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Abstract
Recommending medications with electronic health records (EHRs) is a challenging task for
data-driven clinical decision support systems. Most existing models learnt representations
for medical concepts based on EHRs and make recommendations with the learnt represen-
tations. However, most medications appear in EHR datasets for limited times (the frequency
distribution of medications follows power law distribution), resulting in insufficient learning
of their representations of the medications. Medical ontologies are the hierarchical classifi-
cation systems for medical terms where similar terms will be in the same class on a certain
level. In this paper, we propose OntoMedRec, the logically-pretrained and model-agnostic
medical Ontology Encoders for Medication Recommendation that addresses data sparsity
problem with medical ontologies.
We conduct comprehensive experiments on real-world EHR datasets to evaluate the effec-
tiveness of OntoMedRec by integrating it into various existing downstream medication
recommendation models. The result shows the integration of OntoMedRec improves the
performance of various models in both the entire EHR datasets and the admissions with
few-shot medications. We provide the GitHub repository for the source code. (https://github.
com/WaicongTam/OntoMedRec)

Keywords Medication recommendation · Logic tensor networks · Medical ontology

1 Introduction

The mass application of electronic health records (EHRs) has made data-driven clinical
decision-support systems possible [1]. Deep learning models designed to assist clinical prac-
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Figure 1 Frequency distribution of diagnoses andmedications inMIMIC-III dataset. The last bin is the cropped
diagnoses/medications with a frequency higher than 200/40000

titioners in a range of tasks have emerged, with notable categories encompassing patient risk
prediction, re-admission forecasting, the generation of EHR representations, and medication
recommendations for prescribers. To assist medical practitioners in prescribing medications,
recommending sets ofmedications for them accurately and efficiently has become a challeng-
ing yet crucial task. Therefore, numerous data-driven medication recommendation models
have been developed, exemplified by notable solutions such as 4SDrug [2], EDGE [3], and
SafeDrug [4]. These models aim to predict the most suitable medication regimen based on
a patient’s diagnoses, medical procedures, and/or prior prescription history, as demonstrated
by systems like COGNet [5] and SARMR [6]. Existing medication recommendation mod-
els fall into two categories: instance-based models and longitudinal models. Instance-based
models (e.g., LEAP [7] and 4SDrug [2]) recommend sets of drugs with patients’ diagnoses
in the current admission, whereas longitudinal models (e.g., MICRON [8], SafeDrug [4] and
COGNet [5]) utilise patients’ previous admissions.

For both instance-basedmodels and longitudinal medication recommendation models, we
identify one challenge that has not been sufficiently addressed:data sparsity issue (challenge
1). Similar to the user-interaction sparsity challenge in other recommender systemmodels [9,
10], medication recommendation models suffer from data sparsity issues deriving from the
frequency distribution of medical concepts. As demonstrated in Figure 1, the majority of
diagnoses and medications only appear at limited times in the entire MIMIC-III dataset
and their occurrence follows the power law distribution. This inevitably leads to insufficient
learning of the indication relationships between diagnoses and medications (i.e., for what
medical conditions a medication was designed) in instance-basedmodels and their respective
embeddings in longitudinal models. As proven many other recommendation tasks (e.g.,
[11] and [12]), utilising external knowledge bases can alleviate the cold-start effect. One
category of the notable knowledge base for medication recommendation models is medical
ontologies. Therefore, to alleviate the data sparsity issue (challenge 1), similar to [13, 14], we
leverage external structured knowledge (i.e., medical ontologies) [13, 14] as it provides prior
knowledge for the medical terms in EHRs. In EHRs, diagnoses, procedures and medications
are encoded in standardised hierarchical classification systems called as medical ontologies.
Each medical term is a node of the ontology and the relation between them is “is-a” (e.g.,
benproperine is a cough suppressant).

Figure 2 shows part ofATContologywhich is an ontology ofmedications. In this ontology,
similar medications fall into the same parent node, yet there are definitive differences that
distinguish them (i.e., the difference between siblings). For example, as demonstrated in Fig-
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Figure 2 An excerpt of the ATC ontology. Some nodes are omitted

ure 2, medications in “Other cough suppressant in ATC” (R05DB) and “Opium alkaloids and
derivatives, cough suppressants” (R05DA) fall into the same category “Cough suppressants,
excl. combinations with expectorants”(R05). However, they are intrinsically different since
codeine cough suppressants (i.e., R05DA) and non-codeine cough suppressants (i.e., R05DB)
have different clinical characteristics (e.g., physical dependency and drug-drug interaction).
Benproperine and cloperastine have the same therapeutical classification (i.e., they are both
non-codeine cough suppressants), yet they are two different chemicals. As we can see from
this example and some existing studies in recommender models (e.g., [15] and [16]), effec-
tivelymodelling the parental, ancestral and sibling relationships (similarities and differences)
is beneficial to the medication recommendation task.

Even though there are some works exploiting the modelling of medical ontologies in the
medication recommendation task, these existing works cannot effectively model ontol-
ogy relationships to benefit the medication recommendation task (challenge 2). Notable
models integrating ontology information in medication recommendation include G-BERT
[13] and KnowAugNet [14]. G-BERT uses a Graph Attention Network (GAT) [17] encoder
trained end-to-end along with the medication recommendation module. KnowAugNet pre-
trains ontology encoders with an unsupervised contrastive learning method. However, both
models encode ontology with GAT and treat ontology as an undirected graph, whereas
ontology is by definition a direct acyclic graph (DAG). Moreover, they cannot model some
important relationships such as the difference between siblings as shown in Figure 2. There
are also models designed for other tasks that utilised medical ontologies (e.g., GRAM [18]
andKAME [19]). However, themodelling of the ontology in thesemethods is deeply coupled
with their downstream tasks which are not medication recommendation.

To effectively model the ontology relationships to improve the medication recommenda-
tion task (challenge 2), we propose a model OntoMedRec based on logic tensor networks
(LTN) [20] in this paper. As we know, LTN aims at combining symbolic rules and neural
computation together. The advantage of using LTN in our task is that it allows us to easily
integrate the modelling of various identified ontology relationships as symbolic rules (e.g.,
the parental and sibling relations in Figure 2) into the training process (i.e., neural compu-
tation). Recent advances in logic tensor networks (LTN) [20] have shown its effectiveness
in graph learning tasks such as ontology deduction and reasoning [21]. However, we find
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that directly applying existing LTN technique to our task is challenging for two reasons
(challenge 3). The first reason is that the existing LTN works are designed for different task.
To adapt to medication recommendation task, we need to design new sets of predicates,
axioms, constants and variables. The second reason is that directly applying existing LTN
methods is memory consuming. Existing LTN studies that designed for ontology data (e.g.,
[20] and [21]) are based on smaller ontologies (i.e., ≤ 100 nodes) with small representation
dimensions. To model an ontology of |N | nodes with n variables and d as model dimen-
sion, the space complexity is O(n|N |d), which requires large amount of memory when the
ontology is large (e.g., 17,737 nodes in our task). This affects the efficiency of the training
process since the memories in GPUs are usually more scarce than RAMs. The high space
complexity calls for an efficient sampling method for the effective training of larger node
representations on larger ontologies. We devise a sampling method based on the structure of
medical ontologies and our modelling method. It decreases the space complexity to O(nbd)

where b << |N | is the batch size. The contribution of this paper can be summarised as
follows:

• Logically-pretrained ontology encoder: Wecarefully design an LTN-based encoder by
devising novel predicates, axioms, constants, and variables for the self-supervised logical
training on medical ontologies. The design is based on the insights of what structural
information is beneficial for the medication recommendation task. The devised axioms
are naturally interpretable for humans. Moreover, for the efficient training of the model,
we also designed an axiom-oriented sampling method to enable the learning of larger
node representations on large ontologies. Furthermore, to infuse the indication relation-
ships between medications and medical diagnoses, we utilised the MEDI dataset [22] to
logically align the representation space of diagnoses and medications.

• Model-agnostic ontology representation learning model for medication recommen-
dation: Once the encoder is well trained, its output can be loaded into various existing
medication recommendation models to improve their performance as the initialisation of
the embeddings of medical codes (i.e., diagnoses, procedures and/or medication embed-
dings). Thus, similar to other pretrained models, our encoder is “once trained and ready
to use for any medication recommendation models”.

• Comprehensive experiments: Comprehensive experiments have been done (with code
published) to validate the effectiveness of our model in improving different existing
medication recommendation methods including both instance-based methods and lon-
gitudinal methods for both normal scenarios and few-shot scenarios. The results show
that: 1) our model is able to improve the performance of both instance-based and lon-
gitudinal downstream recommendation methods but the improvements on longitudinal
methods are more obvious compared to instance-based methods; 2) our model is able to
improve the performance of existing recommendation methods in both normal scenarios
and few-shot scenarios but the improvement is more obvious for few-shot scenarios.

2 Related work

2.1 Instance-basedmedication recommendation

Instance-based models recommend a set of medications based on the current admission.
LEAP [7] was an early model that predicted the prescribed medications as sequences, and it
made inferences with beam search. SMR [23] recommends drugs based on knowledge graph
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embeddings of diagnoses and medications. More recently, 4SDrug [2] was proposed. It is a
set-based model trained by comparing the difference between medication sets with similar
corresponding diagnoses sets.

2.2 Longitudinal medication recommendation

Longitudinal models make use of patients’ previous diagnoses and procedures records.
RETAIN [24] was a representation learning model that encodes a patient’s EHR into a
representation, and it can be used for the medication recommendation task with extra output
layers. DCw-MANN [25] used all past medications to predict current medications using a
LSTMs-based encoder-decoder model. GAMENet [26] used memory bank matrices to asso-
ciate past diagnoses and procedures with medications. SafeDrug [4] uses a global molecule
encoder and a local molecule substructure encoder to encode medications. COGNet [5] uses
Transformer-based [27] to encode the patient’s diagnoses, procedures and medication his-
tory. MICRON [8] is a model designed for predicting the change in prescriptions, it models
the change of prescribed medications with residual vectors. In addition to a patient’s EHR,
MERITS [28] used the neural ordinary differential equation to model the irregular time series
of the patient’s vital signs. The model proposed by Yao et al. [29] used RNN to model the
path from the root node to medical concepts on medical ontologies. Other than medication
recommendation, some longitudinalmodels use longitudinal EHRdata to perform other tasks
such as diagnoses prediction (e.g., KAME [19]) and representation learning (e.g., GRAM
[18]). These two models also had medical ontology encoding modules, but they were trained
end-to-end with downstream tasks.

2.3 Existing solutions to data sparsity issue

Some existing models have attempted to address the data sparsity issue. G-BERT [13] used
GAT encoders to encode diagnoses and medications. However, the pretraining data used in
G-BERT is the patient records with one admission. These admission data still follow the
distribution we described in Figure 1. kampnet [14] used unsupervised contrastive learning
to pre-train encoders for medical ontologies and medication-diagnoses co-existence graph.
EDGE [3] considers drugs that never appear in a certain time range in the EHR dataset as
novel drugs, and uses meta-learning to alleviate the cold-start effect of those drugs. However,
an interpretable and EHR-independent pretrained encoder for medical ontologies has not
been proposed. Moreover, the data sparsity issue in medication recommendation has not
been sufficiently addressed.

3 Preliminaries

3.1 Electronic medical record

An electronic health record (EHR) dataset can be considered as a collection of |U | patients’
medical records U = {U (n)}|U |

n=1 where a patient’s medical record U (n) is constituted by their

admissions [V(n)
t ]T (n)

t=1 to the hospital. For the sake of brevity, we will omit the (n) superscript
in future formulae where there is no confusion. In each admission, a set of medical diagnosis
codes (Dt ), a set of medical procedure codes (Pt ) and a set of prescribed medication codes
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(Mt ) will be recorded asVt = {Dt ,Pt ,Mt }. Note that, in somemedication recommendation
models (e.g., COGNet [5] and LEAP [7]), the set of medical diagnosis codes (Dt ) and the
set of medical diagnosis codes (Dt ) are considered sequences.

It is worth noticing that the diagnosis does not only record the chief complaints (i.e., the
prominent symptoms that cause this specific admission to the hospital [30]) of the patient’s
admission. It also records other medical conditions of the patient. Assume that there is a
diabetic patientwith existing liver conditionswhowas admitted to the hospital due to a broken
arm. Not only the bone fracture will be recorded, but the cause of the fracture (e.g., falling),
the diabetes and liver conditions will be recorded as well. All the diagnosis information is
codified as codes on a medical ontology that can be modelled by OntoMedRec.

3.2 Medical concept ontologies

A medical ontology T∗ = {N∗, E∗,E∗} is a hierarchical taxonomy of medical concepts in a
certain domain. It is a directed acyclic graph (DAG) whereN∗ is the set of nodes, E∗ is the set
of edges and E∗ is the matrix of node features. An edge e j = 〈na, nb〉 ∈ E∗ represents that
nb is a more specific concept deriving from na (i.e., na is a parent of nb). Take the excerpt
in Figure 2 again as an example. There is a directed edge from “Cough suppressants, excl.
combinations with expectorants (R05D)” to “Other cough suppressant in ATC” (R05DB)”
since R05DB is a more specific term to classify a medication.

For OntoMedRec, we will use three non-overlapping taxonomies respectively for diag-
noses, medical procedures and medications, namely Td , Tp and Tm . Note that, Td , Tp and
Tm are publicly available and shared by all EHR datasets by their linkage to Dt , Pt and
Mt respectively. More specifically, each medical code is a node on the corresponding med-
ical ontology. They can be either a leaf node or a parent node. Since the medical ontology
is independent of EHR datasets and all medical concepts in EHR datasets belong to the
medical ontology, the pretrained representations of OntoMedRec can be integrated into any
downstream recommendation models trained and tested with EHR datasets.

3.3 Medication recommendation

Following the task definition in in Sec.1 and Sec.2, the medication recommendation task can
be formulated as follows:

• Longitudinal models predictMT given a patient’s admission history [Dt ,Pt ]Tt=1. Some
of them add past medication records [Mt ]T−1

t=1 (e.g., MICRON [8] and COGNet [5]).
• Instance-based models predictMT given a patient’s diagnosis information in the current
visit [DT ,PT ].

3.4 Logic tensor networks

Logic Tensor Networks (LTNs) are the neural networks for data modelling with quantifiable
and human-interpretable rules. They are based on real logic [21] defined on a first-order
language L. L is composed of [20]:

• A set of constants. In our case, it is the node feature matrices E∗ ∈ R
|N∗|×d where |N∗|

is the number of nodes and d is the dimension of the node representations.
• A set of variables. They are the symbols created over the subset of the constants to
describe the logical relationships in the graph.
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• A set of predicates. They are a set of functions { f1(·), f2(·), · · · , fn(·)} that take vari-
ables as inputs and calculate the satisfiability scores of a logical relationship.

• A set of connectives. They are logical operators and aggregation operators (e.g., “and
(∧)” and “not (¬)”).

There, a knowledge base can be defined as a triple < K,G(·|θ),� >, where

• K is a set of closed formulae (i.e., axioms) defined by the variables, predicates and con-
nectives in L and the set of domain symbols. They are highly interpretable propositional
logic expressions.

• G(·|θ) is the parameter groundings of the symbols and logical operators,
• � is the set of parameters in the groundings. This includes the trainable parameters of
predicates and constants.

The training of an LTNmodel aims to find the set of optimal parameters�∗ that maximise
the aggregated satisfiability of < K,G(·|θ) >

�∗ = argmax
θ∈�

SatAgg
φ∈K

(Gθ (φ)) (1)

SatAgg
φ∈K

(Gθ (φ)) = 1 − (
1

|K|
∑

φ∈K
(Gθ (φ)))

1
p (2)

where SatAgg(·) is the function that aggregates the satisfiabilities of each axiom and p is
a hyperparameter.

Therefore, the training goal can be formulated as the minimisation of the loss L :

L = 1 − SatAgg
φ∈K

(Gθ (φ)) (3)

A more detailed and illustrative description of how these components are used to describe
the logical relationship in medical ontologies is at Section 4.1

3.5 The indication relationship betweenmedications and diagnoses

If a medicationm was designed for treating a medical diagnosis d , an indication relationship
< m, d > can be defined. A medication can be designed to treat a set of medical conditions.
If a medication is able to treat a parent node on the diagnosis ontology, it can be considered
that it can cure all its children nodes. It is worth noticing that the indication relations graph
does not enumerate all the existing indication relations.

4 The OntoMedRecmodel

4.1 Pre-training ontology encoders

By definition, the chosen medical ontologies have the following characteristics:

• Explicit directed edges.An edge in a medical ontology refers to a parent-child relation-
ship between the two nodes. This relationship is not interchangeable or reflexive.

• Implicit deductive relationships. Besides explicit edges in E∗, there are deductive rela-
tionships in medical ontologies.
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– Two nodes with the same parent node are sibling nodes. They have definitive differ-
ences on their level. ancestor node).

– Ancestor nodes are multi-hop parent nodes. Ancestral relationships are not commu-
tative or reflexive. We define one-hop ancestors as “parents” but not “ancestors”.

• Each node (except the root node) has only one parent.

To accurately model the structural characteristics of medical ontologies, we pre-train
three medical ontology node encoders, respectively for diagnoses, procedures and medica-
tions using logic tensor networks. Following the axioms used for the ontology deduction task
in [21], we devise a set of additional axioms regarding the explicit and deductive relation-
ships among nodes. Additionally, we devise axioms to define the sibling relationships in the
ontology.

Sincemedical ontologies aremuch larger compared to the ontology in [21], it is impractical
to define variables over all the nodes in these three ontologies. For instance, to describe the
axiom ”the parent node of the parent node of a node is an ancestor node”, three variables are
required (“∀x, y, z : P(x, y)∧P(y, z) → A(x, z)”where x, y, z are variables and P(·, ·) and
A(·, ·) are the predicates that calculate the satisfiability of the parent and ancestor relation).
Each time a new variable is created over the entire ontology, a new copy of the embedding
matrix of all the nodes (E∗ ∈ R

|N |×d ) is required, which is a task of the space complexity of
O(n|N |d), where n is the number of variables. To achieve efficient and effective training of
the encoders, we design an axiom-oriented sampling method. We, firstly, randomly sample a
batch of nodes from the ontology. Then, we sample all their respective ancestors, parents and
siblings. This set of nodes constitutes a training node batch. All the directed edges between
two nodes in the set constitute the positive edge samples, whereas all the node pairs without
directive edges between them constitute the negative edge samples. With the adoption of the
sampling method, the space complexity of the creation of variables are reduced to O(nbd),
where b is the batch size.

4.1.1 The knowledge formulation of ontology data

Therefore, the knowledge of an ontology can be formulated as follows, using the notations
in [20].

• Domain Medical terms in the ontology
• Variables x , y and z, ranging over a batch of sampled nodes Nb ⊂ T∗
• Predicates P∗(x, y) as the parent scorer, S∗(x, y) as the sibling scorer and A∗(x, y) as
the ancestor scorer

• Axioms

– Parental relationships are not reflexive and commutative: ∀x ∈ Nb : ¬P∗(x, x),
∀x, y ∈ Nb : P∗(x, y) → ¬P∗(y, x)

– Ancestral relationships are not reflexive and commutative: ∀x ∈ Nb : ¬A∗(x, x),
∀x, y ∈ Nb : A∗(x, y) → ¬A∗(y, x)

– The definition of sibling relationships (nodes with the same parent node): ∀x, y, z ∈
Nb : P∗(x, y) ∧ P∗(x, z) → S∗(y, z)

– Sibling relationships are not reflexive but commutative: ∀x ∈ Nb : ¬S∗(x, x),
∀x, y ∈ Nb : S∗(x, y) → S∗(y, x)

– The parent node of a parent node is an ancestor node: ∀x, y, z ∈ Nb : P∗(x, y) ∧
P∗(y, z) → A∗(x, z)
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– The parent node of an ancestor node is an ancestor node: ∀x, y, z ∈ Nb : P∗(x, y) ∧
A∗(y, z) → A∗(x, z)

– Positive and negative edges in the batch: ∀(x, y) ∈ Pb : P∗(x, y), ∀(x, y) /∈ Pb :
¬P∗(x, y)

• Grounding

– Let vn be the representation of node n, G(vn) = R
d

– G(x |θ) = G(y|θ) = G(z|θ) = [vn |n ∈ Nn]
– G(P∗|θ),G(S∗|θ) andG(A∗|θ) areσ(MLP(x, y))withoneoutput neuron and sigmoid
function (σ(·)) as the activation of the final layer

Ontology encoders are trained tomaximise the aggregated satisfiability of all these axioms
describing the structural characteristics of the ontology. For each ontology, we use a different
set of predicates with the same structure. The three sets of predicates are optimised separately.

4.1.2 The alignment of diagnosis andmedication representations

Intuitively, aligning the representations of medications and diagnoses after they have been
respectively trained shortens the distance of these representations. The representations of
diagnoses and medications are infused with the indication relationship. Therefore, using the
pretrained representations fromOntoMedRec as a starting point can improve the performance
of the model, particularly in admissions with few-shot medications. Similarly, the knowledge
of the MEDI dataset can be formulated as follows:

• Domains:Medical terms in the medication and diagnoses ontology
• Variables

– Medication m ranging over all the medications in the batch of sampled indication
pairs

– Diagnoses sx and sy ranging over all the medications in the batch of sampled indi-
cation pairs

• Predicates I (m, d) for the indication relationship
• Axioms: Let I be all the indication pairs in a sampled batch inMEDI dataset: ∀(m, sx ) ∈

Ib : I (m, sx )
• Grounding

– Let m and d and be the representation of medication m and diagnosis d , G(m) =
G(d) = R

d

– G(m|θ) = [mm |m ∈ I], G(d|θ) = [dd |d ∈ I]
– G(I |θ) is σ(MLP(m, d)) with one output neuron and sigmoid function (σ(·)) as the
activation of the final layer

In each pretraining epoch, we train the three encoders sequentially then align medication
and diagnosis embeddings with the indication dataset. We save the procedure embeddings
with the highest satisfiability on the procedure ontology, and the medication and diagnoses
embeddings with the highest satisfiability on the indication dataset.

4.2 Fine-tuning with downstreammodels

Following the pre-training phase, the embeddings of medical terms are integrated with
downstream medication recommendation models for further fine-tuning. We choose both

123

Page 9 of 17 28



World Wide Web (2024) 27:28

Table 1 The statistical
characteristics of the medical
ontologies

Diagnosis Procedure Medication

# nodes 17737 4670 6441

# edges 17736 4669 6440

Max depth 7 4 5

instance-based models (Leap [7] and 4SDrug [2]) and longitudinal models (RETAIN [24],
SafeDrug [4] and MICRON [8]) to fine-tune and evaluate OntoMedRec.

The representations of diagnoses and procedures (and medications, where possible) are
loaded as a starting point for the respective embedding table and are further end-to-end
fine-tuned with the medication recommendation task.

5 Experiments

5.1 Experimental setup

5.1.1 Dataset

We use the ATC ontology for medications and the ICD9-CM ontology for diagnoses and
procedures from BioPortal [31] to pretrain OntoMedRec. ICD9-CM is split into two sub-
ontologies, respectively for diagnoses and procedures. The characteristics of these ontologies
are listed in Table 1.

We use the benchmark dataset MIMIC-III [32] to fine-tune and evaluate the performance
of downstream models integrated with the representations of OntoMedRec and other base-
lines. The statistical characteristics of the datasets are described in Table 2. To explore the
performance of downstreammodels with or without OntoMedRec in sparse cases, we reserve
the patients with only one admission, low-frequency diagnoses and low-frequency medica-
tions that were discarded in previous studies (e.g., in [4]). The ratio of training, testing and
validation set is 4 : 1 : 1. We split out a set of admissions with few-shot medications. We use
TWOSIDES dataset [33] as the ground truth of drug-drug interactions (DDIs). In contrast to
previous studies, we reserve the drug pairs with lower numbers of DDIs.

5.1.2 The generation of few-shot medications test cases

We sort all medications in the EHR dataset by their frequencies. The medications with
the lowest 30% frequency (i.e., tail percentage) are designated as few-shot medications.

Table 2 The statistical
characteristics of the MIMIC-III
dataset

Item MIMIC-III

# patients 35441

# admissions 44129

# medications 120

# procedures 1975

# diagnoses 6658
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Prescriptions in the test set with more than 1 few-shot medication are added to the few-shot
test set.

5.1.3 Baselines

There are two major categories of existing medical ontology modelling methods: EHR-
independent models (KAMPNet [14]) and EHR-dependent models (G-BERT [13]). Both
KAMPNet and G-BERT use GAT [17] to model medical ontology. Thus, we also choose
GATas one of the baselines to validate the effectiveness of ourmodel.KAME[19] andGRAM
[18] are not comparable to our models because their ontology training is deeply coupled with
their downstream task which are not medication recommendation. GCN is commonly used
for the modelling of EHR and DDI graphs [26]. Therefore, we choose randomly initiated
naive embedding table, GAT [17] and GCN as baselines. GAT and GCN are fine-tuned along
with the downstream models. We use link prediction as the pretraining task for these two
models. The two baselines are trained 20 epochs, the best checkpoints with the lowest loss
are selected.

5.1.4 Evaluation metrics

Following the evaluation protocol of many medication recommendation models, we use the
following metrics:

• Jaccard coefficient. It is the most common benchmark score for medication recommen-
dationmodels. The Jaccard coefficient of all the the n patient’s T admissions is calculated
as follows:

Jaccard(n)
t = |{i : m(n)

t,i = 1} ∩ {i : m̂(n)
t,i = 1}|

|{i : m(n)
t,i = 1} ∪ {i : m̂(n)

t,i = 1}|
(4)

Jaccard(n) = 1

T (n)

T (n)∑

t=1

Jaccard(n)
t (5)

where {i : m(n)
t,i = 1} is the set of indices where the element at i on multi-hot encoding

vector is 1. The higher the Jaccard coefficient is, the more accurate the recommendation
is (i.e., the recommended set is more similar to the label).

• Drug-Drug Interaction (DDI) score. It is the percentage of medication pairs with
known DDIs in the recommended set of medications. The lower it is, the fewer DDIs
there are in the generated medication recommendation, and the safer the recommended
medication combination can be considered. The DDI score of the n patient’s admissions
is calculated as follows:

DDI(n) =
∑T (n)

t
∑

j,k∈m̂(n)
t,i =1

1{D j,k = 1}
∑

j,k∈m̂(n)
t,i =1

1
(6)

where D ∈ R
|M|×|M| is the DDI matrix retrieve from the TWOSIDES dataset [33]

and 1{·} is an indicator function that returns 1 when the input is true and 0 otherwise.
D j,k = 1 indicates that medication j and medication k have at least one adverse effect
when prescribed together.
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Table 3 Performance of selected models on the MIMIC-III dataset

Jaccard F1 DDI No. of drugs

LEAP Naive 0.4689 ± 0.0019 0.6287 ± 0.0019 0.0603 ± 0.0004 17.8810 ± 0.0405

+GAT 0.4178 ± 0.0009 0.5815 ± 0.0009 0.0631 ± 0.0000 19.9971 ± 0.0014

+GCN 0.3853 ± 0.0012 0.5500 ± 0.0013 0.0769 ± 0.0000 12.9998 ± 0.0002

+OMR 0.4732 ± 0.0017 0.6322 ± 0.0016 0.0596 ± 0.0004 17.1709 ± 0.0465

SafeDrug Naive 0.5431 ± 0.0016 0.6920 ± 0.0014 0.0600 ± 0.0002 21.9985 ± 0.0668

+GAT 0.5232 ± 0.0022 0.6740 ± 0.0020 0.0569 ± 0.0002 21.6908 ± 0.0838

+GCN 0.5202 ± 0.0013 0.6707 ± 0.0010 0.0580 ± 0.0002 22.1046 ± 0.1074

+OMR 0.5481 ± 0.0024 0.6965 ± 0.0021 0.0589 ± 0.0002 22.1837 ± 0.0790

MICRON Naive 0.5147 ± 0.0020 0.6645 ± 0.0020 0.0504 ± 0.0005 15.7760 ± 0.1218

+GAT 0.4991 ± 0.0026 0.6508 ± 0.0023 0.0510 ± 0.0003 15.4560 ± 0.1239

+GCN 0.5003 ± 0.0017 0.6524 ± 0.0016 0.0511 ± 0.0004 15.4916 ± 0.0648

+OMR 0.5203 ± 0.0019 0.6696 ± 0.0019 0.0517 ± 0.0003 16.1107 ± 0.1218

4SDrug Naive 0.4667 ± 0.0017 0.6261 ± 0.0016 0.0478 ± 0.0004 13.7054 ± 0.0463

+GAT 0.4666 ± 0.0016 0.6260 ± 0.0017 0.0477 ± 0.0005 13.7442 ± 0.0624

+GCN 0.4670 ± 0.0017 0.6263 ± 0.0016 0.0478 ± 0.0004 13.7361 ± 0.0559

+OMR 0.4662 ± 0.0015 0.6257 ± 0.0014 0.0474 ± 0.0005 13.7321 ± 0.0724

RETAIN Naive 0.5433 ± 0.0023 0.6913 ± 0.0019 0.0646 ± 0.0006 17.0477 ± 0.1014

+GAT 0.4264 ± 0.0023 0.5871 ± 0.0023 0.0554 ± 0.0006 14.9248 ± 0.0877

+GCN 0.4335 ± 0.0020 0.5909 ± 0.0018 0.0574 ± 0.0006 16.4566 ± 0.0917

+OMR 0.5536 ± 0.0019 0.7001 ± 0.0015 0.0642 ± 0.0005 17.7567 ± 0.0836

• F1 score. It is commonly used as a metric for classification tasks. It is the harmonic
mean of the precision and recall score and is calculated as follows:

Precision(n)
t = |{i : m(n)

t,i = 1} ∩ {i : m̂(n)
t,i = 1}|

|{i : m̂(n)
t,i = 1}|

(7)

Recall(n)
t = |{i : m(n)

t,i = 1} ∩ {i : m̂(n)
t,i = 1}|

|{i : m(n)
t,i = 1}|

(8)

F1(n)
t = 2 · Precision(n)

t · Recall(n)
t

Precision(n)
t + Recall(n)

t

(9)

5.2 Results discussion

Table 3 lists the results of the performance of downstreammodels in the entire testing set, and
Table 4 lists the results with the few-shot medications testing set. The drop in performance
between Tables 3 and 4 in all downstreammodels proves our assumption that the data sparsity
issue harms the performance of downstream models. Although OntoMedRec cannot achieve
the lowest DDI in some models in both test settings, they are lower than the ground truth
DDI score (0.078 among the entire test set and 0.069 in the few-shot test set).
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Table 4 Performance of selected models on the test set with few-shot medications

Jaccard F1 DDI No. of drugs

Leap Naive 0.4328 ± 0.0060 0.5981 ± 0.0060 0.0522 ± 0.0018 18.3266 ± 0.1629

+GAT 0.3978 ± 0.0064 0.5636 ± 0.0067 0.0632 ± 0.0000 20.0000 ± 0.0000

+GCN 0.3451 ± 0.0046 0.5083 ± 0.0051 0.0769 ± 0.0000 13.0000 ± 0.0000

+OMR 0.4341 ± 0.0071 0.5986 ± 0.0071 0.0571 ± 0.0023 17.4800 ± 0.2528

SafeDrug Naive 0.5141 ± 0.0083 0.6705 ± 0.0074 0.0577 ± 0.0007 23.8330 ± 0.5112

+GAT 0.5044 ± 0.0054 0.6618 ± 0.0049 0.0564 ± 0.0010 23.8990 ± 0.2941

+GCN 0.4940 ± 0.0082 0.6517 ± 0.0079 0.0562 ± 0.0009 24.6039 ± 0.4459

+OMR 0.5206 ± 0.0071 0.6769 ± 0.0062 0.0587 ± 0.0011 24.7879 ± 0.4228

MICRON Naive 0.4849 ± 0.0099 0.6411 ± 0.0101 0.0615 ± 0.0018 20.5828 ± 0.6436

+GAT 0.4626 ± 0.0061 0.6215 ± 0.0067 0.0583 ± 0.0023 19.9857 ± 0.9167

+GCN 0.4660 ± 0.0062 0.6240 ± 0.0052 0.0628 ± 0.0010 20.0187 ± 0.6505

+OMR 0.4876 ± 0.0094 0.6428 ± 0.0087 0.0622 ± 0.0012 20.6576 ± 0.5616

4SDrug Naive 0.4310 ± 0.0071 0.5953 ± 0.0064 0.0385 ± 0.0020 14.4564 ± 0.2999

+GAT 0.4298 ± 0.0064 0.5947 ± 0.0062 0.0385 ± 0.0016 14.3754 ± 0.3247

+GCN 0.4304 ± 0.0068 0.5949 ± 0.0065 0.0380 ± 0.0023 14.2446 ± 0.3319

+OMR 0.4316 ± 0.0079 0.5961 ± 0.0075 0.0379 ± 0.0018 14.4943 ± 0.3259

Retain Naive 0.5057 ± 0.0077 0.6615 ± 0.0069 0.0608 ± 0.0018 19.7118 ± 0.6843

+GAT 0.3650 ± 0.0076 0.5283 ± 0.0081 0.0585 ± 0.0014 16.1552 ± 0.2670

+GCN 0.3637 ± 0.0069 0.5263 ± 0.0076 0.0700 ± 0.0011 18.2791 ± 0.3432

+OMR 0.5229 ± 0.0089 0.6780 ± 0.0078 0.0609 ± 0.0015 20.6692 ± 0.6741

5.2.1 Results on the entire MIMIC-III dataset

As we can observe from Table 3, integrating the representations of diagnoses, procedures
and medications (where possible) from OntoMedRec can improve the performance of most
selected medication recommendation models in the entire dataset compared to all baselines.
This demonstrates the representation of OntoMedRec is model-agnostic for downstream
medication recommendation models.

5.2.2 Results on the few-shot cases

The representations of OntoMedRec improve all compared downstream models in the few-
shot medication test set. We can observe from the result that the representations improve the
performance for all compared longitudinal models. For compared instance-based models,
although the representations of OntoMedRec do not improve their performance by a large
margin, we notice that 1) they have lower performance scores compared to selected longi-
tudinal models, and 2) the performance after the integration of OntoMedRec is not lower
than the best performance by a large margin. We speculate the reason is that instance-based
models adopted fewer pretrained embeddings comparing to longitudinal models.
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Figure 3 Performance of randomly initialised embedding table and OntoMedRec embedding table in different
downstream models and tail percentages

5.2.3 Further investigation of sparse scenarios

To further investigate how few-shot medications affect the performance of medication rec-
ommendation models with OntoMedRec, we further compare OntoMedRec representations
and randomly initialised embedding table with different sparse settings starting with the low-
est frequency being 20% (as visualised in Figure 3). The representation of OntoMedRec can
improve the performance of longitudinal downstream models in all three test sets. Overall,
the performance gap between models with OntoMedRec pretraining and models without
pretraining is larger when the data is sparser (20% is the sparsest scenario) which shows that
medication recommendation models can benefit more from OntoMedRec in sparser scenar-
ios. For LEAP, OntoMedRec can improve its performance for the entire testing set and the
test set with the 20%-least-frequent medications. For 4SDrug, the performance margin is
small.

6 Conclusion

In this paper, we proposed OntoMedRec, the self-supervised, logically-pretrained model-
agnostic ontology encoders for medication recommendation. We devise axioms that
collectively define the structure of medical ontologies, and use logical tensor networks
(LTNs) to maximise the satisfiability of the representations. Furthermore, we align the
representations of diagnoses and medications with medication indication information. The
ontology-enhanced representation can be integrated into various downstream medication
recommendation models to alleviate the negative effect brought by the data sparsity issue.
We conducted experiments to evaluate the efficacy of OntoMedRec. Results show that the
representation of OntoMedRec can improve the performance of most selected models in the

123

      28 Page 14 of 17



World Wide Web (2024) 27:28

entire testing dataset, and that it can improve the performance of all longitudinal models in
the few-shot medications test set.
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