
World Wide Web (2024) 27:25
https://doi.org/10.1007/s11280-024-01248-5

Efficient processing of coverage centrality queries on road
networks

Yehong Xu1 ·Mengxuan Zhang2 · Ruizhong Wu3 · Lei Li1,3 · Xiaofang Zhou1,3

Received: 11 January 2023 / Revised: 28 August 2023 / Accepted: 21 November 2023
© The Author(s) 2024

Abstract
Coverage Centrality is an important metric to evaluate vertex importance in road networks.
However, current solutions have to compute the coverage centrality of all the vertices together,
which is resource-wasting, especially when only some vertices centrality is required. In addi-
tion, they have poor adaption to the dynamic scenario because of the computation inefficiency.
In this paper, we focus on the coverage centrality query problem and propose a method
that efficiently computes the centrality of single vertices without relying on the underlying
graph being static by employing the intra-region pruning, inter-region pruning, and top-down
search. We further propose the bottom-up search and mixed search to improve efficiency.
Experiments validate the efficiency and effectiveness of our algorithms compared with the
state-of-the-art method.

Keywords Coverage centrality · Road networks · Shortest paths

1 Introduction

Centrality computation serves as a fundamental operation in a range of applications within
road networks, including traffic monitoring and prediction [1], network maintenance and

B Yehong Xu
yxudi@connect.ust.hk

B Mengxuan Zhang
mengxuan.zhang@unt.edu

Ruizhong Wu
rwu601@connect.hkust-gz.edu.cn

Lei Li
thorli@ust.hk

Xiaofang Zhou
zxf@ust.hk

1 The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

2 Australian National University, 2601 Canberra, ACT, Australia

3 The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-024-01248-5&domain=pdf

 25 Page 2 of 24 World Wide Web (2024) 27:25

assessment [2]. Compared to various metrics of centrality evaluation, coverage centrality of
a vertex s (denoted as CC(s)) [3–5] has a particularly high correlation with s’s transportation
ability and surrounding traffic condition. This is because CC is defined based on the shortest
paths in a road network.

A road network is an undirected weighted graph G(V , E, W) with the vertex set V
(i.e., road intersections), the edge set E ⊆ V × V (i.e., road segments), and cost function
W : E → R+ that assigns a non-negative travel cost to each edge (u, v) ∈ E . We denote
n = |V |, m = |E |, and N (v) for the neighbors of v ∈ G. A path p = 〈v1, ..., vk〉 is a
sequence of vertices where (vi , vi+1) ∈ E , vi ∈ V . The length of a path p is defined as
l(p) = ∑k−1

i=1 w(vi , vi+1). Let ps,t denote any path between a vertex pair (s, t). The shortest
path p̂s,t is a path among all ps,t with the minimum length. Coverage centrality (CC) of one
vertex is defined as the number of vertex pairs that have at least one shortest path passes it
(as shown in (1)).

CC(v) =
∑

s,t∈V ,s �=t �=v

δs,t (v) (1)

where δs,t (v) is equal to 1 if at least one shortest path between s and t passing through v,
otherwise 0.

In the context of the road network G, the travel cost associated with each edge can be
interpreted as the dynamic travel time required to traverse that edge. In this scenario, a high
value of CC(s) indicates the importance of vertex s in terms of transportation within the
graph G. In other words, the blockage of s can have a profound impact on the overall travel
costs within G. Moreover, an increase in CC(s) suggests an improvement in travel time
when passing through vertex s, and vice versa. By closely monitoring CC(s), we can obtain
valuable insights into the traffic conditions related to vertex s, allowing us to implement
more precise traffic management strategies. Therefore, its quick measurement is essential,
especially for those urgent situations.

Existing solutions CC has been extensively studied,mainly including two branches ofmeth-
ods. One branch orders CC roughly in proportion with the vertex degree [6] in a hypergraph,
which is constructed by the sampled vertices in the original graph. But it does not calculate
the centrality directly, so it is out of this paper’s consideration. Another branch focuses on
Betweenness Centrality (BC). The definition of BC is quite similar to that of CC except that
δst (v) is defined as the ratio of shortest paths between s, t passing through v, relative to all
shortest paths between s, t . The Brandes algorithm [7] is the fundamental BC algorithm,
whose time complexity is O(nm + n2logn) where n = |V |, m = |E | are the vertex and
edge number, respectively. Brandes is computationally expensive for large graphs and thus
cannot support real-time query answering. Subsequently, there come other strategies that
aim at improving the scalability of Brandes [8–13]. However, these strategies that either
distribute or parallelize the computation could hardly apply to road networks, as analyzed
in Section 2.2. Therefore, only Brandes could be used and extended to CC computation by
ignoring the path number [5].

Motivation The network is dynamic with traffic conditions keep changing [14–19], obtain-
ing vertices’ CC values in real-time is quite useful. Typically, we are only interested in
monitoring a small set of critical vertices over time, e.g., those that connect different parts of
the road network. For other vertices, it is unnecessary tomaintain theirCC. However, existing
BC-basedmethods that eithermaintainCC of all vertices or none of them are computationally
expensive and cost-ineffective. Then a question comes naturally: why not focus on develop-
ing an online CC-answering method for single vertices that can be easily adapted to dynamic

123

World Wide Web (2024) 27:25 Page 3 of 24 25

road networks? Therefore, we aim to propose Coverage Centrality Query Answering Frame-
work that relieves the heavy computation involved in Brandes-based methods. Instead, it is
lightweight and can efficiently answer most CC queries in real-time.

Challenges Our problem is how to efficiently answer CC queries given a underlying road
network G(V , E, W), where a CC query is denoted as q(s) (s ∈ V). According to formula
(1), to answer q(s), we need to check every vertex pair (a, b) in G to see whether it has a
shortest path that passes through v. We term the checking as the dependency check for (a, b).
Thus, it takes t = (n − 1)(n − 2)τ time in total, where τ is the time of one dependency
check. This naive calculation is obviously time-consuming. Approximately, t is around 25
hours for medium-size road network (with around 300, 000 vertices like New York City and
Beijing) with τ in microsecond level. There comes our challenge: how to calculate accurate
CC values efficiently.

Our idea We focus on speeding up CC calculation through reducing the number of vertex
pairs that require dependency checks. Given a CC query q(v), we initially need to check
(n − 1)(n − 2) vertex pairs. However, we find that some vertex pairs can be pruned: vertex
pairs (a, b) that satisfy: ∃ p̂(v, a), p̂(v, b) s.t. {v} ⊆ p̂(v, a)∩ p̂(v, b). As this means that the
concatenation of p̂(v, a), p̂(v, b) contains a cycle so that the shortest must not pass through v

and (a, b) can be pruned. The Shortest Path Tree (SPT) rooted at v (denoted as Tv , Figure 1)
is a perfect structure to organize starting from v to all other vertices. A SPT is formally
defined below.

Definition 1 (Shortest Path Tree (SPT)) The shortest path tree rooted at v ∈ V denoted as
Tv is a spanning tree of G s.t. any simple path from v to another vertex u in Tv corresponds
to one of the shortest paths p̂v,u in G.

Spatially, a SPT Tv divides the network into multiple cone-shaped regions v [20] where
the region denotes descendants of the same child of v in Tv . Vertex pairs (u, v) where u, v

belong to the same region can be pruned, and we this as intra-region pruning. Nevertheless,
many inter-region vertex pairs (i.e., vertex pairs with two endpoints in different regions)
remain to check. We discuss their pruning methods in Section 3.3. The next problem is
how we should check the unpruned vertex pairs. Our idea is to traverse the SPT and check

Figure 1 Example graph and its shortest path tree Tv10

123

 25 Page 4 of 24 World Wide Web (2024) 27:25

vertex pairs along the traversal. We first propose the top-down traversal strategy, while it still
incurs abundant dependency checks for vertices with high CC values. Thereby, we propose
bottom-up traversal and mixed traversal for those vertices of high CC values.

Contributions To the best of our knowledge, we are the first to study the efficient centrality
computation from the aspect of vertex pairs pruning and the first to support accurate centrality
computation of single vertex. Our contributions are as follows:

– Weutilize theSPT as the carrier of centrality calculation andpropose intra-region pruning
to prune those vertex pairs with endpoints in the same regions;

– We further propose inter-region pruning to prune those vertex pairs with endpoints in two
different regions. Specifically,we propose SPT traversal strategies (top-down, bottom-up,
and mix) for vertices of different centrality levels;

– We conduct extensive performance studies in real-life road networks, and the experimen-
tal results demonstrate the superiority of our approaches.

This work is an extension of [21] where we proposed the top-down traversal method. To
scale to larger networks, we propose a new pruning technique (Lemma 4) based on previous
ones, and further propose two new bottom-up andmixed traversal methods. New experiments
on larger networks demonstrate the effectiveness of our new optimization techniques.

Organization Section 2 gives the related work. Section 3 introduces our computation frame-
work which includes pruning techniques (Sections 3.2 and 3.3) and the top-down search
(Section 3.4). Section 4 describes the improvements based on the computation frame-
work, including the better search space management (Section 4.1), the bottom-up search
(Section 4.2) and the mixed search (Section 4.3). Section 5 discusses experimental results.
Section 6 concludes the entire paper.

2 Related work

The definition of Coverage Centrality CC was proposed in [22]. However, the authors did not
provide a concrete algorithm for the computation.CC is equivalent to Betweenness Centrality
BC [23, 24] when there is no more than one shortest path passing through one specific vertex
for each vertex pair. In this section, we briefly summarize existing works about CC and BC,
along with shortest path algorithms, as shortest path computation is a fundamental operation
of our methods.

2.1 Coverage centrality

The only existing method that computes CC is what was proposed in [25, 26] used to derive
a vertex order for relatively small hub-labeling index size. The authors assume that every
shortest path is unique, and their idea is to compute the SPT rooted at every vertex, which
takes O(nm + n2logn) in time using Dijkstra’s [27]. And the CC value of a vertex v is the
sum of # descendants of v in all SPTs, which can be obtained by running the depth-first search
from v over every SPT. The time complexity is O(n2 + mn). The overall time complexity
of computing a vertex’s CC value using this method is O(nm + n2logn).

Top-k CC Yoshida [6] intended to find top-k vertices of the largest CC value by constructing
a hypergraph H which consists of sampled vertices. It uses one vertex’s degree in H to

123

World Wide Web (2024) 27:25 Page 5 of 24 25

approximate its CC value. Specifically, a greedy algorithm is proposed to find those vertices
of the highest degree iteratively. In each iteration, the selected vertex and its incident edges
are removed from H .

CCmaximization CC maximization aims to find a set of arcs s.t. their insertions maximize
the CC value of the target vertex or target group of vertices [28, 29]. It is an NP-hard
problem. The proposed solutions prove that the selected edges are guaranteed to benefit the
target vertex(s) with a high probability based on certain criteria. Their work does not compute
a vertex’s CC value.

2.2 Betweenness centrality

Exact BC The existing fastest algorithm for exact BC computation is Brandes [7]. It runs
the Dijkstra’s from each vertex v and constructs the corresponding directed acyclic graph
(DAG), which encodes all the shortest paths starting from v. The BC value of one vertex is
obtained by accumulating the paths’ contributions to it through the backward propagation
in each DAG. Its time complexity is O(nm + n2logn), meaning it can hardly scale to large
graphs.

Then there come several strategies to improve the scalability of Brandes by distributing
[9, 30] or parallelizing [10, 31–34] the computation. Besides, another approach acceler-
ates BC computation by identifying equivalent vertices and only considering one vertex of
each equivalent group. Specifically, [8] decomposes the graph into multiple components by
removing the articulation vertices. The BC value is obtained by summing up vertices’ local
BC values computed within each group. However, road networks in real life usually do not
contain any articulation vertex. Daniel et al. [11], Suppa and Zimeo [35] decomposes the
graph based on community finding algorithms [12]. Two vertices within the same group are
considered equivalent if they have the same shortest distance and # shortest paths to the
border vertices. Nevertheless, it is unlikely to happen in weighted graphs. In [13], vertices
are treated equivalent if they have the same neighbors, s.t. the input graph can be compressed
by contracting equivalent vertices into one super vertex. Then shortest paths within the super
vertices and the compressed graph are considered separately in BC computation. But the
equivalence condition only works in an unweighted graph. In summary, all these algorithms
can hardly apply to road networks.

Approximated BC Another line of research scales up BC computation through approxi-
mation, which essentially trades the accuracy for efficiency by computing BC on sampled
vertices [36]. Their main focus is to minimize the sample size but at the same time guarantee
the approximation ratio. Riondato and Kornaropoulos [37] employed Vapnik-Chervonenkis
dimension to greedily explore the tightest upper bound on the sample size [37] that guarantees
accurate BC approximations. However, it needs some graph parameters to derive the sample
size, such as the graph diameter (the longest shortest distance) which is computationally
expensive. Then Rademacher average is used s.t. pre-computation of any parameter is not
needed [38]. But it has to progressively enlarge the sample size until the guaranteed approx-
imations of BC are obtained, which might drag down the efficiency. In addition, another
drawback associated with these approximate methods is that the sample size could still be
significant when the input graph is of considerable scale, which means the computation may
stay inevitably slow.

Dynamic BC Many approaches update the BC values based on Brandes. One stream dis-
tinguishes potentially affected vertices and updates them by decomposing the graph based

123

 25 Page 6 of 24 World Wide Web (2024) 27:25

on some data structures, such as independent minimum union cycles [39] and biconnected
components [40]. Nevertheless, it works assuming that the updates would not affect the
decomposition; otherwise, the BC must be recomputed from scratch. However, the assump-
tion can hardly be satisfied. Another stream saves the intermediate results generated during
Brandes’s computation, such as predecessor list and DAGs, to maintain the centrality value
[41, 42]. When an update comes, the intermediate results are updated and recalculated for
those affected BC values by identifying the changed shortest paths. However, they all have the
same time complexity as that of Brandes and consume significant space. Besides, there have
been many works in real-time graph analytics that accelerate different graph-based queries
on large volume and high velocity streaming graphs [43, 44]. However, they do not directly
support BC queries.

Top-k BC Besides computing BC values, comparing them and identifying top-k vertices
with the highest values are of wide application. Because of the expensive computation of
the existing BC algorithm Brandes, alternative centrality metrics similar to BC are proposed
[45–47]. For instance, Lee et al. [48] made use of the novel property of biconnected compo-
nents to derive the upper-bound of BC value of each vertex. But a road network can hardly
be decomposed into multiple biconnected components as aforementioned. Fan et al. [49]
proposed a deep learning method to learn the structural importance of vertices. However, it
only applied to unweighted graphs.

2.3 Computing shortest paths

The shortest path algorithm is the building block of centrality computation. This paper uses it
to compute the shortest distance between one given vertex pair. The fundamental shortest path
algorithm is Dijkstra’s [27], which finds the shortest path in breadth-first search manner with
time complexity O(m + nlogn). Then A* [50, 51] is proposed to speed up it by directing the
search space towards the destination. Nevertheless, both are not efficient enough, especially
for a large graph. Then auxiliary information is stored to accelerate the computation, including
shortcuts in Contraction Hierarchy (CH) [52] and labels in Hub Labeling (HL) [53, 54]. To
be specific, CH computes the shortest path by traversing vertices in a bottom-up manner
bidirectionally. HL calculates the shortest distance by summing up the distance label value
and takes the minimum one as the shortest distance without graph traversal. Therefore, HL is
generally more efficient in shortest distance computation, and we use it as our shortest path
index.

3 Coverage centrality query answering framework

In this section, we introduce how to calculate the CC of a vertex s using the SPT rooted as s
(i.e., Ts). We first demonstrate the computation framework (Section 3.1) and the associated
characteristics that accelerate CC computation (Sections 3.2, 3.3). We then propose the
algorithm in Section 3.4 that utilized the characteristics given the framework.

3.1 Overview

Given a road network G and a CC query q(s), our framework employs (1) Ts , (2) a HL-
based shortest distance index L of G and (3) a CC computation algorithm based on Ts . This

123

World Wide Web (2024) 27:25 Page 7 of 24 25

is because based on (1), obtaining CC(s) needs to perform abundant dependency checks.
The time complexity to perform a dependency check is O(nm + nlogn) using Dijkstra’s
algorithm [27] while a shortest distance algorithm SPA based on L (e.g. [54]) can improve
the efficiency to O(τ) (τ ≤ n). Therefore, our framework employs L as a core component.
Despite this, the time complexity of answering q(s) is O(n2τ) which remains impractical
for real-time CC answering in a large road network. To address this problem, our framework
further employs Ts as its structural characteristics help us directly identify the dependencies
of many vertex pairs on s without the need for any computation, which are summarized as
Lemmas 1 and 2. Thereby, we can reduce abundant dependency checks. We further propose
a CC computation algorithm based on Ts in Section 3.4 to implement our idea.

Note that our CC computation method does not rely on the underlying graph being static,
because we only borrow L and we assume that L always provided and kept up-to-date.
We do not build any index ourselves, the ‘index-free’ nature of our method allows it to
answer CC queries in dynamic graphs. When a CC query is issued, our method processes
CC queries in the same manner regardless of whether the underlying road network is static
or dynamic. Specifically, given a road network G and a query vertex s, we first construct Ts

using Dijkstra algorithm [27] in real-time, then invoke a CC computation algorithm (e.g.,
Algorithm 1). Although these algorithms employ a shortest distance index L which requires
updates when changes occur in G, the efficient maintenance of L falls outside the scope of
this paper, and has been addressed in [46]. The time complexity of Dijkstra and Algorithm 1
is O(m + nlogn) time and O(n2τ). Therefore, the time complexity of our framework is
O(n2τ).

3.2 Intra-region pruning

Our framework employs Ts due to the underlying pruning power. In this section, we introduce
the intra-region pruning strategy which predicates that intra-region vertex pairs of Ts must
not depend on s and therefore do not need to be checked. Let us first define region as below.

Definition 2 (Region)Given the SPT Ts rooted at s, a region denotes the whole set of vertices
in a subtree Ts(v), v ∈ cld(s).

Algorithm 1 Top-down traversal.
Input: G, s
Output: CC(s)

1 Ts ← ConSPT(G, s); � Construct SPT rooted at s
2 CC(s) = 0; H ← {(u, v, 0)|∀u, v ∈ cld(s), u �= v};
3 while H is not empty do
4 u, v, mov ← H .pop();
5 dep ← DC(u, v, s); � Dependency check
6 if dep then
7 CC(s) ← CC(s) + 1;
8 if mov = 0 then
9 foreach w ∈ cld(u) do

10 H .insert((w, v, 0));

11 foreach w ∈ cld(v) do
12 H .insert((u, w, 1));

13 return CC(s);

123

 25 Page 8 of 24 World Wide Web (2024) 27:25

where Ts(v) denotes the subtree of Ts rooted at v and cld(s) denotes the children tree nodes
of s in Ts .

Let Mv be the number of v’ children tree nodes, i.e. Mv = |cld(v)|. The vertex set V
of G is partitioned into regions T 1

s , . . . , T Ms
s . Particularly, we call a vertex pair (u, w) a

intra-region vertex pair if u and w are located in the same region or otherwise a inter-region
pair. All intra-region vertex pairs can be safely pruned from dependency checking as they
definitely do not depend on s according to the following lemma.

Lemma 1 For any vertex pair in the same region of Ts , i.e. u, w ∈ Ts(v) (v ∈ cld(s)), then
s /∈ p̂u,w .

Proof We can prove it by contradiction. Assume that there exists a shortest path p1 between
u, w in G that contains s. Then the length of p1 must equal l(ˆpu,s) + l(ˆps,w). Meanwhile,
since u and w are in the same subtree Ts(v), there must exist a path p2 between u, w that
is the concatenation of p̂u,v, p̂v,w . Given that l(ˆu, v) < l(ˆu, s) and l(ˆv,w < ˆv, s), we have
l(p2) < l(p1). Thus, p1 cannot be the shortest path between u, w; this contradicts our
assumption. We proved that s /∈ p̂u,w . ��

Suppose # vertices in each region of Ts are n1, ..., nMs , then there are
∑

1≤i≤Ms
n2

i vertex
pairs being pruned from the dependency checking.

3.3 Inter-region pruning

Following the intra-region pruning, only the inter-region vertex pairs were left for depen-
dency check. That is, we only need to check the vertex pair (u, v) with u ∈ T i

s , v ∈ T j
s

(1 ≤ i < j ≤ Ms). How could we check those
∑

1≤i< j≤Ms
ni × n j vertex pairs efficiently?

The naive solution is to check them one by one; however, some vertex pairs could avoid
being checked if their parent vertex pairs (defined as follows) do not have the shortest path
passing s, as illustrated in Lemma 2.

Definition 3 (Parent Vertex Pair) Given a vertex v ∈ V , we use v.p to denote the parent
of v in Ts . For a vertex pair(u, v), its right parent vertex pair is (u, v.p), and its left parent
vertex pair is (u.p, v).

Lemma 2 s does not constitute any shortest path between u, v (i.e., (u, v) does not depend
on s) if the left (or right) parent vertex pair of (u, v) does not.

Proof Without loss of generality, suppose the right parent vertex pair (u, v.p) does not depend
on s. We denote pu,v.p as a path concatenated by p̂u,s, p̂s,v.p , and pu,v is concatenated by
p̂u,s, p̂s,v.p and the edge (v.p, v). Clearly, pu,v.p is a subpath of pu,v . Since pu,v.p is not the
shortest path, pu,v cannot be either, and the shortest paths between (u, v) do not pass s. ��

3.4 Top-down traversal

Given Lemma 2, for a vertex pair (u, v), we could first check its parent vertex pairs. If the
checked parent vertex pair depends on s, we then check (u, v); otherwise, (u, v) can be
pruned. Thereby, we propose to check the inter-region vertex pairs by traversing the SPT in
a top-down manner, and we call this way of vertex pair checking as top-down traversal. And
we use transmission route to embody the traversal and define it as follows.

123

World Wide Web (2024) 27:25 Page 9 of 24 25

Definition 4 (Transmission Route) A transmission route T ra is to encode the sequence of
movements to get from an inter-region vertex pair (u, v) (u ∈ T i

s , v ∈ T j
s and i < j) to its

descendant vertex pairs, where each movement is a downward hop in T i
s or T j

s via an edge
in Ts . Without loss of generality, we use 0 (resp. 1) to denote the downward hop in T i

s (resp.

T j
s).

For example, (v9, v11)
T ra−→ (v7, v11), (v8, v11) with T ra = {0} and (v9, v11)

T ra−→
(v7, v6), (v8, v6) with T ra = {10, 01}.

For the inter-region vertex pairs across two regions T i
s , T j

s (i �= j), we initialize the
traversal by first checking the vertex pair (vi , v j) where vi (resp. v j) is the root of T i

s (resp.

T j
s), then push down the traversal by checking its child vertex pairs {(v′

i , v j)|∀v′
i ∈ cld(vi)}

and {(vi , v
′
j)|∀v′

j ∈ cld(v j)}. It can be easily seen that every vertex pair between the two
regions have the chance to be checked. Nevertheless, some vertex pairs could be checked
more than once according to the following Lemma 3,which results in a tremendous redundant
computations.

Let hs(v) denote the level of v in Ts (hs(s) = 0).

Lemma 3 Suppose that the dependency check on the vertex pair (u, v) (u ∈ T i
s , v ∈ T j

s and
i �= j) propagates to vertex pair (u′, v′) with hs(u′) − hs(u) = a, hs(v

′) − hs(v) = b, then
(u′, v′) could be repeatedly checked for Ca

a+b times.

Proof To traverse (u′, v′) downwards from (u, v), the movements in transmission route

(u, v)
T ra−→ (u′, v′) contains a 0s and b 1s. The order of movements in T i

s or T j
s does

not make any difference. Therefore, there are Ca
a+b different transmission routes s.t. (u′, v′)

would be repeatedly checked for Ca
a+b times. ��

The question then becomes how to skillfully avoid redundant dependency checks without
the need to label if a vertex pair has been checked already.

Theorem 1 For (u, v)
T ra−→ (u′, v′) with hs(u′)− hs(u) = a, hs(v

′)− hs(v) = b, a +b > 1,
if we exclude all T ras that contain the subsequence “10”, then there left only one T ra.

Proof We only need to prove that only one T ra exists that does not contain any subsequence
“10”. This is intuitively right because T ra can only be in the format T ra = {0}i {1} j where
i, j ≥ 0, i + j = a + b. ��

For example (Figure 1), in (v9, v11)
T ra−→ (v2, v6), T ra could be 100, 010, 001}. However,

after applying the “10” restriction, T ra can only be 001.
We could avoid the repetitive dependency checks by complying with Theorem 1. Given

Lemma 2, the traversal terminates when we finish checking child vertex pairs of vertex pairs
that are visited by us depending on s. With all these theoretical directions, we illustrate our
top-down traversal in Algorithm 1. Specifically, we first construct a shortest path tree Ts (line
1) and initialize a heap H by inserting into a triple (u, v, 0) with u, v ∈ cld(s) and u �= v

(line 2). DC(u, v, s) is the dependency check function and we use dep to denote the result.
dep is true if s depends on (u, v); otherwise false. If s depends on (u, v), we insert its child
vertex pair into H with the compliance to Theorem 1 (line 6 − 12).

For example, given the query vertex v10, the example graph G, and the SPT in Figure 1.
Figure 2 shows all inter-region vertex pairs in T10 with movement choices (0 or 1 in blue
color) of their parents. The top-down traversal strategy (Algorithm 1) first initializes the
heap H with (v9, v11, 0). Then it iteratively checks the dependency of vertex pairs (u, v) in

123

 25 Page 10 of 24 World Wide Web (2024) 27:25

Figure 2 Illustration of the top-down traversal strategy implemented with Algorithm 1

H until H is empty. If (u, v) depends on v10 (denoted in black color), the algorithm first
increments CC(v10) by 1, then checks the movement label (mov) of (u, v). If mov = 0, all
child vertex pairs of (u, v) are inserted into H (e.g. (u, v) = (v9, v11)); whereas if mov = 1,
only (u, w) (∀v ∈ cld(v)) are inserted into H (e.g. (u, v) = (v9, v6)). For a vertex pair that
does not depend on v10 (denoted in green color), none of its child vertex pairs is inserted into
H (e.g., (v2, v11)). These vertex pairs are denoted in orange color. Compared to performing
dependency checks of (11-1)(11-2) = 90 vertex pairs in G, we only need to check 14 vertex
pairs. Specifically, Lemma 1 prunes 40 vertex pairs (e.g. (v9, v7), (v7, v1), (v11, v6)), and
Lemma 2 prunes 36 vertex pairs (e.g., those in orange color in Figure 2).

We can find that given q(s), top-down traversal (Algorithm 1) has to check every vertex
pair that depends on s. Namely, the number of dependency checks incurred by top-down
traversal is at least CC(s) which is infeasible for vertices with large CC values. This makes
us think about other solutions that require fewer dependency checks.

4 Improved algorithms

Top-down traversal checks a parent vertex pair before its child vertex pairs. However, this
can be unnecessary. Given Lemma 4 (introduced below), if we know a vertex pair (u, v)

depends on the query vertex s, then its parent and ancestor vertex pairs must also depend on
s.

Lemma 4 Given a vertex pair (u, v) that depends on s, the left and right parent vertex pairs
(if they exist) of (u, v) must also depend on s.

Due to Lemma 4, an intuitive idea to improve top-down traversal is to start dependency
check with medium-level vertex pairs instead of vertex pairs at level 1. To implement this
idea, we can let all inter-regions vertex pairs initially labeled as “unpruned” and continuously
check vertex pairs until none of them is labeled as “unpruned”. Assume that the vertex pair
(u, v) is under checking; if it depends on s, we first select a “unpruned” descendant vertex

123

World Wide Web (2024) 27:25 Page 11 of 24 25

pair of (u, v) as the next vertex pair to check, then mark all ancestor vertex pairs of (u, v)

as “pass”; otherwise, we select an “unpruned” ancestor vertex pair of (u, v) and label all
descendent vertex pairs of (u, v) as “dnt”. Finally, we count # vertex pairs labeled as “pass”
which is the value of CC(s).

4.1 Search spacemanagement

The “unpruned” vertex pairs can be regarded as the dynamic search space when processing
a CC query. Compared to the top-down traversal strategy, flexible checking methods may
incur fewer dependency checks but have an overhead in maintaining the search space, which
becomes our new problem. Here, we propose decomposing Ts into branches and managing
search space in units of branch pairs instead of vertex pairs.

Definition 5 (SPTDecomposition)Given aqueryvertex s,SPT decomposition (Algorithm 2)
turns Ts into a set of disjoint branchesB s.t. every vertex v ∈ V belongs to exactly one branch
B ∈ B. Specifically, each branch B ∈ B is a sequence of vertices B = 〈v0, ..., vk〉 that satisfy:
(1) v0.p is either s or have more than 1 child (i.e. |cld(u)| > 1); (2) vk is a leaf node in Ts ;
and (3) ∀0 ≤ i < k, vi+1 = vi .p.

Consider a branch B(x) startingwith vertex x and an integer i (0 ≤ i < |B(x)|). Denote by
B(x)[i] the i-th vertex vi ∈ B(x) with h(vi) = h(x) + i (i < |B(x)|). Denote by B(x)[0, i]
the vertices v ∈ B(x) s.t. h(x ′) ≤ h(x) + i . For example, given B(v11) = 〈v11, v6, v5, v3〉,
B(v11)[2] = v5, B(v11)[0, 2] = {v11, v6, v5}.

Algorithm 2 SPT decomposition.
Input: s, G
Output: B

1 B ← φ;
2 GetBranches(s, G,B) � design of GetBranches is explained below;
3 return B;
4 Function GetBranches(s, G,&B)
5 Ts ← ConSPT(G, s), B ← φ;
6 FindSegs(s, B,B);
7 Function FindSegs(u,&B,&B)
8 if u �= s then
9 B ← B ∪ u;

10 foreach v ∈ cld(u) do
11 FindSegs(v, B,B);
12 if B �= φ then
13 B ← B ∪ B, B ← φ;

The time complexity of Algorithm 2 is O(m + n). In addition to decomposing the SPT
into disjoint branches, we give each branch a unique id, and for each branch, we record the
ids of its parent and child branch(s). Let B(u) (u ∈ V) denote a branch starting at u. The
parent branch B(u).p of B(u) satisfies that u.p ∈ B(u).p.

Definition 6 (Parent Branch Pair) Given a branch pair (Bi , B j), its left (resp. right) parent
branch pair (Bi ′ , B j ′) satisfies that Bi ′ = Bi .p and B j ′ = B j (resp. Bi ′ = Bi and B j ′ =
B j .p).

123

 25 Page 12 of 24 World Wide Web (2024) 27:25

For example, given an SPT Tv10 in Figure 1(b). After SPT decomposition, we obtain
the following branches: B(v11) = 〈v11, v6, v5, v3〉, B(v4) = 〈v4〉, B(v9) = 〈v9, v8, v2, v1〉,
B(v7) = 〈v7〉, where B(v4).p = B(v11), B(v7).p = B(v9).

The size of a branch must be smaller than the height of the corresponding SPT, which is
O(logn). Thus, the number of branches is O(n

logn). If we manage search space in units of

branch pairs, the size of search space becomes O((n
logn)2), which is much less than O(n2)

vertex pairs.
Algorithm 3 illustrates how to maintain the search space in units of branch pairs.

Algorithm 3 is quite similar to Algorithm 1 in that the former one also (1) uses a heap
H to store ‘objects’ to be checked, (2) visits a parent before their children ‘objects’, and (3)
uses the same strategy to avoid repetitively inserting same ‘objects’ into H . What is new in
Algorithm 3 is that (1) ‘objects’ in Algorithm 3 are branch pairs, not vertex pairs; (2) each
branch pair is associated with a ‘local search space’ which is determined by corresponding
Deepest Depending Level (DDL).

Definition 7 (Deepest Depending Level (DDL)) Given a query vertex s, a vertex u and a
branch B(v) (s �= u �= v), the deepest depending level DDL DDL(u, v) of u is an integer i
(0 ≤ i < |B(v)|) used to refer to the vertex B(v)[i] which satisfies: (1) (u, B(v)[i]) depends
on s; and (2) if i < |B(v)| − 1, (ui , B(v)[i + 1]) must not depend on s.

For example, given the example graph, the SPT Tv10 in Figure 1, and the branches
B(v11), B(v7) where B(v11) = 〈v11, v6, v5, v3〉 and B(v7) = 〈v7〉, the DDL of v7 is 0.
Because (v7, v11) depends on v10 while (v7, v6) does not, we have DDL(v7, v11) = 0; simi-
larly, DDL(v11, v7) = 0. Whereas since (v7, v6) does not depend on v10, v6 does not have a
valid DDL regarding B(v7), denoted by DDL(v6, v7) = −1.

The local search space of a branch pair (B(u), B(v)) represented as a pair of integers
(l f t, rgt) denotes the set of vertex pairs {(u′, v′)| ∀u′ ∈ B(u)[0, le f t], v′ ∈ B(v)[0, rgt]}
whose dependencies are unknown to us and needed to be checked. In other words, vertex pairs
outside the range are pruned. The default local search space of a branch pair (B(u), B(v)) is
(|B(u)|−1, |B(v)|−1), but we want to reduce it as much as possible. Suppose that the DDL
of u’s parent u.p regarding B(v) is i (0 ≤ i < |B(v)|) i.e., DDL(u.p, B(v)) = i . Given
Lemma 2, the search space of (B(u), B(v)) can be confined to (|B(u)| − 1, i). Enlightened
by this, we make Algorithm 3 traverse branch pairs in a top-down order to obtain DDLs of
vertices in a parent branch pair before determining the local search space of its child branch
pairs.

Now we are ready to introduce Algorithm 3 in detail. It first decomposes Ts to get disjoint
branches B (line 1) and initializes a heap H with penta-tuples (B(u), l f t, B(v), rgt, 0)
with u, v ∈ cld(s) and l f t = |B(u)| − 1, rgt = |B(v)| − 1. Then it enters the main loop
(lines 3-19). In each iteration, it first removes a penta-tuple (B(u), l f t, B(v), rgt, mov) from
H (line 4); then, a DDL computation algorithm is called to compute DDLs of vertices in
B(u)[0, l f t] and B(v)[0, rgt] (line 5). The remaining is to retrieve child branch pairs of
(B(u), B(v)) and determine their local search space (line 6-19). Specifically, for each vertex
ui ∈ B(u)[0, l f t], we get DDL j of ui regarding B(v). Then, the local search space of child
branch pairs (B(w), B(v)) (w ∈ cld(ui)) can shrink to (|B(w)| − 1, j). Similarly, for each
vertex vi ∈ B(v)[0, rgt], given the DDL of vi regarding B(u) is j , the local search space of
child branch pairs (B(u), B(w)) (w ∈ cld(vi)) becomes (j, |B(w)| − 1).

Theorem 2 Algorithm 3 correctly manages the search space during processing a CC query.

Proof To prove Theorem 2, we need to show that (1) every pruned vertex pair does not depend
on query vertex s; and (2) every branch pair is at most inserted to H once. We prove (1) by

123

World Wide Web (2024) 27:25 Page 13 of 24 25

Algorithm 3 CC computation paradigm over decomposed SPT.
Input: s, G
Output: CC(v)

1 B ← SPTDec(s, G); � SPT decomposition
2 H ← {(B(u), |B(u)| − 1, B(v), |B(v)| − 1, 0) | ∀u, v ∈ cld(s), u �= v};
3 while H �= φ do
4 B(u), l f t, B(v), rgt, mov ← H .pop();
5 ComputeDDLs(s, B(u), l f t, B(v), rgt); � Call Algorithm 4 or Algorithm 5;
6 if mov = 0 then
7 foreach ui ∈ B(u)[0, l f t] do
8 j ← DDL(ui , v);
9 if j �= −1 then

10 Continue;

11 foreach w ∈ cld(ui) do
12 H .insert(B(w), |B(w)| − 1, B(v), j, 0);

13 foreach vi ∈ B(v)[0, rgt] do
14 j ← DDL(vi , u);
15 if j �= −1 then
16 Continue;

17 CC(s) ← CC(s) + j + 1;
18 foreach w ∈ cld(vi) do
19 H .insert(B(u), j, B(w), |B(w)| − 1, 1);

20 return CC(s);

contradiction. Suppose that a vertex pair (x, y) depends on s but is pruned. Then either the
branch pair (B(u), B(v)) s.t. x ∈ B(u), y ∈ B(v) is not inserted into H , or (x, y) is not
included in the local search space of (B(u), B(v)). Both cases ensure that (x, y) does not
depend on s, which contradicts our assumption. Whereas (2) can be proved by Theorem 1. ��

Algorithm 3 allows the pruning information to spread and advance through the parent-
child relationships between branch pairs. Another advantage of Algorithm 3 is that it confines
dependency checks within each branch pair, simplifying our problem to DDL computation
over a branch pair. In the following paragraphs, we propose two DDL computation strategies
for branch pairs, i.e., the bottom-up traversal strategy and mixed traversal strategy.

4.2 Bottom-up traversal

This section introduces the bottom-up traversal strategy designed for vertices with high CC
values.

Lemma 2 guarantees the continuity between vertex pairs in Ts that depend on vertex s.
In other words, for a vertex v with a large CC(v), only a few vertex pairs do not depend on
v, and these vertex pairs must reside at bottom levels in Tv . The top-down traversal strategy
that is based on Lemma 2 starts digging into Tv from level-1 inter-region vertex pairs. It does
not stop until finds vertex pairs at bottom levels that do not depend on v. This strategy needs
to check dependencies of at least CC(v) vertex pairs, which is infeasible in practice.

Conversely, based on Lemma 4, given a query vertex v with large CC(v), we can start
with checking inter-region vertex pairs at the bottom level of Tv . We recursively check the
parent vertex pair(s) of current vertex pair (u, v) under checking and do not stop until (u, v)

does depend on v. We denote this strategy as the bottom-up traversal strategy.

123

 25 Page 14 of 24 World Wide Web (2024) 27:25

Algorithm 4 illustrates the bottom-up traversal strategy in detail. Given the query vertex
s, the branch pair (B(u), B(v)) and its local search space l f t, rgt , Algorithm 4 first checks
the dependency of (B(u)[l f t], B(v)[rgt]). If the vertex pair (x, y) under checking does not
depend on s, the algorithm checks their parent vertex pairs (line 6-8); else, it updates DDLs
of x, y (line 10-13). This step is conducted recursively until no more vertex pair is checked.
Then, the algorithm determines DDLs of vertices that have not been decided (lines 14-19).
The time complexity of Algorithm 4 is O(l f t × rgt).

Lemma 5 Given a branch pair (B(u), B(v)) and two vertices ui , u j ∈ B(u) where u j =
ui .p, there must exist DDL(u j , v) ≥ DDL(ui , v).

Theorem 3 Algorithm 4 correctly determines DDLs of vertices in the given branch pair.

Proof We can prove this by contradiction. Consider a branch pair (B(u), B(v)), its local
search space (l f t, rgt), and the query vertex s. Without loss of generality, suppose B(u)[i]
is the first vertex whose DDL(B(u)[i], v) is mistakenly calculated by Algorithm 4. There are
two cases:

Case 1: The wrong value j of DDL(B(u)[i], v) is greater than its true value j ′. Because
(B(u)[i], B(v)[j]) does not depend on s, line 11 is never executed. So, if i < l f t ,
DDL(B(u)[i], v) ← j is executed at line 16. Namely, j is the value of DDL(B(u)[i +1], v).
However, based on Lemma 5, j ′ > DDL(B(u)[i +1], v) = j which contradicts our assump-
tion. If i = l f t , then j ′ remains the default value−1,which is not greater than j ′, contradicting
our assumption.

Case 2: j is smaller than j ′. This would happen only if the vertex pair (B(u)[i], B(u)[j ′])
is not inserted into H . However, this means that (B(u)[i], B(v)[j ′ + 1]) depends on s which
contradicts our assumption. ��

Algorithm 4 Bottom-up traversal.
Input: s, B(u), l f t, B(v), rgt
Output: DDLs of vertices in B(u), B(v)

1 DDL(x, v) ← −1,∀x ∈ B(u); DDL(x, u) ← −1,∀x ∈ B(v);
2 H ← {B(u)[l f t], B(v)[rgt], 0};
3 while H is not empty do
4 x, y, mov ← H .pop();
5 dep ← DC(x, y, s) � Dependency check
6 if not dep then
7 if mov = 0 then
8 H .insert(x .p, y, 0);

9 H .insert(x, y.p, 1);

10 else if DDL(x, v) < h(y) − h(v) then
11 DDL(x, v) ← h(y) − h(v);

12 else if DDL(y, u) < h(x) − h(u) then
13 DDL(y, u) ← h(x) − h(u);

14 foreach i from l f t − 1 to 0 do
15 if DDL(B(u)[i], v) = −1 then
16 DDL(B(u)[i], v) ← DDL(B(u)[i + 1], v);

17 foreach i from rgt − 1 to 0 do
18 if DDL(B(v)[i], u) = −1 then
19 DDL(B(v)[i], u) ← DDL(B(v)[i + 1], u);

123

World Wide Web (2024) 27:25 Page 15 of 24 25

Figure 3 Illustration of bottom-up traversal strategy implemented with Algorithm 4

Figure 3 shows an example of running Algorithm 4. Consider two branches B(v11) =
〈v11, v6, v5, v3〉, B(v9) = 〈v9, v8, v2, v1〉of theSPT in Figure 1, and supposewe are counting
the number of vertex pairs (u, v)where u ∈ B(v11) and v ∈ B(v9) that depend on v10. Given
the input v10, B(v9), 3, B(v11), 3, the algorithm first initializes the heap H with (v1, v3, 0).
In the main loop, since (v1, v3) does not depend on v10, we insert its parent vertex pairs
(v2, v3) and (v1, v5) in H . When (v2, v3) is removed from H , we insert both its parent vertex
pairs into H as (v2, v3) is associated with mov = 0 (written in blue). Whereas when (v1, v5)

is removed from H , we only insert one of its parent vertex pairs (v1, v6) into H , as which is
associated with mov = 1. The same operations are repeated on every vertex pair removed
from H that does not depend on v10 (denoted by black color). As for a vertex pair, e.g., (v9, v3)
that depends on v10 (denoted by green color), we do not insert any of its parent vertex pairs
into H . Instead, we set their DDLs, e.g. DDL(v9) ← 3 and DDL(v3) ← 0. When Algorithm
4 breaks from the while loop, all vertex pairs in Figure 3, except those written in orange,
have once been inserted H . Besides, DDLs of v9, v3, v8, v6, v2, v11 have been determined
in the main loop. And DDL(v5) is set to 0 in line 19. Compared to performing dependency
checks of 4×4 vertex pairs in B(v11), B(v9), we only need to check 12 vertex pairs due to
Lemma 4.

4.3 Mixed traversal

The top-down traversal strategy is only suitable for vertices with extremely small CC values,
as it is based on the heuristic that only a few vertex pairs at top levels of Ts depend on the
query vertex s; in contrast, the bottom-up traversal strategy is only suitable for vertices with
extremely large CC values, as which is based on the heuristic that only a few vertex pairs at
bottom levels of Ts do not depend on s. However, it is usually difficult to predict if a vertex
has an extremely large or small CC value. In this case, we do not knowwhich strategy should
be used. Besides, most vertices have medium-level CC values that have no heuristic about
vertex pairs from which levels in Ts begin not to depend on the query vertex Ts .

This section introduces the mixed traversal strategy that computes DDLs for vertices in
the given branch pair without being based on any heuristic. To quickly find their DDLs, the
mixed traversal strategy fully exploits both Lemmas 2 and 4. Given (B(u), B(v)), the local
search space (l f t, rgt) and the query vertex s. Suppose (ui , v j−1) depends on s and we are
checking the dependency of (ui , v j) where ui (resp. v j) is the i th (resp. j th) vertex of B(u)

(resp. B(v)). If (ui , v j) depends on the query vertex s, the mixed traversal strategy continues

123

 25 Page 16 of 24 World Wide Web (2024) 27:25

to find DDL(ui , v) by checking (ui , v j+1) (if j < rgt). If (ui , v j) does not depend on
s, based on Lemma 2, (ui+1, v j) cannot depend on s; based on Lemma 4, (ui−1, v j) must
depend on s. However, the dependency of (ui−1, v j+1) remains unknown. Therefore, the
mixed traversal strategy then checks (ui−1, v j+1).

Algorithm 5 is the implementation of the mixed traversal strategy. Given (B(u), B(v)),
the local search space (l f t, rgt) and the query vertex s, the Algorithm 5 maintains a pointer
preJ (initialized as 0) which points to the deepest vertex in B(v) that has ever been visited.
Themain loop (line 3-20) of the algorithm iterates over B(u) from the l f t-th to 0-th vertex. In
every (say the i-th) iteration of the main loop, Algorithm 5 iterates over B(v) from the preJ -
th one, and does not stop until B(v)[rgt] is reached or the vertex pair (B(u)[i], B(v)[j])
under checking does not depend on s. Specifically, if (B(u)[i], B(v)[j]) does not depend on
s, Algorithm 5 sets DDLs for B(u)[i] (line 9) and vertices in B(v) that have been traversed
in this iteration (line 10-11), and terminates current iteration; otherwise, the algorithm keeps
on checking (ui , v j+1) until j = rgt (line 12-17). The time complexity of Algorithm 5 is
O(l f t × rgt).

Theorem 4 Algorithm 5 correctly computes DDLs of vertices of the given branch pair.

Consider two branches B(v11) = 〈v11, v6, v5, v3〉, B(v9) = 〈v9, v8, v2, v1〉 of the SPT
in Figure 1, and suppose we are counting the number of vertex pairs (u, v) where u ∈
B(v11) and v ∈ B(v9) that depend on v10. Given the input v10, B(v9), 3, B(v11), 3, the
algorithm first checks the dependency of (v1, v11). Because it does not depend on v10, the
algorithm then checks (v2, v11). Since (v2, v11) depends on v10, (v2, v6) is checked the next.
Then (v8, v6), (v8, v5), (v8, v3), (v9, v3). Compared to performing dependency checks of
4×4 vertex pairs in B(v11), B(v9), we only need to check 7 vertex pairs.

Algorithm 5Mixed traversal.
Input: s, B(u), l f t, B(v), rgt
Output: DDLs of vertices in B(u), B(v)

1 DDL(x, v) ← −1,∀x ∈ B(u); DDL(x, u) ← −1,∀x ∈ B(v);
2 preJ ← 0;
3 foreach i from l f t to 0 do
4 if preJ ≤ rgt then
5 j = preR, dep = true;
6 while j ≤ rgt and dep do
7 dep ← DC(B(u)[i], B(v)[j], s);
8 if not dep then
9 DDL(B(u)[i], v) ← j − 1;

10 for k from j − 1 to preJ do
11 DDL(B(v)[k], u) ← i ;

12 if dep then
13 j ← j + 1;
14 if j = rgt then
15 DDL(B(u)[i], v) ← rgt ;
16 for k from j to preJ do
17 DDL(B(v)[k], u) ← i ;

18 preJ ← j ;

19 else
20 DDL(B(u)[i], v) ← rgt ;

123

World Wide Web (2024) 27:25 Page 17 of 24 25

Table 1 Real-world road
networks

Name Region # Vertices n # Edges m

DG Dongguan 8,315 11,128

WH Wuhan 21,560 30,008

SZ Suzhou 46,094 62,190

SH Shanghai 78,560 106,728

BK Bangkok 154,352 187,364

NY New York 264,346 730,100

BY Bay Area 321,270 794,830

CL Colorado 435,666 1,042,500

5 Experiments

5.1 Experiment setting

Datasets We test on eight real-world road networks [55] as shown in Table 1.

Queries We randomly sampled 1, 000 vertices from each road network as the query vertices.
To inspect the CC distribution of the randomly selected vertices, we ranked all selected
vertices by their CC values. We found the minimum and maximum CC values and the values
at the four quartiles. Figure 4 shows the proportions of vertices in different quartiles. We
can find those vertices in a larger road network are more likely to have larger CC values.
Specifically, in small road networks (e.g., DG, WH, and SZ), more than 50 % of the query
vertices are in the second quartile, and more than 80 % of them are in the third quartile; while

Figure 4 Proportions of CC values of the sampled vertices at each percentile from each road network

123

 25 Page 18 of 24 World Wide Web (2024) 27:25

in large road networks (e.g., NY, BY, and CL), less than 30% query vertices are in the second
quartile.

Algorithms We evaluate the efficiency and scalability of traversal strategies, denoted by
TopD (Algorithm 1), BotU (Algorithm 4), and Mix (Algorithm 5). Their dependency checks
are facilitated by the shortest distance algorithm PLL [54]. As for the baseline, since no
algorithm computes exact CC nor is there an algorithm for CC or BC query processing,
we could only compare the efficiency of our algorithm with states-of-art algorithms that
collectively compute BC values for all vertices in the given graph. Here, we chose Brandes
[7] as our baseline.

Metrics Wepresent the # of dependency checks and the running time to show the efficiency of
our algorithms. Note that the running time is influenced by the SPA employed for dependency
checks (PLL in this experiment), which can be improved if a more efficient SPA is adapted.
As for the Brandes algorithm, we only present its running time.

Implementation All algorithms are implemented in C++ and compiled with GNU GCC
9.2.0 with full optimization and conducted on a machine with an Intel Xeon CPU with
2.20GHz and 1 TB main memory running Linux.

5.2 Experimental results

Query vertices of each road network are divided into four groups according to the percentile
of their CC values among all selected vertices. We present the experimental results in each
road network based on query groups to better demonstrate the scalability of our algorithms
to vertices at different scales of CC. Specifically, sampled vertices in each road network are
divided into four groups. The first, second, third, and fourth groups contain vertices whose
CC values are ranked between 0-25 %, 25-50 %, 50-75 %, and 75+ % among all sampled
vertices, respectively. We summarize the median CC value of different groups in each road
network (Table 2) and find that even belonging to the same group, vertices from the larger
road network have bigger CC values.

Table 3 presents the median # of dependency checks our algorithms performed over all
groups of queries of each road network. We have the following observations: (1) The # of
dependency checks our algorithms performed on each query group is much smaller than the
corresponding road network’s total # vertex pairs. This shows the efficacy of our pruning
techniques. (2) The # of dependency checks of all the algorithms increases linearly with the
increase of vertices’ CC values. (3) the # of dependency checks of TopD is much more than

Table 2 Median CC value of
each query group in different
road networks

Groups 0-25% 25-50% 50-75% 75%-max

DG 215 110,966 943,737 5,002,428

WH 0 120,578 1,213,911 6,780,194

SZ 0 172,103 1,397,552 8,797,780

SH 0 190,402 1,379,240 10,594,334

BK 0 300,394 1,202,580 20,945,279

NY 0 264,344 1,446,144 19,229,518

BY 0 321,268 1,285,063 15,216,037

CL 0 435,664 1,439,550 14,684,851

123

World Wide Web (2024) 27:25 Page 19 of 24 25

Ta
bl
e
3

M
ed
ia
n
#
of

de
pe
nd

en
cy

ch
ec
ks

pe
rf
or
m
ed

by
ea
ch

al
go

ri
th
m

on
ea
ch

qu
er
y
gr
ou

p
of

di
ff
er
en
tr
oa
d
ne
tw
or
ks

G
ro

up
s

0-
25

%
25

-5
0%

50
-7

5%
75

%
-m

ax
A

lg
or

it
hm

s
To

pD
B

ot
U

M
ix

To
pD

B
ot

U
M

ix
To

pD
B

ot
U

M
ix

To
pD

B
ot

U
M

ix

D
G

22
4

19
8

75
11

1,
43

9
48

,5
56

36
,6
63

94
5,
44

3
22

6,
23

2
27

8,
82

7
5,
00

5,
13

4
63

0,
79

8
1,
43

4,
85

6

W
H

1
1

0
12

0,
91

0
48

,1
29

43
,0
52

1,
21

5,
06

9
30

8,
82

0
36

5,
90

0
6,
78

5,
88

6
1,
28

1,
32

3
1,
89

7,
60

2

SZ
0

0
0

17
2,
54

8
48

,7
33

60
,8
98

1,
39

8,
23

4
47

2,
64

6
38

1,
91

3
8,
80

3,
83

3
1,
55

4,
97

6
2,
10

2,
20

4

SH
0

0
0

19
0,
53

7
48

,0
98

74
,8
90

1,
38

0,
36

4
55

1,
98

0
38

8,
99

6
10

,6
00

,6
70

2,
94

1,
60

0
2,
75

1,
20

9

B
K

0
0

0
30

0,
39

6
88

,7
18

14
7,
28

6
1,
20

2,
64

4
39

2,
12

0
54

9,
80

6
20

,8
75

,6
88

4,
97

7,
47

1
7,
76

0,
50

5

N
Y

0
0

0
26

4,
34

4
76

,8
54

10
1,
23

2
1,
44

7,
16

2
74

0,
47

4
52

8,
68

6
19

,2
38

,0
83

7,
52

0,
41

5
6,
57

7,
30

5

B
Y

0
0

0
32

1,
26

8
10

5,
40

9
11

3,
81

0
1,
28

5,
06

3
42

0,
82

3
61

0,
55

7
15

,2
20

,8
59

6,
48

9,
57

5
5,
93

1,
70

5

C
L

0
0

0
43

5,
66

4
12

5,
31

0
12

5,
43

4
1,
43

9,
66

4
33

7,
34

2
56

7,
78

6
14

,6
89

,0
52

6,
90

8,
77

0
7,
49

4,
32

2

123

 25 Page 20 of 24 World Wide Web (2024) 27:25

Table 4 Median. running time (sec) of each algorithm on each query group of different road networks

Groups 0-25 % 25-50% 50-75% 75%-max All
Algorithms TopD BotU Mix TopD BotU Mix TopD BotU Mix TopD BotU Mix Brandes

DG 0 0 0 0 0 0 4 1 1 18 2 5 5

WH 0 0 0 1 0 0 8 2 2 42 7 10 52

SZ 0 0 0 3 1 1 25 7 7 142 23 30 238

SH 0 0 0 4 1 2 28 9 9 211 46 50 840

BK 0 0 0 9 3 4 39 12 18 526 122 180 5,234

NY 0 0 0 6 2 3 29 12 13 351 97 109 15,444

BY 0 0 0 6 3 3 28 10 15 316 101 118 23,895

CL 0 0 0 10 4 4 41 9 16 337 130 169 51,328

that of BotU andMixed in all query groups. Specifically, the # of dependency checks of TopD
are slightly larger than corresponding CC values. In contrast, the # of checks by BotU and
Mixed are fewer than 1/3 of the CC values. This shows the stronger pruning power of BotU
and Mixed. (4) BotU has stronger pruning power than Mix for vertices with medium to large
CC values.

Table 4 presents the median running time of our algorithms over different query groups
in all road networks. It shows that our methods are more efficient than Brandes in orders of
magnitude. Especially for vertices in the first and second query groups that have small to
medium CC values, the processing time of our methods is negligible compared to which of
Brandes. Besides, the running time of our methods increases slowly, unlike Brandes, whose
running time increases quadratically with the increasing size of the road network. This shows
the much better scalability of our methods compared to Brandes. Among our algorithms, we
find that in every road network, TopD method is the least efficient in all the query groups.
Its running time can be 2 to 5 times larger than that of BotU and Mix. Besides, with the
increase of CC values, the running time of TopD grows faster than which of BotU and Mix.
BotU and Mix have similar efficiency in all road networks’ first and second query groups.
Whereas in the third and fourth groups, BotU is superior to Mix in terms of both efficiency
and scalability. The superiority becomes increasingly evident with the increase of CC values.

5.3 Dynamic CC case study

We conducted a case study on a time-dependent Beijing road network consisting of 296,710
vertices and 774,660 edges with traffic condition changes every two hours. To perform the
study, we randomly selected 1,000 vertices. For each selected vertex, denoted as v, we
examined its CC every two hours from 2 : 00 to 24 : 00 in a day. We then calculated the
standard deviation of the CC values for each vertex.

The results revealed that the average standard deviation of the selected vertices reached a
staggering value of 7 × 107. Only 9% of the vertices maintained a constant CC throughout
the entire observation period, indicating that the CC of most vertices changed significantly
over time. To visualize these dynamics, we plotted the CC values of five selected vertices,
representing each vertex with a different color, at all the test times (Figure 5). The figure
emphasized how CC can differ completely over time.

123

World Wide Web (2024) 27:25 Page 21 of 24 25

Figure 5 Dynamics of CC of five random vertices in a day

Therefore, to address the need for up-to-date CC of critical vertices in a road network, it
is crucial to have a real-time CC query answering algorithm which can efficiently retrieve
the CC value of the queried vertex at the time of the query. So, in terms of efficiency, our
CC query takes 75 seconds in average to compute (medium query time is 15 seconds), while
the Brandes algorithm takes more than 6 hours to finish. It should be noted that for Brandes,
no result for any single vertex could be obtained before every vertex’s CC is computed.
Therefore, when it finishes computation, the results are outdated with traffic conditions have
changed three times.

6 Conclusion

In this paper, we proposed the novel coverage centrality (CC) query. Initially, answering a
CC query needs to perform a dependency check for every vertex pair in the road network
to see if any of its shortest path passes the query vertex, which is infeasible for large road
networks. Thereby, we aimed to accelerate the query processing. We proposed the computa-
tion framework which employs the shortest path tree (SPT) Tv rooted at the query vertex v

as the carrier of the entire search space, and the pruning techniques to prune the unnecessary
vertex pairs for CC computation in Tv . Then, we proposed the top-down traversal strategy
to implement the computation framework, which processes CC queries in milliseconds for
vertices with small CC values regardless of the size of the road network. Nevertheless, it
cannot well scale to query vertices with large CC values. To enhance the scalability of those
vertices, we further proposed the bottom-up traversal strategy and the mixed traversal strat-
egy. The experimental results on extensive real-world road networks show the efficiency and
scalability of our proposed methods in real-life applications.

Author Contributions Yehong Xu, Mengxuan Zhang, and Xiaofang Zhou wrote the main manuscript text.
YehongXu,MengxuanZhang, andLeiLi proposed the algorithms.YehongXu,RuizhongWu,LeiLi conducted
the experiments. Lei Li and Xiaofang Zhou summarized the experimental results, prepared the figures and
tables, and reviewed the manuscript.

Funding Open access funding provided by Hong Kong University of Science and Technology. The research
work described in this paper was supported by Natural Science Foundation of China (grant # 62202116 and
62072125), Hong Kong Research Grants Council (grant # 16202722) and was partially conducted in the JC
STEM Lab of Data Science Foundations funded by The Hong Kong Jockey Club Charities Trust.

123

 25 Page 22 of 24 World Wide Web (2024) 27:25

Availability of Data and Materials The data sets used or examined during this study are available from the
corresponding author on reasonable request.

Declarations

Ethical Approval Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Jiang, B.: Street hierarchies: a minority of streets account for a majority of traffic flow. Int. J. Geogr. Inf.
Sci. 23(8), 1033–1048 (2009)

2. Zhang, X., Miller-Hooks, E., Denny, K.: Assessing the role of network topology in transportation network
resilience. J. Transp. Geogr. 46, 35–45 (2015)

3. Rupi, F., Bernardi, S., Rossi, G., Danesi, A.: The evaluation of road network vulnerability in mountainous
areas: a case study. Netw. Spat. Econ. 15(2), 397–411 (2015)

4. Henry, E., Bonnetain, L., Furno, A., El Faouzi, N.-E., Zimeo, E.: Spatio-temporal correlations of between-
ness centrality and traffic metrics. In: 2019 6th International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pp. 1–10. IEEE (2019)

5. Li, Y., U, L.H., Yiu, M.L., Kou, N.M.: An experimental study on hub labeling based shortest path algo-
rithms. Proceedings of the VLDB Endowment 11(4), 445–457 (2017)

6. Yoshida,Y.:Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches.
In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1416–1425 (2014)

7. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)
8. Sariyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Shattering and compressing networks for between-

ness centrality. In: Proceedings of the 2013 SIAM International Conference onDataMining, pp. 686–694.
SIAM (2013)

9. Hoang, L., Pontecorvi, M., Dathathri, R., Gill, G., You, B., Pingali, K., Ramachandran, V.: A round-
efficient distributed betweenness centrality algorithm. In: Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, pp. 272–286 (2019)

10. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarria-Miranda, D.: A faster parallel algorithm and
efficient multithreaded implementations for evaluating betweenness centrality on massive datasets. In:
2009 IEEE International Symposium on Parallel & Distributed Processing, pp. 1–8. IEEE (2009)

11. Daniel, C., Furno, A., Goglia, L., Zimeo, E.: Fast cluster-based computation of exact betweenness cen-
trality in large graphs (2021)

12. DeMeo, P., Ferrara, E., Fiumara, G., Provetti, A.: Generalized louvainmethod for community detection in
large networks. In: 2011 11th International Conference on Intelligent Systems Design and Applications,
pp. 88–93. IEEE (2011)

13. Puzis, R., Zilberman, P., Elovici, Y., Dolev, S., Brandes, U.: Heuristics for speeding up betweenness
centrality computation. In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, pp. 302–311. IEEE (2012)

14. Zhang, M., Li, L., Hua, W., Zhou, X.: Dynamic hub labeling for road networks. ICDE. IEEE (2021)
15. Mengxuan, Z., Lei, L., Wen, H., Xiaofang, Z.: Efficient 2-hop labeling maintenance in dynamic small-

world networks. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 133–144.
IEEE (2021)

123

http://creativecommons.org/licenses/by/4.0/

World Wide Web (2024) 27:25 Page 23 of 24 25

16. Zhou, A., Wang, Y., Chen, L.: Butterfly counting on uncertain bipartite graphs. Proceedings of the VLDB
Endowment 15(2), 211–223 (2021)

17. Zhang, M., Li, L., Zhou, X.: An experimental evaluation and guideline for path finding in weighted
dynamic network. Proceedings of the VLDB Endowment 14(11), 2127–2140 (2021)

18. Li, L., Hua, W., Du, X., Zhou, X.: Minimal on-road time route scheduling on time-dependent graphs.
Proceedings of the VLDB Endowment 10(11), 1274–1285 (2017)

19. Li, L.,Wang, S., Zhou,X.: Time-dependent hop labeling on road network. In: 2019 IEEE35th International
Conference on Data Engineering (ICDE), pp. 902–913. IEEE (2019)

20. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases.
In: Proceedings of the 2008 ACMSIGMOD International Conference onManagement of Data, pp. 43–54
(2008)

21. Xu, Y., Zhang, M., Wu, R., Li, L.: A top-down scheme for coverage centrality queries on road networks.
In: Australasian Database Conference, pp. 37–49. Springer (2022)

22. Ishakian, V., Erdös, D., Terzi, E., Bestavros, A.: A framework for the evaluation and management of
network centrality. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp.
427–438. SIAM (2012)

23. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)
24. Anthonisse, J.M.: The rush in a directed graph. Stichting Mathematisch Centrum. Mathematische

Besliskunde, BN 9/71 (1971)
25. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest

paths in road networks. In: International Symposium on Experimental Algorithms, pp. 230–241. Springer
(2011)

26. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths.
In: European Symposium on Algorithms, pp. 24–35. Springer (2012)

27. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271
(1959)

28. D’Angelo, G., Olsen, M., Severini, L.: Coverage centrality maximization in undirected networks. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 501–508 (2019)

29. Medya, S., Silva, A., Singh, A., Basu, P., Swami, A.: Group centrality maximization via network design.
In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 126–134. SIAM (2018)

30. Wang, W., Tang, C.Y.: Distributed computation of node and edge betweenness on tree graphs. In: 52nd
IEEE Conference on Decision and Control, pp. 43–48. IEEE (2013)

31. Prountzos, D., Pingali, K.: Betweenness centrality: algorithms and implementations. In: Proceedings of
the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 35–46
(2013)

32. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-world networks. In:
2006 International Conference on Parallel Processing (ICPP’06), pp. 539–550. IEEE (2006)

33. Cong, G., Makarychev, K.: Optimizing large-scale graph analysis on multithreaded, multicore platforms.
In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pp. 414–425. IEEE
(2012)

34. Edmonds, N., Hoefler, T., Lumsdaine, A.: A space-efficient parallel algorithm for computing betweenness
centrality in distributed memory. In: 2010 International Conference on High Performance Computing,
pp. 1–10. IEEE (2010)

35. Suppa, P., Zimeo, E.: A clustered approach for fast computation of betweenness centrality in social
networks. In: 2015 IEEE International Congress on Big Data, pp. 47–54. IEEE (2015)

36. Bader, D.A., Kintali, S.,Madduri, K.,Mihail,M.: Approximating betweenness centrality. In: International
Workshop on Algorithms and Models for the Web-Graph, pp. 124–137. Springer (2007)

37. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling.
Data Min. Knowl. Disc. 30(2), 438–475 (2016)

38. Riondato, M., Upfal, E.: Abra: approximating betweenness centrality in static and dynamic graphs with
rademacher averages.ACMTransactions onKnowledgeDiscovery fromData (TKDD) 12(5), 1–38 (2018)

39. Lee,M.-J., Lee, J., Park, J.Y., Choi, R.H., Chung,C.-W.:Qube: a quick algorithm for updating betweenness
centrality. In: Proceedings of the 21st International Conference on World Wide Web, pp. 351–360 (2012)

40. Jamour, F., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for incremental betweenness centrality on
large graphs. IEEE Trans. Parallel Distrib. Syst. 29(3), 659–672 (2017)

41. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality in evolving graphs.
IEEE Trans. Knowl. Data Eng. 27(9), 2494–2506 (2015)

42. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: 2012
International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on
Social Computing. IEEE, pp. 11–20 (2012)

123

 25 Page 24 of 24 World Wide Web (2024) 27:25

43. Jia, Y., Gu, Z., Jiang, Z., Gao, C., Yang, J.: Persistent graph stream summarization for real-time graph
analytics. World Wide Web, pp. 1–21 (2023)

44. Tang, N., Chen, Q., Mitra, P.: Graph stream summarization: from big bang to big crunch. In: Proceedings
of the 2016 International Conference on Management of Data, pp. 1481–1496 (2016)

45. Kourtellis, N., Alahakoon, T., Simha, R., Iamnitchi, A., Tripathi, R.: Identifying high betweenness cen-
trality nodes in large social networks. Soc. Netw. Anal. Min. 3(4), 899–914 (2013)

46. Zhang, Q., Li, R.-H., Pan, M., Dai, Y., Wang, G., Yuan, Y.: Efficient top-k ego-betweenness search. arXiv
preprint (2021) arXiv:2107.10052

47. Nakajima, K., Iwasaki, K., Matsumura, T., Shudo, K.: Estimating top-k betweenness centrality nodes in
online social networks. In: 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Net-
working, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom),
pp. 1128–1135. IEEE (2018)

48. Lee, M.-J., Chung, C.-W.: Finding k-highest betweenness centrality vertices in graphs. In: Proceedings
of the 23rd International Conference on World Wide Web, pp. 339–340 (2014)

49. Fan, C., Zeng, L., Ding, Y., Chen, M., Sun, Y., Liu, Z.: Learning to identify high betweenness centrality
nodes from scratch: a novel graph neural network approach. In: Proceedings of the 28thACMInternational
Conference on Information and Knowledge Management, pp. 559–568 (2019)

50. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

51. Li, L., Zhang, M., Hua, W., Zhou, X.: Fast query decomposition for batch shortest path processing in road
networks. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1189–1200.
IEEE (2020)

52. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierar-
chical routing in road networks. In: International Workshop on Experimental and Efficient Algorithms,
pp. 319–333. Springer (2008)

53. Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets 2-hop-labeling:
efficient shortest distance queries on road networks. In: Proceedings of the 2018 International Conference
on Management of Data, pp. 709–724 (2018)

54. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned
landmark labeling. In: Proceedings of the 2013ACMSIGMOD International Conference onManagement
of Data, pp. 349–360 (2013)

55. Karduni, A., Kermanshah, A., Derrible, S.: A protocol to convert spatial polyline data to network formats
and applications to world urban road networks. Scientific data 3(1), 1–7 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2107.10052

	Efficient processing of coverage centrality queries on road networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Coverage centrality
	2.2 Betweenness centrality
	2.3 Computing shortest paths

	3 Coverage centrality query answering framework
	3.1 Overview
	3.2 Intra-region pruning
	3.3 Inter-region pruning
	3.4 Top-down traversal

	4 Improved algorithms
	4.1 Search space management
	4.2 Bottom-up traversal
	4.3 Mixed traversal

	5 Experiments
	5.1 Experiment setting
	5.2 Experimental results
	5.3 Dynamic CC case study

	6 Conclusion
	References

