) because they often attack relatively
large prey by using hunting tools (e.g., fangs and claws),
and prey body tissues are bitten off or sucked out. To
assess the individual prey sizes for such predators,
observing each hunting event or converting residual
body tissues in predator guts to whole-prey body mass is
necessary. According to the current literature, the indi-
vidual-link PPMR for gape-unconstrained predators is
not yet available, except for parasitoid wasps (Cohen
et al. 2005) and aquatic hemipteran bugs (Nakazawa
et al. 2013). This implies that our understanding of size-
dependent predator—prey interactions is limited, partic-
ularly regarding terrestrial food webs.

Individual-link PPMR may change ontogenetically,
irrespective of whether predators are gape-uncon-
strained or -limited. By monitoring hunting events and
estimating the body masses of interacting predators and
prey individuals, Nakazawa et al. (2013) reported that



the individual-link PPMR of gape-unconstrained hemi-
pteran bugs varied according to individual predator size.
Notably, this finding (i.e., size-dependent PPMR) is
similar to that reported for gape-limited fish predators
(Barnes et al. 2010; Nakazawa et al. 2011; Reum and
Hunsicker 2012; Tsai et al. 2016). Thus, it is suggested
that the original theoretical assumption of size-invariant
PPMR is oversimplified. Irrespective of the feeding
mode of predators (e.g., gape-limited or -unconstrained)
or ecosystem type (e.g., aquatic or terrestrial), size-de-
pendently parameterizing PPMR may be necessary.
However, this finding contrasts with the initial objective
of simplifying the complex structure of individual-based
food webs (Fig. 1).

Realized versus preferred predator—prey mass ratio

Do we actually require such complex models assuming
size-dependent PPMR? Although there are limited data
to answer this question, available data suggest not (Tsai
et al. 2016). This is because the aforementioned incon-
sistency between theoretical assumption and empirical
measurement of PPMR arises because of conceptual
confusion. The PPMR was originally invented to rep-
resent a preference for relative prey size. Nevertheless,
PPMR has been measured using only dietary data (i.e.,
the realized PPMR) such as gut content analysis or
observations of hunting, as previously mentioned. The
relative size of prey in the diet is determined not only by
the predator’s prey size selection (i.e. the preferred
PPMR) but also by the prey size composition in the
environment (Fig. 4). For example, the realized PPMR
increases not only when a predator selectively feeds on
small prey but also when small prey are abundant in the
environment. Thus, the assessment of the realized

=== Prey size distribution in environment
= Prey size selectivity of predator
+ ==+ Prey size distribution in diet

Relative proportion

Prey body size

Fig. 4 Conceptual difference between the relative prey size distri-
butions in the environment and diet. Theoretically, the product of
the relative prey size distribution in the environment (gray lines)
and the prey size selectivity of a predator (solid lines) determine the
relative prey size distribution in the diet (dashed lines). Thus,
f(x) x p(x) = g(x), where f(x) is the environmental prey size
distribution, p(x) is the predator’s prey size selectivity, and g(x) is
the dietary prey size distribution. All these factors depend on prey
body size x. When the environmental prey size distribution is
skewed and smaller prey become relatively dominant, the dietary
prey size distribution shifts toward a smaller size, deviating from
the preferred prey size (compare the left and right panels). Here, the
absolute scale along the y axis is not relevant, and each curve is
rescaled for visual clarity

9

PPMR does not automatically yield the preferred
PPMR, and the preferred PPMR may be size-invariant
even when the realized PPMR depends on predator
body size.

To test this hypothesis, Tsai et al. (2016) reanalyzed
long-term dietary data for an omnivorous predatory fish
species collected from a lake ecosystem over four dec-
ades (Briones et al. 2012) by incorporating environ-
mental abundance data for its major prey, zooplankton
and zoobenthos (Ishikawa et al. 2004; Hsieh et al. 2011).
Specifically, they compared prey size compositions in
predator guts and the environment (i.e., the realized
versus the environmental PPMR) to detect deviations
between these elements as effects of the preferred
PPMR. Notably, their results revealed that preferred
PPMR was size-invariant if predators were classified
into plankton and benthos feeders, whereas realized
PPMR varied depending on the individual predator size
irrespective of the feeding mode (Tsai et al. 2016). This is
the first evidence of size-invariant prey size preference.
Furthermore, in contrast to the previous arguments
based on realized PPMR (discussed above), their finding
supports the original assumption of a constant PPMR in
food web models.

Variability and determinants of the preferred predator—
prey mass ratio

Previous studies have argued about what determines the
variability of the realized PPMR (refer to ‘“‘Definition
dependence of the predator—prey mass ratio’), but all
such arguments are invalid for characterizing prey size
preference (refer to “‘Realized versus preferred predator—
prey mass ratio’”). We can, however, approach deter-
minants of prey size preference by distinguishing be-
tween realized and preferred PPMRs (Fig. 4) using
environmental prey abundance information. In this
sense, research on the PPMR has just begun and future
studies will need to reanalyze its determinants using
environmental prey abundance information. In a
pioneering study, Tsai et al. (2016) showed that pre-
ferred PPMR was not significantly affected by predator
body size, but varied according to major prey type, such
as zooplankton versus zoobenthos, likely because of
different foraging modes. Because their study focused on
only a single predator species, it will be crucial to test the
robustness of their findings by analyzing other predator
species. It may turn out that preferred PPMR tends to
be size-invariant according to the original theoretical
assumptions, whereas prey size preference may depend
on the taxonomic identity of predators if they exploit
morphologically or behaviorally distinct prey types or
have qualitatively different foraging modes. We expect
that gape-unconstrained predators will exhibit different
patterns of the preferred PPMR from that of the gape-
limited predators (refer to “‘Predator—prey mass ratio of
gape-unconstrained predators”). Testing this hypothesis
will be essential for understanding differences between
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aquatic and terrestrial food webs (Shurin et al. 2006).
Future studies are encouraged to identify determinants
of preferred PPMRs for varied organisms and systems.

Conclusions and future perspectives

In this review, I have briefly outlined how the concept of
the PPMR has been developed and refined. The ultimate
goal of my arguments is to establish effective ways of
describing food webs mediated by individual interac-
tions (i.e., ontogenetic niche shifts). Herein, I have
highlighted the following points:

1. The PPMR should be measured at the individual le-
vel because species-averaged values distort real feed-
ing relationships.

2. Individual-level PPMR data on gape-unconstrained
predators (e.g., terrestrial carnivores) are limited be-
cause previous studies have targeted gape-limited fish
predators.

3. The preferred PPRM is conceptually different from
the realized PPMR and should be distinguished by
using environmental prey abundance information.

4. Determinants of preferred PPMR, rather than those
of realized PPMR, should be identified to describe
size-dependent predation.

Overall, the study of PPMR is still at an early stage of
development and application. Further research efforts
are needed to collect individual interaction data in
addition to environmental prey abundance information
on various systems.

Below I offer additional future research directions to
more firmly establish the ontogenetic perspective in
community ecology (Fig. 1). Most importantly, al-
though previous studies and the present review have
exclusively focused on prey—predator interactions (i.e.,
trophic interactions between animals), other types of
biological interactions, such as competition (e.g., nutri-
ents and space), mutualism (e.g., pollination and seed
dispersal), and herbivory (i.e., trophic interactions be-
tween plants and animals) should be considered. For
these interaction types, quantifying the body mass ratio
of interacting individuals may not always be easy,
especially when interaction strengths (preferences) are
determined by ages or developmental stages rather than
body masses. Nevertheless, it is still possible and would
be useful to link age (or stage) relationships to interac-
tion strength, as with the approach using PPMR. Ter-
restrial plants are commonly involved in the above
interactions types. Therefore, I suggest that research on
plant-plant or plant-animal interactions could be
ontogenetically explicit as model systems. For plant—
plant interactions, point pattern analysis has been re-
cently applied to infer mechanisms underlying spatial
vegetation structure at the individual level (Wiegand and
Moloney 2014). Extending this technique to include

developmental stage information (e.g., diameter at
breast height and life-history stage) is useful for deter-
mining the extent to which plant—plant interactions are
size-dependent (Tsai et al. 2015). Plant-animal interac-
tions also change ontogenetically. For example, defense
strategies (e.g., chemical and physical) and herbivore
type (e.g., insects and mammals) vary during ontoge-
netic growth of plants (Barton and Koricheva 2010;
Boege et al. 2011). Furthermore, many plants require
animals for pollination or seed dispersal at the repro-
ductive stage, suggesting that plant—animal interactions
change not only quantitatively but also qualitatively
from antagonism to mutualism. Similarly, plants have
stage-specific interactions with parasitic and mutualistic
soil microbes (Ke et al. 2015). Note also that the her-
bivorous larvae of some insects (e.g., Lepidoptera) be-
come pollinators at the adult stage (Altermatt and
Pearse 2011; Ke and Nakazawa, unpublished data).
Such information on ontogenetic changes in interaction
patterns remains scattered and should be compiled for
various systems to promote the ontogenetic perspective
in community ecology.

The present ontogenetic perspective has broad
applications not only in community ecology but also in
other basic and applied ecologies. For example, incor-
porating the ontogenetic perspective can provide novel
insights into physiological (Nakazawa 2011c) and evo-
lutionary ecology (Chou et al. 2016) by highlighting
functional traits (e.g., growth ratio and duration) or
processes (e.g., maturation and reproduction) that have
otherwise been ignored. Recently, pioneering studies
have experimentally or theoretically reported that
ontogenetic functional diversity can influence ecosystem
functioning more strongly than interspecific functional
diversity (Rudolf and Rasmussen 2013a, b; Reichstein
et al. 2015), suggesting that the ontogenetic perspective
is critical in ecosystem ecology. Furthermore, commu-
nity ecology plays a crucial role in various applications
that concern ecosystem management, such as agriculture
(Gliessman 1990), fishery (Mangel and Levins 2005),
epidemiology (Nakazawa et al. 2012; Johnson et al.
2015), and biodiversity conservation under global cli-
mate change (Nakazawa and Doi 2012; Post 2013).
However, these areas have not yet been fully considered
from the ontogenetic perspective, except for fisheries
management (Hsieh et al. 2010). Future studies should
investigate the ecosystem consequences of ontogenetic
processes, which will contribute to better ecosystem
management.

I conclude this review with more philosophical and
challenging questions for future ecologists. A major
problem of current interest is the limited availability of
individual interaction data. I consider that this lack of
data ultimately stems from our stereotype that an eco-
logical community must be considered as a network of
interspecific interactions. What is the rationale for the
community view when interactions occur between indi-
viduals? Such fundamental inconsistency in assumption
could result in erroneous conclusions. The species-based



community theory has faced persistent problems, such as
the paradoxes of enrichment (Rosenzweig 1971) and the
complexity—stability debate (May 1972). There is even
debate on whether general patterns exist in community
ecology (Lawton 1999; Roughgarden 2009). I do not
contend that the ontogenetic perspective can be used to
solve all ecological problems. In evolutionary biology,
however, the unit of selection has already switched from
species to individuals or genes (Williams 1966; Brandon
and Burian 1984; Sober and Wilson 1994). Considering
that ontogenetic growth and niche shift are ubiquitous
and critical in ecological dynamics, I envision that com-
munity ecology also requires a similar paradigm shift in
the future. Collecting individual-level interaction data
requires enomous time and effort. However, such efforts
would be warranted from the viewpoint of the long-term
development of ecology. I pose the following questions:
(1) Why must community ecology be species-based? (2)
Do we require a paradigm shift in the unit of biological
interaction? (3) If so, how could such a shift be achieved? If
this paradigm shift occurred, individual interaction data
would be accumulated more widely, which has the
intriguing potential to revolutionize our understanding of
biodiversity and ecosystem functioning.
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