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Abstract The Ortolan bunting Emberiza hortulana was
censused in Poland during the Common Breeding Birds
Monitoring Project in 2003-2009. Data from 683 mon-
itoring polygons, covering in total more than 0.23% of
the country, were used in the analysis. Based on the data
and environmental information gathered in GIS dat-
abases (Corine land cover “CLC2000 and 2006 data-
base, digital elevation model “GTOPO30” dataset,
“Wordclim” dataset, and NDVI dataset), we modeled a
habitat- and spatial-related variation of the Ortolan
bunting’s presence. Birds were recorded in 13.2% grid
cells. The mean density was 0.5 individual/km?>. We
modeled the spatial presence of birds using multivariate
adaptive regression splines (MARS). Then models were
cross-validated to check their consistency. The envi-
ronment-use model shows that the Ortolan bunting
prefers extensively cultivated farmland dominated by
non-irrigated arable fields, small coniferous and mixed
forests, complex cultivation patterns, and meadows. The
preferred areas are located on lowlands in western and
central parts of the country where the climate is the
driest and warmest. Such a repeatable spatial pattern
model of the population helped to create a predictive
map of the Ortolan bunting’s presence in Poland. The
general rule is that the probability gradient of its pres-
ence increases from the northeastern part of the country
to the central and southwestern parts of Poland. Addi-
tionally, the Ortolan bunting avoids severe continental
climate and regions with dense ground-level vegetation.
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Introduction

Farmland bird populations are declining throughout
Europe (Newton 2004; Donald et al. 2006). The cause is
considered to be rapid changes in agricultural practice,
including intensification (Brotons et al. 2004) and
afforestation (Diaz et al. 1998), which result from
Common Agricultural Policy (Donald et al. 2002). In
Britain, changes in areas of winter stubble fields and
spring-sown crops have been suggested to be the most
important cause of sparrows’ and finches’ decline
(Buckingham et al. 1999). A similar tendency has also
been noticed in other countries. In Sweden and Finland,
both intensified farming and abandonment of farmland
in marginal regions appear to be factors contributing to
the decline of sparrows (Wretenberg et al. 2006). The
Ortolan bunting Emberiza hortulana is a good example
of a species that suffered a strong decline in northern
and central Europe. Its population has decreased in 21
out of 36 countries in the last 15 years (BirdLife Inter-
national 2004). The most dramatic decline can be ob-
served in Finland, where a loss as high as 72% of the
population has been reported in the last 20 years (Ve-
pséldinen et al. 2005); while in Poland, for comparison,
the population has decreased by 20% in the last
10 years. This is why the species is classified as SPEC 2,
which means global populations concentrated in Europe
of unfavorable conservation status (BirdLife Interna-
tional 2004).

The Ortolan bunting is a long-distance migrant spe-
cies and strongly dependent on heterogeneous habitat
structure dominated by semi-open agricultural land
(Dale and Olsen 2002; Berg 2008) and/or open and semi-
open shrubland and steppe-like habitats (Cramp and
Perrins 1994). Apart from diversified habitats, the spe-
cies also requires small-scale landscape elements, e.g.,
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small bush islets, single large trees, barns, cowshed, and
large rocks.

The studies on the Ortolan bunting’s habitat selection
were carried out mainly on small geographic scales (e.g.,
Dale and Olsen 2002; Berg 2008; Vepsildinen et al.
2005). However, to obtain more general information on
habitat use and spatial patterns vital for effective con-
servation, data from large geographical scales are
indispensable (Atkinson et al. 2002). This notion stems
from the fact that CAP causes changes on farmland
throughout all EU countries (Donald et al. 2002).
Unfortunately, such large-scale studies are scarce, espe-
cially those concerning birds in Central Europe
(excepting Brotons et al. 2008; Kuczynski et al. 2009).
The Ortolan bunting is a potentially good candidate
species to be monitored in large areas, because its pop-
ulation has been a good indicator of general habitat loss
and degradation as a consequence of farming intensifi-
cation and homogenization of agricultural landscapes
(sensu: Dale 2001). Besides, it is easy to detect during the
breeding season because it lives in open farmland and
uses exposed song posts and perching sites. Finally, re-
mote-sensing techniques and habitat models are widely
available and effective in predictive distribution model-
ing and biodiversity conservation (Kerr and Ostrovsky
2003; Turner et al. 2003).

The main goal of this paper is to model a spatial-,
habitat-, and climate-related variation of the Ortolan
bunting’s breeding occurrence in Poland. Our attention
is especially drawn to the issue of whether large-scale
remote-sensing data could be useful in creating predic-
tive presence maps of species whose distribution depends
on small-scale landscape elements.

Materials and methods
Bird data

The data were collected for the Common Breeding Birds
Monitoring Project in Poland in 2001-2007 (Chylarecki
and Jawinska 2007). A total of 728 grid cells of 1 sq.
km? were chosen at random out of 311,663 available
cells (Fig. 1). Each square was surveyed twice a year.
The first visit took place between April 10 and May 15
starting between 6 and 7 a.m.; the second between May
16 and June 30 and also starting between 6 and 7 a.m.

The bird census consisted of two parallel 1-m tran-
sects along an east-west or north-south axis. Each
transect was divided into five 200-m sections, in which
birds were noted in three distance categories (<25,
25-100, and > 100 m).

Environmental data
Geographical localizations, mean altitude, monthly rate

of The Normalized Difference Vegetation Index (NDVI)
from March to June, relative proportion of individual

habitat types and climate conditions characterizing all
grid cells were used in the analysis.

Altitude data come from the digital evaluation model
(DEM) dataset (GTOPO30), originally provided by US
Geological Survey’s EROS Data Center (Sioux Falls,
South Dakota). The data were converted into GRASS
GIS file format (Neteler and Mitasova 2008) and
re-projected to coordinate system “EPSG 4284 projection.

We obtained NDVI data from SPOT dataset (http://
free.vgt.vito.be/). NDVI, expressed as a mean monthly
value, was calculated from three measurements taken
every 10 days. The data was also converted into GRASS
GIS file format (Neteler and Mitasova 2008) and re-
projected to “EPSG 4284”.

The original 37 land-cover types are recognized in the
CORINE land-cover database (based on remote sensing
with basic spatial units of 100 x 100 m). The database
was created in 1986-1996, 2000, 2003, and 2006 from
Landsat TM. The data were also converted into Map-
info file format and re-projected to “EPSG 4284. On
average, ten types of habitats were distinguished in each
grid cell. The most frequent were environments classified
as large-area, homogenous arable fields (AF), coniferous
forest (CF), mixed farming areas with large participation
of natural vegetation (OPEN), mixed forest (MF),
meadows (ME), deciduous forest (DF), shrub (SH),
swamps (SW), built-up areas (BA), and water (WA).

Climate data were derived from the WorldClim
database (http://www.worldclim.org), which is a set of
global climate layers (climate grids) with spatial resolu-
tion of a square kilometer. All grid cells are character-
ized by ten variables: annual mean temperature (AMT),
mean diurnal range [mean of monthly (max temp-min
temp) (MDR)], temperature seasonality (standard devi-
ation x 100) (TS), max temperature of warmest month
(MTWM), min temperature of coldest month (MTCM),
mean temperature of wettest quarter (MTWQ), mean
temperature of driest quarter (MTDQ), mean tempera-
ture of warmest quarter (MTWAQ), mean temperature
of coldest quarter (MTCQ), annual precipitation (AP),
precipitation of wettest quarter (PWQ), precipitation of
driest month (PDM), precipitation of wettest quarter
(PWQ), precipitation of warmest quarter (PWAQ),
precipitation of coldest quarter (PCQ), and precipitation
seasonality (coefficient of variation) (PS). The data were
also converted into GRASS GIS file format (Neteler and
Mitasova, 2008) and re-projected to “EPSG 4284”.

Data about farming intensification were provided by
Agricultural Census 2002. These variables regard the
following: the number of tractors per farm 2002
(TRACQC), the number of cereal combine harvesters per
farm 2002 (HARYV), the number of farms with cattle
divided by the total number of farms (CATTLE), and
the number of farms with pigs divided by the total
number of farms (PIGS).

Explanatory variables, being principal components,
were extracted from percentages of land-cover class,
NDVI, DEM, climate and farming intensification within
each study plot. PCA was used in order to remove the
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Fig. 1 Location of the study plots

strong intercorrelation inherently present within the
explanatory dataset (Table 2).

Habitat selectivity

We tested the model of the Ortolan bunting’s habitat
selection by comparing grid cells where birds occur with
grid cells where they do not occur. A grid cell where an
Ortolan occurs is the one where at least one individual
has been recorded in three subsequent years of the re-
search. The differences were tested using non-parametric
Mann—Whitney U test with Monte Carlo permutation
test (number of resamples 10,000). Statistics were per-
formed with R 2.12.1 (R Development Core Team
2008).

Prediction model fitting

We used multivariate adaptive regression splines
(MARS) function. MARS is a method of flexible non-
parametric regression modeling (Friedman 1991). In this
function, the approach of fitting nonlinear functions is

to fit linear segments (linear basic functions) to the data.
MARS function consists of a series of connected straight
line segments instead of smooth curves in general addi-
tive models. Model fitting starts with forward steps that
identify many knots, followed by a backward pruning
routine to simplify the model. Additions and deletions
are evaluated in terms of changes in residual squared
errors using generalized cross-validation (GCV). Fur-
ther statistical details are available in Friedman (1991)
and Elith and Leathwick (2007). Knowing that envi-
ronmental variables are usually correlated with one an-
other, we used a jackknife analysis based on the area
under the curve (AUC) to evaluate their significance as
predictors in this model (Franklin 2010). AUC has been
used extensively in evaluating species’ distribution
models, and measuring the model’s ability to discrimi-
nate between sites where a species is present and those
where it is absent.

Then, occurrence locations (dependent variable) were
randomly partitioned into two subsamples: 70% was
used as a training dataset, and the remaining 30% was
reserved for testing the resulting (partitioned) models in
each year. AUC values can indicate probability when the
presence and absence sites are randomly chosen from the
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population, and the former shall have a higher predicted
value than the latter. A perfect ranking achieves the
maximum possible AUC of 1.0. Rankings with the AUC
value above 0.75 are considered to be potentially useful
(Elith et al. 2006). On this basis, a predictive map of the
Ortolan bunting in Poland was made. All computations
were made in R 2.12.1 (mda library, R Development
Core Team 2008) and Statistica software (StatSoft
2008).

Results
Population size

Breeding populations of the Ortolan bunting were re-
corded in 13.2% of grid cells. The mean density was 4.8
(4.1-5.6) individuals/1 km?, while the mean density on
occupied plots was 10.5 (9.3-11.9) individuals/l1 km?.

Habitat selection model

All the data (46 variables) were summarized using PCA
(Table 2). The first principal component (Comp. 1) re-
flects geographical and climatological differentiation.
Low values of this component indicate sites located in
the north and central parts of Poland, which are rela-
tively low on the asl, with warm and dry climate. In
contrast, high values of this component appear in
southern parts of Poland, being relatively high on the asl
where the climate is cold and wet.

The second component (Comp. 2) also reflects geo-
graphical differentiation and habitat gradient from
farmland to coniferous forest. Low values of this com-
ponent are characteristic for agricultural areas with large
pastures in the eastern part of the country, which tends to
be cold in summer. On the other hand, high values indicate
deciduous forest areas in western parts of Poland where
the level of NDVI is high in the beginning of spring.

The third component (Comp. 3) is positively corre-
lated with open agricultural land, predominantly live-
stock pastures. The low value of this component
indicates urban areas.

The fourth component (Comp. 4) reflects a gradient
from (low values) the west of the country with non-
irrigated arable fields, where winters are mild and damp,

to (high values) eastern parts covered by coniferous
forests, characterized by harsh winters.

The fifth component (Comp. 5) is positively corre-
lated with fallow lands located in the north.

The sixth component (Comp. 6) is positively corre-
lated with deciduous forest and areas of damp ground.

The seventh component (Comp. 7) reflects the pro-
portion of pastures and other classes, especially arable
fields and coniferous forest.

Further components’ (Comp. 8 to Comp. 14) varia-
tions have been explained to a slight degree, therefore
they are not included in the analysis.

While analyzing the entire dataset (seven compo-
nents) for the presence/absence of Ortolan bunting
populations, we found significant differences in five
environmental predictors. The differences are noticeable
between such environmental predictors as: Comp. 1,
Comp. 2, Comp. 4, Comp. 6, Comp. 7 (Table 1) that
describe quite unique conditions mostly limited to the
extensively cultivated farmland, dominated by non-irri-
gated arable fields, small coniferous and mixed forests,
complex cultivation patterns and meadows. The pre-
ferred areas are localized in lowlands in western and
central parts of the country, where the climate is the
driest and the warmest (Table 1).

Habitat prediction model

The MARS model with all components had a moderate
predictive capacity (GCV 0.94 £+ 0.006). However, the
model containing only three components, after forward
selection had a better ability (GCV 0.23 £+ 0.001).

The jackknife analysis shows that the most important
variables are Comp. 1, Comp. 2, Comp. 7, which rep-
resent the highest AUC values for the Ortolan bunting
habitat prediction [Fig. 2, Selected (Comp. 1, 2, 7)].

For models with only one component, the highest
AUC regarded Comp. 1, Comp. 2, Comp. 7 (Fig. 2
“with only one variable”). Models with Comp. 3-6 only
had a relatively low AUC (Fig. 2 “with only one vari-
able”). So models with all components, in which Comp.
1, 2, or 7 respectively were removed, had low AUC
(Fig. 2 “without variable™).

We find no differences between the observed and the
predicted occurrence of the Ortolan bunting (* = 1.12,
p = 0.54).

Table 1 Comparison of

environmental structure Variable OB-E (mean + SE) OB-N (mean + SE) VA p value p value

variables between grid cells (permutation)

where Ortolan buntings are

present (OB_E> n = 97) and Comp 1 —0.29 £ 0.60 0.42 + 0.98 —2.84 0.05 <0.01

absent (OB-N, n = 631) Comp. 2 —0.41 = 0.60 0.075 + 1.05 —4.27 <0.01 <0.01
Comp. 3 0.11 £ 0.62 —0.056 + 0.88 —1.50 0.13 0.14
Comp. 4 —0.25 £+ 0.69 —0.039 + 0.99 -2.22 0.02 0.02
Comp. 5 0.28 £+ 0.59 0.20 £+ 0.90 —0.25 0.80 0.91
Comp. 6 —-0.29 + 0.81 —0.09 + 0.96 —2.88 <0.01 <0.01
Comp. 7 —0.40 £+ 0.68 0.08 + 0.95 —4.89 <0.01 <0.01

Significant values are given in bold
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Fig. 2 The jackknife analysis of variables’ significance as predictors
in the Ortolan bunting model. AUC the area under the curve.
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With the above facts taken into consideration, we
created a predictive habitat map for the Ortolan bunting
(Fig. 3). According to the model, the preferred environ-
mental components are found in 17.7% of the country,
where the probability to encounter an Ortolan bunting is
the highest, varying from 0.44 to 1. Habitats that are
particularly preferred are the ones associated with major
extensively cultivated farmlands and complex cultivation
patterns, such as large non-irrigated arable fields, conif-
erous and mixed forests. The Ortolan bunting tends to
avoid regions of wet and cold climate. The lowest den-
sities are at higher elevations as well as in areas that are
the coldest, i.e., NE part of the country (Fig. 3).

Discussion

The present analysis shows that with regard to large-scale
habitat elements, Ortolan buntings in Poland prefer dry
and warm-weather conditions and large non-irrigated
arable fields and meadows with coniferous and mixed
forest. We have found out that the presence probability
gradient increases from the north and north—east to the
central and south—west parts of Poland. The gradient of
presence established in this study falls within the broad
range of density gradients presented by other authors,
where density increases from 0.03 to 0.1 individual/km?
in the northwestern part of the country to 1.8 individual/
km? in the central-southern part (Gotawski and
Dombrowski 2002; Tryjanowski et al. 2009).

It appears that habitat preferences of the Ortolan
bunting differ spatially. In northern and central Europe,
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breeding areas are associated with semi-open agricul-
tural land (Cramp and Perrins 1994; Berg 2008), whereas
in Mediterranean regions, the Ortolan bunting occurs in
open and semi-open shrub lands and steppe (Cramp and
Perrins 1994). More detailed analyses show that in
Central Europe structures with small fields close to edge
habitats and solitary trees are most important factors for
choosing nest sites, song posts, and foraging habitats
(Gotawski and Dombrowski 2002; Dale and Olsen
2002). In Norway, most breeding territories were found
on forest-fire sites where there were no areas with dense
ground-level vegetation (Navra 2002; Santos et al
2002). In Switzerland and Catalonia, bare ground was
identified as an important variable in habitat selection
by the species (Menz et al. 2009). Finally, according to
our study, 11% of the Ortolan bunting’s predictive
localizations are situated in tectonic foreland in the
southwest of the country where mean asl is 365 m. This
fact probably does not reflect any topographic prefer-
ences, but it is worth noticing that there are large areas
of bare land. A possible explanation why all these hab-
itats are chosen could be a general rule that the Ortolan
bunting prefers mosaic habitats with low vegetation as
its foraging area and nest site (Navra 2002; Vepsildinen
et al. 2005). However, studies conducted on small spatial
scales show that not only heterogeneous habitats are
important, but small environmental elements are as well,
such as small bush islets, single large trees, barns, cow-
shed, and large rocks. This is because these areas provide
song posts and perching sites, but above all feeding and
breeding places (von Lang et al. 1990; Kujawa and
Tryjanowski 2000; Tryjanowski 2001). It is worth noting
that farmland landscapes of this type are also ideal for
other declining farmland birds (Tucker and Evans 1997),
including high-priority conservation species, such as
Red-Backed Shrike Lanius collurio, Northern Wheatear
Oenanthe oenanthe, European Starling Sturnus vulgaris,
White Wagtail Motacilla alba and Fieldfare Turdus pi-
laris, Corn Bunting Miliaria calandra, and other Emb-
eriza spp. (e.g., Pirt and Soderstrom 1999; Brambilla
et al. 2008). These landscape elements, namely hetero-
geneous habitats and small environmental elements, can
be likened to extensive farming practices involving
small-parcel farming and mixed livestock farming
(Donald et al. 2002). The onset of agricultural changes,
including reduced overall habitat heterogeneity caused
by an increase in monocultures, large-scale cropping,
and specialization on farming, brings about reduced
heterogeneity of habitats and removal of small envi-
ronmental elements (Fuller et al. 1995). For example, the
fact that briar hedges along fields and ditches were re-
moved influenced a decrease in the Red-Backed Shrike
population, and so was the case with grassy field mar-
gins whose elimination negatively effected the popula-
tion of S. communis (Mason and MacDonald 2000).
Additionally, reconstructing old anthropogenic ele-
ments, e.g., barns or buildings, according to CAP
requirements caused a dramatic decline of the Barn
Sparrow Hirundo rustica population (Mgller 2001).
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Fig. 3 Predicted presence of breeding populations of the Ortolan bunting in Poland. The map shows joint influence of both spatial and

habitat variation on the population’s presence

These progressive land-use changes may be affecting the
Ortolan bunting and other open-habitat species popu-
lations elsewhere in Europe through a reduction of
optimal habitat structures and food accessibility. This is
why it is necessary to carry out further work that will
shed more light on the suggested causes of the declines
of bird populations.

Our study concentrates on large-scale habitat ele-
ments. According to our dataset, small environmental
elements’ influence on the Ortolan bunting population is
weakened by the fact that different types of habitats are
not defined in the Corine Land Cover dataset. We sus-
pect (but have not yet analyzed) that the high efficiency
of our predictive model shows that on a large-scale
small-scale habitat elements are of low importance. A
more likely explanation could be that aggregations of
small-scale elements are often located on large field areas
(e.g., Storch et al. 2003).

Another important variable in the model of the
Ortolan bunting’s presence is weather. However, its role
is generally less clear when compared to habitat prefer-
ences. We suspect that ambient temperature indirectly
influences food availability and nest sites (White 2008).

Indeed, we found a simple correlation among high
MTWQ, low annual precipitation (AP), precipitation
seasonality (PS), low precipitation of the driest quarter
(PDQ), and lose ground-level vegetation (all p < 0.05).
So in his case variables describing the climate have
indirect influence because they only determine places
with low vegetation.

To conclude, sensing data can reveal important
associations between species distribution and habitats,
but it is insufficient for revealing all of the important
ecological factors that can affect species’ distribution
when considering habitats on a finer scale. On a smaller
scale, such data cannot replace—at least as far as con-
servation is concerned—the painstaking field study of
habitat requirements for individual species (Storch et al.
2003).

The distribution map based on monitoring data
should be considered to be the first step in achieving an
accurate abundance model of the Ortolan bunting. Fu-
ture abundance models should include small habitat
elements, which are important for breeding, foraging,
and singing of this species. What is more important, by
applying models created for specialized farmland-dwelling
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species, we will be able to assess a representative habitat
for future direct conservation planning on the landscape
scale.
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