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Abstract Species distribution models should identify
ecological requirements of species and predict their
spatial density. However, data from remote sensing
sources are often used alone as predictors in modelling
distributions. Such data will only produce accurate
models if features that are distinguishable by remote
sensing are a good match to the environmental traits
that delineate habitat requirements. Both the Goldcrest
Regulus regulus and the Firecrest Regulus ignicapilla
respond to complex features of habitats that are not
described by simple remote sensing data. We tested the
usefulness of remote sensing data as a predictor for two
Regulus species according to data from 970 study plots
sized 1 · 1 km. Predictors were aggregated using the
PCAs and related to the Hayne estimator of species
density using GAMs. The models based on both remote
sensing data and detailed environmental data proved to
be better than the model based only on remote sensing
data and/or detailed forest structure data. The Goldcrest

reached the highest density in areas with a high share of
old spruce-dominated forests with a substantial share of
the fir, avoiding the pine, and it preferred forests with a
low number of tree species. In turn, the Firecrest fa-
voured old forests, dominated by the spruce and the
beech, with an admixture of single old fir and larch trees,
avoiding the pine, and preferring forests with a high
number of tree species. We suggest using not only free
data sources, but also more detailed data containing
thorough information on forest inventory derived from
ground measurements.

Keywords Firecrest Æ Forest stand
structure Æ Goldcrest Æ Habitat selection Æ Species’
distribution models

Introduction

The alteration of forest landscapes, driven by agriculture
and the needs of economy, has been identified as a pri-
mary factor affecting populations of forest-dwelling
species at regional and local scales (Saunders et al. 1991;
Fahrig 2002; Ewers and Didham 2006; Mazgajski et al.
2010; Bennett et al. 2014). Certain key forest birds spe-
cies e.g. Chaffinch Fringilla coelebs and/or Tree pipit
Anthus trivialis, (Kuczyński and Chylarecki 2012) have
already suffered a long-term population decline as a
result of habitat loss, fragmentation and increased iso-
lation of woodland patches (Fahrig 2003; Mazgajski
et al. 2010; Kajtoch et al. 2012; _Zmihorski 2012). Fur-
ther declines of other bird species are very probable,
because increasing timber production is connected with
the intensification of forest management (Sallabanks
et al. 2000; Perry and Thill 2013). However, not all forest
bird species are equally vulnerable to forest management
practices and observed patterns of population changes
differ across space, hampering our understanding of
exact mechanisms driving the observed changes on the
trans-national scale (Reif et al. 2008; Perry and Thill
2013). Therefore, studying relationships between

Electronic supplementary material The online version of this article
(doi:10.1007/s11284-015-1263-5) contains supplementary material,
which is available to authorized users.

J. Z. Kosicki
Laboratory and Museum of Evolutionary Ecology, Department of
Ecology, Faculty of Humanities and Natural Sciences, University
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population density and environmental factors on large
geographical scales is one of key elements enhancing
conservation strategies in the European Union as a
whole (Sanderson et al. 2009). The most adequate data
are those obtained directly from field measurements.
However, covering large areas solely by fieldwork is
basically unrealistic (Spanhove et al. 2012). That is why
conservationists pay a lot of attention to developing
methods for collecting and analyzing data from a
monitoring scheme within a large area so they can
monitor population health of many bird species
(Stachura-Skierczyńska et al. 2009; Spanhove et al.
2012; Brambilla et al. 2013; Buchanan et al. 2013; Lin-
den and Roloff 2013; Walczak et al. 2013).

In the last few years many studies have focused on
species distribution modelling (e.g. Franklin 2009;
Brambilla et al. 2013; Guisan et al. 2013; Kosicki and
Chylarecki 2013, 2014; Stachura-Skierczyńska et al.
2009) based on national and regional field monitoring
programmes, e.g. the Pan-European Common Bird
Monitoring Scheme (Gregory et al. 2007; Kosicki and
Chylarecki 2013, 2014). Many of these studies use pub-
licly available generalized Geographic Information Sys-
tems (GIS) datasets (i.e. Corine land cover, NDVI
dataset, WordClim) as predictors (e.g., Giordano et al.
2010; Kosicki and Chylarecki 2013; Morelli and Try-
janowski 2014). However, such data are only suitable for
some opportunistic species that have habitat require-
ments with sharp boundaries in the landscape, e.g. the
Coal Tit Periparus ater (Da Silva et al. 2012), Common
Chiffchaff Phylloscopus collybita (Lampila et al. 2009)
and Wood Nuthatch Sitta europea (Kuczyński and
Chylarecki 2012). In case of more specialized species,
other environmental characteristics, i.e. small-scale
structural elements or habitat variety might influence
their habitat selection decisions. However, this kind of
detailed information cannot be obtained from general-
ized remote sensing-based data sources (Akçakaya 2001;
Giordano et al. 2010). On the large geographical scale,
e.g. the country, gaining data on small-scale structural
elements within habitats is only possible in case of closed
schemes, e.g. forest inventory database (Rego et al.
2004). This kind of data can be very useful for ecological
research and conservation purposes on the national and
transnational level (Stachura-Skierczyńska et al. 2009;
Skierczyński et al. 2013, Stachura-Skierczyńska and
Kosiński 2014) but have not been sufficiently employed
in the species distribution model (SDM) of density.

In this study we analyze spatial distribution patterns
of the Goldcrest Regulus regulus and the Firecrest Reg-
ulus ignicapilla, two forest breeding bird species sharing
partially an ecological niche and recently displaying a
decreasing population trend (Chylarecki and Jawińska
2007; Kuczyński and Chylarecki 2012). Both species are
widespread across Europe, inhabiting coniferous and
mixed forests. The Goldcrest prefers the spruce Picea
abies and the fir Abies alba, while the Firecrest is more
opportunistic and additionally chooses habitats with
deciduous trees, i.e. the beech Fagus silvatica (del Hoyo

et al. 2006; Kralj et al. 2013). The effect of other tree
species—mainly the pine, being one of the most abun-
dant tree species in large parts of Europe—as well as the
forest’s age and structure on the density and distribution
of both Regulus species is ambiguous. An earlier study
showed that pine forests might have either negative or
positive effect on both species (Purroy 1974a, b; Lebre-
ton and Thevenot 2009). The most recent studies,
(Kuczyński and Chylarecki 2012; Kralj et al. 2013) did
not address this issue, as they did not examine variables
related to the forest structure.

In our study, we analysed factors shaping the Gold-
crest’s and Firecrest’s densities, however, apart from
environmental variables derived from remote sensing
data we also used more detailed information on the
forest composition, e.g. tree species diversity, the num-
ber and age of trees as well as forest vertical structure.

In this way we were able to capture more detailed
relationships between the species’ densities and envi-
ronmental conditions on a large spatial scale (Saveraid
et al. 2001; Gibson et al. 2004; McPherson and Jetz
2007; Müller et al. 2009). A recent study also indicated
that the occurrence of co-existing species might be an
important predictor for SDM, but this kind of infor-
mation is rarely used (Kissling et al. 2012; Morelli and
Tryjanowski 2014).Therefore, we involved densities of
both species as additional predictors in SDMs in order
to test the usefulness of one species’ density as the sur-
rogate of other species’ densities on a large geographical
scale.

We used data from Poland which is particularly
suitable for this kind of analyses, given a large area of
forests (9163.8 thousand ha—Anon 2013) and the ex-
isting gradient of forest structure across the country
(Anon 2013). We capitalize on the existing data from a
countrywide survey of common breeding birds, yielding
presence/absence data for >900 study plots represen-
tative for the country (Kuczyński and Chylarecki 2012).
Presence/absence data recorded during planned surveys
are clearly preferable to presence-only data in SDM
studies due to a multitude of reasons (Franklin 2009;
Royle et al. 2012).

Having access to high quality data on bird occur-
rences, coupled with existing environmental data from
other sources, the main goals of this study are to: (1)
determine the extent to which generalized remote sens-
ing-based datasets are able to predict the distributions of
the two Regulus species in comparison to detailed forest
inventory data from ground measurements; and (2)
compare the Goldcrest’s and the Firecrest’s densities.

Materials and methods

Bird data

The Goldcrest and Firecrest density data were derived
from the common breeding birds monitoring scheme
(Chylarecki and Jawińska 2007) and collected in Poland
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in years 2000–2013 in 970 grid cells of 1 square km (see
Appendix A, Fig. S1). Squares treated as survey plots
had been chosen at random out of 311,664 squares
covering whole Poland. In a particular breeding season
each plot was surveyed twice. The first visit took place
between 10 April and 15 May and the second between 16
May and 30 June. Each survey started between the dawn
and 9 am and took about 90 min. The route of bird
census consisted of two parallel one-by-one-kilometre
sections (transects), along an east–west or north–south
axis. Each transect was divided into five 200-meter sec-
tions, in which birds were noted in three distance cate-
gories (<25 m, 25–100 m, >100 m). In the analysis we
only use squares which were inspected twice in breeding
season, however due to the fact that surveys were carried
out by volunteers, the majority of plots were not checked
every year. During the 14-year span each square was
inspected on average 6.5 times (SD = 3.9).

As the number of individuals in the given grid cell we
used the highest recorded number of individuals during
one of the two inspections. Finally, both species are very
small and rather shy during breeding season so in the
analysis we only considered birds which had been seen
or heard in only two distance categories.

Environmental data

For modelling purposes, we used several environmental
variables related to topography, climatic conditions,
land cover (general), vegetation indices and forest stand
structure (Table 1). All datasets were converted into
GRASS GIS file format (Neteler and Mitasova 2008)
with the grid size of 1 km2 (corresponding to bird survey
plots) and re-projected to coordinate system EPSG4284.
projection (http://spatialreference.org/ref/epsg/4284/).

Altitudes above sea level (a.s.l.) were obtained from
the digital evaluation model dataset (GTOPO30,
resolution 1 km2), originally provided by the U.S.
Geological Survey’s EROS Data Center (Sioux Falls,
South Dakota). For modelling purposes we used both
absolute altitudes and relative differences between
maximal and minimal altitudes per plot.

Climate data were obtained from the WorldClim
database (http://www.worldclim.org), which is a set of
global climate layers (climate grids) with 1 km2 spatial
resolution. Compared to previously used large-scale
climate data, this dataset has the highest spatial resolu-
tion (Hijmans et al. 2005) and has been successfully used
as a predictor variable for modelling species’ spatial
distribution (e.g. Horn et al. 2012). We used the fol-
lowing six variables which determined the variability of
temperature and precipitation in Poland: Annual Mean
Temperature, Mean Temperature of Warmest Quarter,
Mean Temperature of Coldest Quarter, Annual Pre-
cipitation, Precipitation of Warmest Quarter, and Pre-
cipitation of Coldest Quarter.

We used the CORINE Land Cover database Level 3,
available at 100 meter resolution and categorized using

44 land cover classes, out of which 31 were distinguished
in Poland. The database, updated in 2006, was based on
Landsat TM, IRS and SPOT-4 images (EEA 2007). In
this study we found on average 11 types of land cover
per plot. The most frequent were non-irrigated arable
land, meadows, complex cultivation patterns, agricul-
tural areas with natural vegetation, shrub, and inland
marshes. We did not use categories depicting urban ar-
eas and coniferous and deciduous forests from the ori-
ginal CORINE dataset, since more detailed data were
available. In order to estimate the density of human
settlements, we used images of lights at night. These
datasets come from remote sensing (http://svs.gsfc.
nasa.gov/vis/a030000/a030000/a030028/index.html) and
the lights on the night map include cities, towns, and
other sites with persistent lighting. This kind of data is
highly correlated with the population level (Small et al.
2005; Doll et al. 2007). General types of the forest cover
were obtained from the Joint Research Centre
(http://forest.jrc.ec.europa.eu/) and based on remote
sensing. The dataset of 25 m resolution includes two
types of forest: coniferous and deciduous. Higher
resolution allows detecting small patches or stripes of
woodland, not distinguished in CORINE database.

We also obtained the normalized differences vegeta-
tion index (NDVI), derived from the SPOT dataset
(http://free.vgt.vito.be/). NDVI is an index of green
vegetation level, and is expressed as a mean monthly
NDVI value (from March to June).

Forest stand structure information comes from the
forest inventory database, consisting of stand-level nu-
meric maps and associated attribute data. The database
is owned and managed by the National Forest Holding
‘‘State Forests’’. Full access to data is restricted and
regulated by specific project-related agreements between
State Forests and particular institutions.

Stands are assumed to be homogenous spatial units.
For each stand, the database contains a detailed de-
scription of the canopy (all tree species, their age and
estimated percentage cover). The information was ob-
tained from ground measurements, supplemented by
high-resolution aerial photos and it was updated
regularly, depending on the local schedule of manage-
ment activities (usually once a year, but some records
might be older). We used the following variables based
on the stand description: the number of tree species,
percentage cover of particular trees, age of trees and
forest diversity in vertical space (number of levels) (see
Appendix A, Table S1).

Spatial resolution of this data is lower than 1 km2 bird
survey plot. All variables are expressed as a weighted
mean, where the weight is the area of spatial units.

Data processing and analysis

All statistical analyses were performed using the statis-
tical package R (R Development Core Team 2010). The
mean densities (for all years of study) of Goldcrests and
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Firecrests expressed as the number of birds in each grid
cell (maximum number of birds recorded during visits)
were respectively 0.60 individuals/km2 (95 % CL =
0.47–0.73, n = 970) and 0.16 individuals/km2 (95 %

CL = 0.11–0.20, n = 970). Due to the fact that bird
densities in plots depended on the transect’s length and
the distance from the observer (Krebs 1999), the Hayne
estimator of species density was calculated for each cell

Table 1 Environmental predictors used for the model design

Variable code Description

Predictors extracted from PCA (see Table S2)
PREC had the highest loadings with precipitation variables
TEMP had the highest loadings with temperature variables
CFORFARML represents the habitat gradient from a large area of coniferous forest to

arable fields
CODEFOR represents the habitat gradient from small area of coniferous forest to large

area of deciduous forest
FARMLMFOR represents the habitat gradient from arable fields near urban areas to small

and large areas of mixed forest
DMFOR represents the habitat gradient from a small area of deciduous forest to a

large area of the forest
MARSMFOR represents the habitat gradient from inland marshland to mixed forest
WATURB represents the habitat gradient from water bodies to urban areas
Predictors extracted directly from remote sensing data
LONGITUDE geographic coordinate that specifies the east–west position
LATITUDE geographic coordinate that specifies the south-north position
ALTITUDE above sea level (a.s.l.)
DENIW differences between maximal and minimal altitudes per grid cells
NDVI.MAR mean value of green vegetation level in March
NDVI.APR mean value of green vegetation level in April
NDVI.MAY mean value of green vegetation level in May
NDVI.JUN mean value of green vegetation level in Jun
Predictors extracted directly from forest inventory database. The prefix ‘‘DOM.’’ indicates the species’ share in grid cells,
while ‘‘AGR.’’ indicates the mean age of tree species in grid cells
DOM.BLAC
AGE.BLAC

Black locust Robinia pseudoacacia

DOM.BEECH
AGE. BEECH

Common beech Fagus sylvatica

DOM.BIRCH
AGE. BIRCH

Birch Betula sp.

DOM.OAK
AGE. OAK

Oak Quercus sp.

DOM.ROAK
AGE. ROAK

Red oak Quercus rubra

DOM.HORN
AGE. HORN

Common hornbeam Carpinus betulus

DOM.FIR
AGE. FIR

European fir Abies alba

DOM.ASH
AGE. ASH

European ash Fraxinus excelsior

DOM.SMAP
AGE. SMAP

Sycamore maple Acer pseudoplatanus

DOM.NMAP
AGE. NMAP

Norway maple Acer platanoides

DOM.LIME
AGE. LIME

Lime Tilia sp.

DOM.LARCH
AGE. LARCH

Larch Larix decidua

DOM.ALDE
AGE. ALDE

Alder Alnus sp.

DOM.ASPE
AGE.ASPE

Common aspen Populus tremula

DOM.PINE
AGE. PINE

Pine Pinus sp.

DOM.ELM
AGE. ELM

Elm Ulmus minor

DOM.SPRUCE
AGE.SPRUCE

Spruce Picea sp.

NO.LAYER Numbers of layers
NO.SPEC Numbers of tree species
M.AGE.TREES Mean age of forest
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according to the equation below (Hayne 1949; Krebs
1999):

bDH ¼ n
2L

1

n

X 1

ri

� �

where, bDH is Hayne’s estimator of density, n is the
number of animals seen, L is the length of transect, ri is
sighting distance to each animal i according to two
distance classes, i.e.: 25 and 50 m.

In order to avoid multicollinearity among environ-
mental variables, principal components’ analysis (PCA)
was performed with Varimax normalized rotation,
separately for each of the two environmental datasets,
i.e. climate and habitat (Quinn and Keough 2002).
Principal components’ axes with eigenvalues >1 were
retained as predictor variables in the analyses.

PCA of climate variables produced two axes, which
explained 83.7 % of the original variation in climate
variables (see: Table 1 and Appendix A, Table S2A).

Habitat variables, which were derived from the corine
land cover (CLC), HUMAN and the type of forest
coming from the Joint Research Centre, produced seven
components and explained 88.1 % of the variation (see:
Table 1 and Appendix A, Table S2B). PC7 has a low
value of the explained variance and is not included in the
analysis.

Pearson correlation coefficients and the variance in-
flation factor (VIF, using HH library in R; Heiberger
2013) were used to assess relationships between predic-
tors which came from two separate PCA analysis and
NDVI variable, geographical coordination and topog-
raphy (Appendix A, Table S3). VIF of 5 and above
indicated a multicollinearity problem (O‘Brien 2007). In
the present study, VIF ranged from 1.6 to 12.9, therefore
predictors whose VIF ‡ 5 were excluded from the ana-
lysis (see Appendix A, Table S3).

We employed the generalized additive model (GAM)
to fit resource selection functions (Hastie and Tibshirani
1990). The Hayne estimator of species’ density was used
as the response variable. Fourty-four variables extracted
by PCAs, geographical variables (longitude, latitude,
altitude and denivelation), NDVI from March to April
forest stand structure information were used as predic-
tors (Table 1). We developed three sets of GAM: (1)
models based on coarse data obtained from remotely
sensed images (topographic, climatic, general land cover,
vegetation indices); (2) models based on detailed forest
inventory data derived from ground measurements; and
(3) models based on both datasets, i.e. remotely sensed
images and forest structure provided by the forest in-
ventory database. The most parsimonious model was
selected using the Akaike information criterion (mgcv
library in R; Wood 2013) with the lowest AIC and
consequently the highest Akaike weight (Burnham and
Anderson 2002). We analysed all possible models (2n,
where n = number of variables), using MuMIn library
in R (Hastie and Tibshirani 1990; Bartoń 2013). Al-
though this approach is criticized, the analysis of all

possible models is often used when there is not enough a
priori information to develop a small set of models
(Whittingham et al. 2005; Reino et al. 2010). The
probability of including a variable in the best parsimo-
nious model was estimated as the relative importance
(RI) by summing the Akaike weights of all candidate
models in which the variable was included (Burnham
and Anderson 2002; Reino et al. 2010). As a measure for
the best model we used evidence ratio (Burnham and
Anderson 2002). In order to allow some complexity in
the functions, while avoiding over-fitting the data, we
defined the basis dimension, i.e. k = 4 (Santana et al.
2012). The Gaussian distribution of errors and the
identity link function were applied. As a measure of
deviance reduction, we used the D2 coefficient, which
was equivalent to R2, well known from least squares
estimation (Weisberg 1980). Then, from the best model
for each species and each of the three sets of predictors’
variables we created and presented predictions of dis-
tributions. The correlation coefficient between the pre-
dicted versus the observed densities (log-transformed)
was used as a measure of error prediction (Hastie et al.
2008; Kuczyński et al. 2009).

Results

Population size

Breeding populations of Goldcrests and Firecrests were
recorded respectively in 36.8 and 15.4 % of grid cells.
The mean density of the Goldcrest expressed as the
Hayne estimator was 1.51 (95 % CL: 1.31–1.71) indi-
viduals/1 km2, while the mean Hayne estimator on oc-
cupied plots was 4.12 (95 % CL: 3.7–4.5) individuals/
1 km2. In turn, the mean density of the Firecrest also
expressed as the Hayne estimator was 0.45 (95 % CL:
0.34–0.52) individuals/1 km2, while the mean Hayne
estimator on occupied plots was 2.9 (95 % CL: 3.7–4.5)
individuals/1 km2. We found a correlation between the
raw density of the Goldcrest (expressed as the number of
birds in each grid cell) and the raw density of the Fire-
crest (r = 0.29, P < 0.001, n = 970), and then between
the Hayne estimator of Goldcrests’ and Firecrests’
densities (r = 0.58, P = 0.001, n = 970). These corre-
lations are not simply indications that both species are
found only in the forested squares, as there was also a
significant correlation even when considering data only
from those squares where at least one of the species was
present (raw density r = 0.26, P < 0.001 and the
Hayne estimator r = 0.61, P < 0.001).

Habitat use by Goldcrest and predictive map of bDH�G

The most parsimonious model of GAM (Table 2, model
A2) based only on the remotely sensed coarse data and
the fit to the Hayne estimator of the Goldcrest’s density
ðbDH�GÞ included a smooth fit to LATITUDE (RI = 1,
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F = 18.57, P = 0.0001), ALTITUDE (RI = 1, F =
10.64, P = 0.0001), CFORFARML (RI = 1, F =
6.82, P = 0.0001), CODEFOR (RI = 1, F = 2.17,
P = 0.0008), NDVI.MAR (RI = 1, F = 2.68, P =
0.0003) and TEMP (RI = 0.679, F = 2.08, P = 0.003).
This model was definitely better for describing the var-
iation of bDH�G than the second model from our can-
didate set (evidence ratio = 2.08, Table 2, model A3).

In turn the most parsimonious model of GAM (Ta-
ble 2, model B2) based only on the detailed data on the
forest structure and the fit to the Hayne estimator of the
Goldcrest’s density ðbDH�GÞ included a smooth fit to
DOM.FIR (RI = 1, F = 3.89, P = 0.002), AGE.FIR
(RI = 0.709, F = 3.91, P < 0.001), DOM.PINE
(RI = 1, F = 1.35, P = 0.003) and NO.SPEC (RI =
1, F = 4.67, P < 0.0001) and linear fit to DOM.-
SPRUCE (RI = 1, F = 2.01, P = 0.001) and AGE.-
SPRUCE (RI = 0.647, F = 3.11, P = 0.001). This
model was slightly better for describing the variation of
bDH�G than the second model (evidence ratio =1.008,
Table 2, model B3).

However, the most parsimonious model, which apart
from the coarse data used the forest structure and the
Firecrest’s density ðbDH�F Þ as additional predictors, fit-
ted to bDH�G (Table 2, model C2) and revealed a smooth
fit to CFORFARML, DOM.FIR, AGE.FIR, NO.S-
PEC, NDVI.MAR and PREC and a linear fit to AL-
TITUDE, LATITUDE, TEMP, DOM.SPRUCE,
CODEFOR, AGE.SPRUCE and DOM.PINE. This
model was definitely better than the second model (evi-
dence ratio =37.3, Table 2, model C3).

In this case, the most important predictors based on
RI included two variables capturing the main habitat
gradients, i.e. CFORFARML (RI = 1, F = 13.07
P = 0.0001; Fig. 1a) and CODEFOR (RI = 1,
F = 12.38, P = 0.0001; Fig. 1b). The first of them was
characterized by a non-linear shape, while the second by
a linear shape of the response function and represented
the habitat gradient from large (CFORFARML) and
small (CODEFOR) coniferous forests to (respectively)
arable fields and deciduous forests. The highest values of
bDH�G were found in plots where coniferous forests
dominated. The next important variables described the
forest stand structure. The highest bDH�G was noted in
plots where the spruce (DOM.SPRUCE, RI = 1,
F = 15.64, P = 0.0001; Fig. 1c) and the fir (DOM.
FIR, RI = 1, F = 12.05, P = 0.0007; Fig. 1d)
dominated, but in both cases old trees were clearly
preferred, as shown by corresponding variables AGE.-
SPRUCE (RI = 1, F = 1.24, P = 0.003; Fig. 1e); and
AGE.FIR (RI = 1, F = 4.84, P = 0.0007; Fig. 1f).
The species also avoided the pine (DOM.PINE, RI = 1,
F = 4.23, P = 0.01; Fig. 1g) and preferred forests with
a low number of tree species (NO.SPEC, RI = 1,
F = 1.97, P = 0.01; Fig. 1h). Then, NDVI.MAR
(RI = 0.972, F = 2.10, P = 0.0001; Fig. 1i) showed
that the species’ density increased in areas where the
vegetation season began early. The next variables were
TEMP (RI = 0.998, F = 1.12, P = 0.003; Fig. 1j) andT
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PREC (RI = 0.972, F = 12.09, P = 0.0001; Fig. 1k)
that indicated that the Goldcrest favoured relatively low
temperatures and high precipitation. Equally important
variables were ALTITUDE (RI = 0.998, F = 2.84,
P = 0.0001; Fig. 1l), and LATITUDE (RI = 0.972,
F = 1.52, P = 0.0001; Fig. 1m), revealing also a non-
linear shape of the response. The highest Goldcrest’s
density corresponded to higher elevations especially in
the north of Poland. With the output of this model as
the base, we created a predictive map of bDH�G (Fig. 2a).

Habitat use by Firecrest and predictive map of bDH�F

Based on the remotely sensed coarse data only (the same
dataset as in bDH�G) and the fit to the Hayne estimator
of the Firecrest’s density ðbDH�F Þ, the model of GAM
(Table 2, model D2) included a smooth fit to ALTI-
TUDE (RI = 0.994, F = 3.54, P = 0.0001), and LA-
TITUDE (RI = 0.926, F = 2.22, P = 0.0001); and a
linear fit to CODEFOR (RI = 1, F = 2.32, P =
0.001), FARMLMFOR (RI = 1, F = 3.11, P =

(a)

(f)

(k) (l) (m)

(g) (h) (i) (j)

(b) (c) (d) (e)

Fig. 1 GAM fit for the Goldcrest density. a CFORFARML
represents the gradient from a large area of coniferous forest
(C.forest) to arable fields (Farmland); b CODEFOR represented a
habitat gradient from small area of coniferous forest (S.c.forest) to
large area of deciduous forest (D.forest); c DOM.SPRUCE,
d DOM.FIR, e DOM.PINE reflect forest where share of
(respectively) spruce fir and pine are low (L.share) and where these
species dominated (H.share); f AGE.SPRUCE, g AGE.FIR reflect
forest where occur young spruce and fir (Young), while (Old)—-
shows forest where dominated old these species; h NO.SPEC
represented the number of tree species (L.number)—areas with low
number of tree species, while (H.number)—areas with high number
of species; i NDVI.MAR reflect area where green vegetation in

March is low (Low) to area where vegetation in march is high
(High); j TEMP represented the temperature gradient, (Low)—ar-
eas areas with low temperature, while (High)—areas with high
temperature; k PREC represented the level of precipitation
(Low)—areas with low level of precipitation, while (High)—areas
with high level of precipitation; l ALTITUDE represented a
geographical gradient from area of low elevation (Low) to area of
high elevation (High); m LATITUDE represented geographical
gradient from south (South) to north (North). The y-axis:
density—(s) smoother function with estimate degrees of freedom
in parenthesis (Hastie and Tibshirani 1990; Brown 2011). The
shaded areas represent standard errors of the estimate curves
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0.0001), TEMP (RI = 0.999, F = 2.87, P = 0.0001),
DMFOR (RI = 0.994, F = 1.97, P = 0.001) and
PREC (RI = 0.627, F = 1.54, P = 0.004). This model
explained the variation of bDH�F better than the second
model in our candidate set (evidence ratio 1.46, Table 2,
model D3).

In turn the most parsimonious model of GAM
(Table 2, model E2) based only on the detailed data on
the forest structure and the fit to the Hayne estimator of
the Firecrest’s density (bDH�F ) included a smooth fit to
DOM.BEECH (RI = 1, F = 2.07, P = 0.001),
DOM.SPRUCE (RI = 0.972, F = 1.42, P = 0.003),
DOM.FIR (RI = 0.991, F = 3.09, P < 0.001),
AGE.FIR (RI = 1, F = 2.99, P < 0.001), AGE.-
LARCH (RI = 1, F = 1.66, P = 0.003) and DOM.-
PINE (RI = 0.991, F = 1.99, P = 0.001) and linear fit
to NO.SPEC (RI = 0.994, F = 1.22, P = 0.001). This
model was definitely better for describing the variation
of bDH�F than the second model (evidence ratio =87.36,
Table 2, model E3).

However, the most parsimonious model (Table 2,
model F2) which, apart from the coarse data, used the
forest structure data (the same dataset as in bDH�G) and
the Goldcrest’s density (bDH�G) included a smooth fit to
FARMLMFOR, bDH�G, DOM.BEECH, DOM.-
SPRUCE LATITUDE, ALTITUDE, TEMP, PREC
and a linear fit to CODEFOR, AGE.SPRUCE,
DOM.PINE, AGE.FIR, AGE.LARCH to DOM.S-
MAP AGE.ELM and NO.SPEC. This model was
slightly better than the second model in our candidate
set (evidence ratio 1.002, Table 2, model F3). In this
case, FARMLMFOR (RI = 1, F = 3.22, P = 0.0001;
Fig. 3a) and CODEFOR (RI = 1, F = 1.45, P = 0.000;
Fig. 3b) turned out to be the most important factors.
All of them represented the habitat gradient from
arable fields (FARMLMFOR) and a small area of

coniferous forest (CODEFOR) to small and large areas
of mixed and deciduous forests. The third component,
bDH�G (RI = 1, F = 16.14, P = 0.0001; Fig. 3c) indi-
cated that high densities of Firecrests were noted in areas
with high densities of Goldcrests. Next important vari-
ables were DOM.BEECH (RI = 1, F = 16.9,
P = 0.00001; Fig. 3d) and DOM.SPRUCE (RI = 1,
F = 1.9, P = 0.0002; Fig. 3e). All of them showed that
the highest bDH�F corresponded to areas where the
beech and spruce dominated. An old spruce tree was
clearly preferred as shown by the following variable:
AGE.SPRUCE (RI = 1, F = 2.01, P = 0.0007;
Fig. 3f). At the same time the Firecrest avoided the pine
(DOM.PINE, RI = 1, F = 3.12, P = 0.0001; Fig. 3g)
and preferred a single old fir (AGE.FIR, RI = 1,
F = 1.98, P = 0.0001; Fig. 3h) and an old larch
(AGE.FIR, RI = 1, F = 1.44, P = 0.001; Fig. 3i).
Other important factors included NO.SPEC (RI = 1,
F = 3.01, P = 0.02; Fig. 3j), showing that Firecrests
preferred a multi-species forest. The last variables in-
cluded LATITUDE (RI = 0.685, F = 1.29, P =
0.0001; Fig. 3k), ALTITUDE (RI = 0.685, F = 5.12,
P = 0.0001; Fig. 3l), TEMP (RI = 0.899, F = 2.19,
P = 0.0001; Fig. 3m) and PREC (RI = 0.899,
F = 1.99, P = 0.0001; Fig. 3n). All of them presented a
non-linear shape of the response function, showing that
the highest density was noted in upland, both in south-
ern and northern parts of Poland, where the climate was
relatively cold and wet. According to this model we
created a predictive map of bDH�F (Fig. 2b).

Discussion

Species distribution models (SDMs) are developed in or-
der to identify ecological requirements of species and to

Fig. 2 Predictive maps of Hayne estimator of Goldcrest (a) and Firecrest (b) density
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predict their spatial density (Naimi et al. 2011). From the
practical point of view, SDMs can provide valuable sup-
port for conservation efforts (Jetz et al. 2012) both at local,
regional, and trans-boundary scales (Margules and
Pressey 2000; Addison et al. 2013). SDMs can use either
presence-absence or presence-only occurrence data of
species of interest, butmost of themuse publicly available,
remote sensing-based datasets as environmental predic-
tors (Guisan et al. 2013). Such datasets, due to their gen-
eralization and/or coarse resolution, might be insufficient
for the task of identifying most important environmental

factors for certain species (Morelli and Tryjanowski
2014), especially the specialized ones.

In this study, we tested the usefulness of generalized
remote sensing data as predictors of two Regulus species.
Our first step was to develop separate prediction models
for Goldcrests’ and Firecrests’ densities using the same
set of remote sensing-based predictors. The Goldcrest
responded positively to the increasing area of coniferous
forest, while the Firecrest preferred mixed and de-
ciduous forests. Moreover, the predicted densities of
both species increased in uplands and in cold and wet

(a)

(f)

(k) (l) (m) (n)

(g) (h) (i) (j)

(b) (c) (d) (e)

Fig. 3 GAM fit for the Firecrest density. a FARMLMFOR is
related to the gradient from arable fields (farmland) to small and
large areas of mixed forest (M.forest); b CODEFOR represented a
habitat gradient from small area of coniferous forest (S.c.forest) to
large area of deciduous forest (D.forest); c ĎH-G showing areas with
low density of the Goldcrest (Low.d) and areas with high density
(High.d); d DOM.BEECH, e DOM.SPRUCE, f DOM.PINE
reflect forest where share of (respectively) beech fir and pine are
low (L.share) and where these species dominated (H.share);
g AGE.SPRUCE, h AGE.FIR, i AGE.LARCH reflect forest
where occur young spruce and fir (Young), while (Old)—shows
forest where dominated old these species; j NO.SPEC represented
the number of tree species (L.number)—areas with low number of

tree species, while (H.number)—areas with high number of species;
k LATITUDE represented geographical gradient from south
(South) to north (North); l ALTITUDE represented a geographical
gradient from area of low elevation (Low) to area of high elevation
(High); m TEMP represented the temperature gradient, (Low)—ar-
eas areas with low temperature, while (High)—areas with high
temperature n PREC represented the level of precipitation
(Low)—areas with low level of precipitation, while (High)—areas
with high level of precipitation. The y-axis: density—(s) smoother
function with estimate degrees of freedom in parenthesis (Hastie
and Tibshirani 1990, Brown 2011). The shaded areas represent
standard errors of the estimate curves
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climate of northern (especially north-east for both spe-
cies as well as north-west for the Firecrest) and southern
parts of Poland. For both species the relationship was
obvious (Ulfstrand 1976; Tiainen et al. 1983; del Hoyo
et al. 2006; Kralj et al. 2013), but it should be noted that
open-access datasets like the Corine Land Cover or re-
mote sensing-based forest cover maps do not contain
information about the species’ composition, only about
general forest types, such as coniferous vs. deciduous. In
Poland, similarly to many Central European countries,
the most abundant conifer species is the pine Pinus sil-
vestris. Therefore, using only open source habitat data as
a predictor might lead to a conclusion that high densities
of Goldcrests and Firecrests depend on the prevalence of
the pine (see also Fig. 1g and 3g). Indeed, in the Pyre-
nees both Goldcrests and Firecrests are recorded in pine
forests (Purroy 1974a, b), but this is not the case else-
where (Lebreton and Thevenot 2009). Therefore, models
that use only open access generalized data do not pro-
vide complete information regarding the species’ pref-
erences towards specific forest conditions.

Our results also show that the Goldcrest prefers
forest areas with high NDVI values at the beginning of
spring while the Firecrest does not exhibit such prefer-
ences. This might be explained by the fact that the
Goldcrest favours coniferous forests that are green all
year round (especially in winter). The Firecrest is
abundant in mixed forests that have a high NDVI rate
both in early spring, when deciduous trees are still
leafless, and in late spring when both deciduous and
coniferous trees appear green. According to our results,
both species are abundant in the uplands. These rela-
tionships reflect a general pattern of species distribution
in Europe. On the scale of the continent the Goldcrest
prefers middle and high altitudes (Hagemeijer and Blair
1997; del Hoyo et al. 2006), while the Firecrest is par-
ticularly abundant in only mountainous forests in
southern parts of Europe (Leisler and Thaler 1982;
Telleria and Santos 1994; Hagemeijer and Blair 1997).

The second group of models based on the detailed
data on the forest structure proved to be definitely better
than the first group of models (Goldcrest D AIC = 77.3,
Firecrest D AIC = 34.9), and differences from the third
group of models where both generalized and detailed
environmental data were used as a predictors, were
comparatively small (Goldcrest D AIC = 16.6, Firecrest
D AIC = 4.6). Distributions of both Goldcrests and
Firecrests were best described by a combination of fea-
tures measured by remote sensing and by on-the-ground
measurement of the habitat; the ground-measured
habitat features played a greater role in predicting dis-
tributions of these two species. Similar patterns were
found in connection to other species, e.g. the Hazel
Grouse Bonasa bonasia (Müller et al. 2009); the Rufous
Bristlebird Dasyornis broadbenti (Gibson et al. 2004) as
well as in bird species richness in the Yellowstone Na-
tional Park (Saveraid et al. 2001). However, the studies
were carried out on a relatively small research area (e.g.
97 km2 where it was quite easy to count the number of

small-scale habiat elements); and-or closed areas, i.e.
National Parks where small-scale habitat elements were
frequently recorded. In our case (study area >300.000
km2) we used data from the forest inventory database.
The primary aim of the database was to describe the
main features of forests in terms of size, condition and
change of growing trees, focusing mainly on productive
aspects, namely wood resources (Rego et al., 2004).
Nevertheless, the forest stand description can be very
useful for modelling species’ occurrence (Stachura-
Skierczyńska et al. 2009; Stachura-Skierczyńska and
Kosiński 2014), implementing monitoring schemes
(Skierczyński et al. 2013), and as shown by our study on
species distribution modelling of density specialized
species.

The Goldcrest reached the highest density in areas
with a high share of old spruce forest with fir. It gen-
erally avoided pines and preferred forests with a low
number of tree species. The Firecrest chose mixed for-
ests, dominated by beech and old spruce with an ad-
mixture of single old fir and larch trees. Firecrests also
avoided pines, but favoured forests with a high number
of tree species. These different habitat choices can be
explained by the existing differences in the morphology
and foraging behaviours of these species (Leisler and
Thaler 1982; Kralj et al. 2013). Goldcrests more often
forage by climbing vertically and hanging under dense
spruce branches, whereas Firecrests prefer trees with less
dense branches that allow them to move more rapidly
and forage in a standing position (Leisler and Thaler
1982).

Furthermore, both species prefer old forests and
definitely avoid pine stands. In all biomes, old-growth
forests tend to have a complex structure and a variety of
microhabitats characterised by different temperatures,
light and humidity, which bring about a high abundance
of insects, such as Hemiptera, Collembola and spiders,
being major food resources for the Regulus and other
bird species (Cramp 1992; Jokimäki and Solonen 2011;
Rosenvald et al. 2011; Edenius et al. 2012). Moreover,
old-growth forests are characterized by a relative spa-
tial–temporal stability, ensuring long-term stable con-
ditions for breeding bird communities (Wesołowski et al.
2006; Wirth et al. 2009; Rosenvald et al. 2011). Such
inherent features are not demonstrated by young pine
forests, which in most cases are poor in insect species
and do not provide birds with a sufficient amount of
food (Wirth et al. 2009; Rosenvald et al. 2011). Fur-
thermore, longer needles of the pine do not allow birds
to move efficiently through the branches, a drawback
which also makes acquiring food difficult.

As for the climate and the topography, both turned
out to be significant factors influencing the Goldcrest’s
and the Firecrest’s densities. However, their importance
was greater in the model based on remote sensing data
only than where also detailed information about forest
structure was involved. A recent study indicated the
importance of climatic variables in the multiple regres-
sion model with respect to both species’ abundance
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(Kuczyński and Chylarecki 2012; Kralj et al. 2013).
However, it should be noted that the above study was
based on data from a wide longitudinal gradient (from
central Spain to eastern Poland) (Kralj et al. 2013). In
our study, the influence of latitude, altitude and weather
conditions on Goldcrests’ and Firecrests’ densities is
most probably indirect. The spruce and the fir prefer
relatively cold and wet climate, therefore their geo-
graphical ranges in Poland are limited to the southern,
mountainous and upland regions (both species) and
north-eastern parts (spruce) where hemiboreal conifer-
ous forests occur naturally. Low humidity in early spring
is a limiting factor for the beech, which is present in the
mountains and in the west of Poland, but does not occur
further in the east where the climate is dryer (Zając and
Zając 2001). The abundance of both studied Regulus
species overlaps with the distribution of preferred trees,
meaning that these small scale habitat variables are
among the most important factors influencing their
densities (all RI = 1).

We also found that the high density of the Goldcrest
was likely to determine the high density of the Firecrest
in areas of their coexistence, however, the opposite re-
lationship was not established, i.e. the high abundance
of the Firecrest did not always indicate the high abun-
dance of the Goldcrest. The coexistence of species is
possible only if their niches are not identical (Krebs
2009). Morellli and Tryjanowski (2014) point out that
this relationship may be just a local phenomenon. Still,
distribution ranges of both species overlap across a large
area of sympatry in central Europe. Therefore, we sus-
pect that this relationship reflects a general pattern
within the European distribution range. Furthermore,
from the behavioural point of view it is possible that the
Firecrest uses the Goldcrest’s presence as a clue for a
suitable habitat, as is the case with the Pied Flycatcher
(Ficedula hypoleuca) and the Titmice (Parus spp)
(Forsman et al. 2002).

In turns out that separate models based on the open
source remote sensing data and/or forest inventory data
derived from ground measurements can only partially
explain the distribution of the Goldcrest and the Fire-
crest. In our case habitat (from both sources) and cli-
mate variables as well as topography explain spatial
variation of both species but do not provide a complex
explanation of all factors driving the species’ habitat
relationships. It is highly possible that the integration
different land-use types (here: small and large scale
habitat data) reflects landscape complexity—one of the
key elements leading to high predictive performance
(McPherson and Jetz 2007). On the other hand, low
predictive performance of models based only on remote
sensing data can be the consequence of a non-stationary
phenomenon showing different responses to the same
predictor in different geographical areas (Fink et al.
2010). If Poland’s territory was divided into smaller
geographic sub-regions based on biogeographic zones,
for example, and separate species distribution models
based on remote sensing data (or only small scale data)

were constructed for these sub-regions and then aver-
aged, predictive performance could turn out to be higher
than in our approach.

Conclusion

Separate SDMs based on remote sensing data and/or
detailed information on forests derived from ground
measurements do not contain all important ecological
factors that can affect species’ distribution on a large
geographical scale. From a conservationist’s point of
view, remote sensing data cannot replace the
painstaking field study of habitat requirements for in-
dividual species (Storch et al. 2003), but it can be stated
that the implementation of small scale habitat variables
in SDMs can reduce overall costs and improve the ef-
ficiency of field studies since it allows to identify con-
centrations of high species densities with much higher
accuracy.

In our opinion, habitat modelling for practical spatial
planning and conservation purposes should not be based
entirely on free data sources, but it also should incor-
porate as detailed data as possible. In case of forest ar-
eas, the best available source of data is the forest
inventory database. Although designed for commercial
purposes, namely inventory of wood resources, it turns
out to be useful for studies on conservation.
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Zając A, Zając M (2001) Distribution atlas of vascular plants in
Poland. Kraków

_Zmihorski M (2012) The effect of anthropogenic and natural dis-
turbances on breeding birds of managed Scots pine forests in
northern Poland. Ornis Fenn 89:63–73

638

http://cran.r-project.org/web/packages/mgcv/index.html
http://cran.r-project.org/web/packages/mgcv/index.html

	Complex species distribution models of Goldcrests and Firecrests densities in Poland: are remote sensing-based predictors sufficient?
	Abstract
	Introduction
	Materials and methods
	Bird data
	Environmental data
	Data processing and analysis

	Results
	Population size
	Habitat use by Goldcrest and predictive map of \widehat{D}_{H - G}
	Habitat use by Firecrest and predictive map of \widehat{D}_{H - F}

	Discussion
	Conclusion
	Acknowledgments
	References




