
World Wide Web (2023) 26:3983–3999
https://doi.org/10.1007/s11280-023-01216-5

KC-GEE: knowledge-based conditioning for generative event
extraction

Tongtong Wu1,2 · Fatemeh Shiri2 · Jingqi Kang1 · Guilin Qi1 · Gholamreza Haffari2 ·
Yuan-Fang Li2

Received: 21 October 2022 / Revised: 4 September 2023 / Accepted: 1 October 2023 /
Published online: 25 October 2023
© The Author(s) 2023

Abstract
Event extraction is an important, but challenging task. Many existing techniques decompose
it into event and argument detection/classification subtasks, which are complex structured
prediction problems. Generation-based extraction techniques lessen the complexity of the
problem formulation and are able to leverage the reasoning capabilities of large pretrained
languagemodels. However, they still suffer from poor zero-shot generalizability and are inef-
fective in handling long contexts such as documents.We propose a generative event extraction
model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel
knowledge-based conditioning technique that injects the schema of candidate event types
as the prefix into each layer of an encoder-decoder language model. This enables effective
zero-shot learning and improves supervised learning. Our experiments on two benchmark
datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly
strong results in the challenging document-level extraction task and in the zero-shot learning
setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.

Keywords Event extraction · Information extraction · Zero-shot learning · Document-level
event extraction

1 Introduction

Event extraction [1] aims at extracting structured event records from unstructured text. For
example, as shown in Figure 1, the goal of event extraction is to map the document “Two
homemade pressure-cooker bombs are detonated remotely by the Tsarnaevs near the finish
line of the Boston Marathon, killing three and injuring some 260 others. Seventeen people
lost limbs.” to four predefined event types (highlighted with celeste), such as <event type:
Attack, triggerword: detonated, role:Attacker: Tsarnaevs, . . . , role:ExplosiveDevice: bombs,
role:Place: Boston Marathon>, as well as other events that are triggered by words killing
and injuring.

B Yuan-Fang Li
yuanfang.li@monash.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01216-5&domain=pdf

3984 World Wide Web (2023) 26:3983–3999

Figure 1 The event extraction task. In each event schema, we delineate the event type along with its associated
roles. For instance, within the "Attack" event schema, roles such as "Attacker," "ExplosiveDevice," and "Place"
are encompassed

Event extraction is challenging due to the diversity of natural language expressions and
the complexity of event structures. These challenges are amplified in document-level event
extraction where the text is a full document and typically contains more events. Currently,
most event extraction methods employ a decomposition-based approach [2], which involves
breaking down the structured prediction problem of a complex event into classifications of
substructures like trigger detection, entity recognition, and argument classification. Many of
these methods tackle the subproblems separately, which necessitates additional annotations
for each stage [3].

Natural language generation techniques have been successfully applied to a number of
NLP tasks [4–6]. These techniques have inspired the use of controlled event generation to
tackle event extraction. These approaches usemanually designed templates towrap input sen-
tences and train amodel for cloze-style filling. The study by [7] proposes generating linearised
event records via a pretrained encoder-decoder architecture combined with a constrained
decoding mechanism that alleviates the complexity associated with template combination
when extracting multiple events. The advantage of the extraction-as-generation approach is
the removal of the need for fine-grained token-level annotations, which are typically used in
previous event extraction approaches [8], thus enjoying greater feasibility.

Although good generalizability has been achieved for other tasks, we have observed a
significant decrease in performance when it comes to generation-based event extraction over
documents or unseen event types. Structured prediction tasks, such as event extraction, often
rely on an external schema to format the output, whereas natural language generation tasks do
not. To bridge this gap, we introduce a novel technique called knowledge-based conditioning.
This approach involves injecting event type information as prefixes on different layers of the
underlying pretrained language model. By incorporating this information, we aim to improve
the performance of event extraction tasks. Additionally, to address the challenge of adapting
to new scenarios, we consider event extraction from the perspective of zero-shot learning [9,
10]. Our model, KC-GEE, is capable of document-level event extraction and is generalizable
to the zero-shot setting.

Our main contributions are as follows.

• We propose a novel knowledge-based conditioning technique that injects event type
information into the model, enabling zero-shot learning capability.

123

World Wide Web (2023) 26:3983–3999 3985

• We carefully design a prefix-based injection mechanism that incorporates cross-attention
to improve document-level event extraction.

• Weconducted extensive experiments on two benchmark datasets, in both fully supervised
and zero-shot settings. Our evaluation consistently shows strong performance across
all settings. In particular, our model achieves substantial superiority in the challenging
settings of document-level event extraction and zero-shot transfer, outperforming state-
of-the-art models by up to 5.4 absolute F1 points.

2 Related work

Document-level event extraction Event extraction is a task that extracts structured event
records from unstructured text [5]. Many approaches have been proposed for sentence-
level event extraction [11, 12], ranging from hand-designed features [13] and neural-learned
features [14, 15]. Yet, many real-world applications require document-level event extrac-
tion [14–18], in which the information of an event may be mentioned in multiple
sentences [19, 20]. Moreover, most work adopt decomposition strategies in event extrac-
tion [2], which employ trigger detection [13], entity recognition [21, 22], and argument
classification [23]. These decomposition strategies have shown high performancewhile intro-
ducing more detailed annotation to model training [5, 7].

Zero-shot event extraction Several previous supervised event extraction methods have
relied on features derived from manual annotations, limiting their applicability to new event
types without additional annotation effort [9, 24, 25]. These methods often struggle to effec-
tively generalize to new label taxonomies and domains. In contrast, [26] proposes a zero-shot
event extraction approach. Theyfirst utilize existing tools, such as SRL (SemanticRole Label-
ing), to identify events and subsequently map them to a predefined taxonomy of event types
without the need for specific training data. Lyu et al. [27] explores the possibility of zero-
shot event extraction by formulating it as a series of Textual Entailment (TE) and/or Question
Answering (QA) queries. For instance, they utilize pretrained TE/QA models to establish
a direct transfer of knowledge, using statements like "A city was attacked" which entails
"There is an attack." In this paper, we propose a novel approach for zero-shot event extrac-
tion by jointly training a prefix generator for event schemas. Our method is designed to be
parameter-efficient and lightweight, allowing for effective event extraction even in scenarios
with limited or no training data.

Generative event extraction . Generative event extraction has emerged as a promising
approach for automatically extracting event information from text by employing generative
models.Motivated by the achievements of pretrained languagemodels and the associated nat-
ural language generation-based approach in diverse NLP tasks [4, 28–32], some researchers
have approached event extraction as controlled event generation. As shown in Figure 2, [5,
6] are end-to-end conditional generation methods with manually designed discrete prompts
for each event type, requiring more human effort to find the optimal prompt. To remove the
complexity of template combination in extracting multiple events, [7] proposed a method for
generating the event records directly using a pretrained encoder-decoder architecture and a
constrained decoding mechanism. This extraction-as-generation approach does not require
fine-grained token-level annotations, which are typically needed by previous event extraction
methods. Liu et al. [33] proposes a generative template-based event extraction method that
uses dynamic prefixes and integrates context information with type-specific prefixes to learn

123

3986 World Wide Web (2023) 26:3983–3999

Figure 2 The comparison among KC-GEE and the other prompt-based generative methods, e.g., BART-Gen
[5] and Gegree [6]

a context-specific prefix for each context. However, this method does not consider zero-shot
extraction or document-level extraction, which we consider in our paper.

3 Generation-based event extraction

Problem definition We denote E and R as the set of predefined event types and role cate-
gories, respectively. An input sequence x := {x1, . . . , x|x|} comprises tokens xi , where | x |
denotes the sequence length. Given an input document, an event extraction model aims to
extract one or more structured events, where each event is specified by (i) the event type
e ∈ E along with the trigger word t from the document, and (ii) the rolesRe ⊆ R along with
their corresponding arguments from the document.

Event extraction as generation Given E andR in the predefined event schema, generation-
based event extraction models generate a structured sequence based on an input document
that is constrained by the schema [7].

The generated sequence is a linearised representation of eventsmentioned in the document.
Specifically, given a document with token sequence x as input, a generation-based extraction
model, such asKC-GEE, outputs the linearised events representations y = 〈y1, y2, . . . , y| y|〉,
where each event yi is denoted by 〈ei , ti , 〈ri,1, ai,1〉, . . . , 〈ri,|r |, ai,|r |〉〉. The angled brackets
〈·〉 are special tokens indicating the sequence structure. The e ∈ E and t are the event type
and the trigger words (a subspan of the document x); furthermore, ri ∈ R and ai denote
roles and arguments (subspans of the document x).

Architecture Our KC-GEE model adopts a Transformer-based encoder-decoder archi-
tecture for event structure generation. KC-GEE outputs the sequentialized event repre-
sentation y for an input document x. First, it computes the hidden representation Hx =
(h1, h2, . . . , h|x|) ∈ R

|x|×d for each token in the document via a multi-layer Transformer
encoder:

Hx = Encoder(x), (1)

123

World Wide Web (2023) 26:3983–3999 3987

Figure 3 A high-level illustration of three candidates knowledge-based conditioning injection paradigm for
encoder-decoder models: fine-tuning, adapter-tuning, and prefix-tuning. For each tuning type, the gray blocks
indicate the frozen parameters in a pretrained model, and the blue blocks indicate the trainable parameters in
a pretrained model

where each layer of Encoder(·) is a Transformer block [34] with the multi-head self-attention
mechanism.

Given the encoding Hx , the decoder generates each token sequentially to produce the
sequence of events. At step t , the Transformer-based decoder generates the token yt and
hidden state ht as:

yt , ht = Decoder(yt−1;H y<t
,Hx), (2)

where each layer of Decoder(·) is a Transformer block, with both the self-attention to past
hidden states H y<t

∈ R
(t−1)×d during decoding and the cross-attention to the encoding Hx .

The conditional probability of the output sequence p(y | x) is then,

pθ (y | x) =
| y|∏

t=1

pθ (yt | y<t , x), (3)

where θ denotes the parameters of the Transformer-based encoder-decoder model.

4 Knowledge-based conditioning in event generation

This paper investigates the best way to leverage pretrained language models (PLMs) as the
backbone encoder-decodermodel for event extraction.1 Using PLMs is now standard practice
in NLP, as they lead to strong performance and generalisation.

Given a labeled training dataset D, we investigate the best way to specialise the PLM for
the event extraction task via prefix-tuning [35]. In this section, we show how to effectively
condition the generation process on the event extraction task as well as the given document.

Onemay specialise the underlyingPLMto the event extraction task throughothermethods,
such as fine-tuning the PLM parameters or injecting adapters to the encoder and/or decoder
of the PLM (see Figure 3). Our experiments show that prefix-tuning is more effective than
those methods.

Our desiderata for prefix-conditioning of a PLM for event extraction are as follows: It
should enable the model to be aware of (i) the candidate event schemas in the task, (ii) the
specific input document, and (iii) flexible schema modifications that may occur after the

1 In our experiments, we make use of T5 [4], but our methods are applicable to other large pretrained encoder-
decoder models as well.

123

3988 World Wide Web (2023) 26:3983–3999

model is trained in real-world settings. In what follows, we explain how we achieve these
desiderata by producing prefixes for the encoder and the decoder based on the events of the
task and the input document. Please refer to Figure 4 for an overview of the framework.

4.1 Encoder conditioning

We condition the encoder on the event types of the underlying event extraction task. Given
the event types e = {e1, e2, . . . , e|e|} ⊆ E for a task, we use the encoder to get the encoding
representation for the event typesHe ∈ R

|e|×d .We then combine these events representations
through a function fenc : R|k|×d �→ R

d ′
to create the events conditioning context, i.e.

He = Encoder(e); he,enc = fenc(He) (4)

Since we assume each event type is equally probable a priori, we use the pooling average
operator as fenc. The vector he,enc is used by a prefix generation network genc to produce
the prefix. As shown in Figure 4, by ± in fenc(.), we suggest that adding or removing an
event type representation from knowledge-based conditioning is flexible.

4.2 Decoder conditioning

It is expected that the representation of instances could help the downstream generation in
the decoder. Hence we use the representation of both the task and the input document to
create a prefix for the decoder.

Specifically, let Hx denote the representation of the tokens of the input document x. We
combine the document representationHx and the task representationHe through the function
fdec : R|e|×d × R

|e|×d �→ R
d ′ × R

d ′
as follows,

he,dec, hx,dec = fdec(He,Hx) (5)

Figure 4 An illustration of our end-to-end framework KC-GEE, where the main architecture is a transformer-
based encoder-decoder in the center. The lower blocks represent the conditioning construction modules for
encoder and decoder, respectively. The upper blocks represent the conditioning injection modules for encoder
and decoder, respectively

123

World Wide Web (2023) 26:3983–3999 3989

where fdec is based on dot product-based cross-attention, and he,dec ∈ R
d ′
, hx,dec ∈ R

d ′

are the resulting fixed-dimensional vector summaries for decoder conditioning.

4.3 Prefix generation

We create the encoder prefix Zenc and decoder prefix Zdec as follows,

Zenc = genc(he,enc)

Zdec = gdec([hx,dec; hx,dec]) (6)

where genc and gdec are both mapping function g : R2×d ′ �→ R
k×|Hi |, where k is the length

of injected prefix and | Hi | is the number of parameters of the i th injected prefix maintained
in the Transformer architecture. With the injection of Zenc and Zdec, the encoder and the
decoder in (1) and (2) are modified as follows:

Hx = Encoder(x;Zenc) (7)

yt , ht = Decoder(yt−1;H y<t
,Zdec,Hx), (8)

whereZenc andZdec can be thought as pseudo-prefix tokens impacting the generation process
[35].

4.4 Training and inference

We train the model by minimising the negative log-likelihood loss:

θ∗ = argmin
θ

∑

(x, y)∈D
− log pθ (y | x, e) (9)

where D is the training set, θ∗ denotes the optimal parameters, e = {e1, e2, . . . , e|e|} ⊆ E
denotes the event type for a task, x is the input document and y is the predicted event structure.
As we formulate the event extraction problem as a sequence generation problem, the overall
likelihood pθ (y | x, e) is formulated as follows:

pθ (y | x, e) =
| y|∏

t=1

pθ (yt | y<t , x, e). (10)

where pθ (y | x, e) is defined as the cumulative product of pθ (yt | y<t , x, e), in which yt is
the t-th token in the output sequence y.

For inference, we use constrained decoding [7].

5 Experiments

We compare our KC-GEEmodel with several recent strong models, evaluating in both super-
vised learning and zero-shot learning settings, as well as for the document-level extraction
task. Our aim is to demonstrate the greater generalizability and effectiveness of our model
in these challenging scenarios.

123

3990 World Wide Web (2023) 26:3983–3999

5.1 Evaluation setup

5.1.1 Datasets

We carry out experiments on two event extraction datasets: the sentence-level dataset
Automatic Content Extraction 2005 (ACE05-EN) [11] and the document-level dataset:
WikiEvents [20]. The statistics for both are provided in Table 1. Note that we use the
official dataset splits of the two datasets to ensure better reproducibility. It is worth noting
that WikiEvents presents significant challenges due to three factors. (1) Context length:
each instance in ACE05-EN contains only one sentence, whereas instances in WikiEvents
are documents. (2) Event density: almost every instance in ACE05-EN contains only one
event, whereas multiple events could be present in one instance in WikiEvents. (3) Data
scarcity: the amount of training data in ACE05-EN is more than 77 times greater than that
in WikiEvents.

5.1.2 Evaluation metrics

We employ the same evaluation metrics used in previous work [7, 36] for both trigger extrac-
tion (Trig-C) and arguments extraction (Arg-C). These metrics include F1, precision, and
recall.

As KC-GEE is a text generation model, we consider the input sequence one by one to find
the matched utterance to reconstruct the offset of predicted trigger mentions. Additionally, in
the case of argument mentions, we identify the trigger offset as the nearest matched utterance
to the predicted trigger mention.

5.1.3 Baselines

We evaluate KC-GEE against three groups of baselines which use different levels of anno-
tations of decreasing granularity: Both token-level and entity-level annotation, Token-level
annotation, and Parallel text-record annotation. Some methods utilise token annotations, in
which each token in an instance is annotated with event labels and golden entity annotation
to facilitate event extraction. Joint3EE [36] is a multi-task model that jointly performs entity,
trigger, and argument extraction by shared Bi-GRU hidden representations. DYGIE++ [8] is
a BERT-based extraction framework that models text spans and captures within-sentence
and cross-sentence context. GAIL [37] is an ELMo-based model that proposes a joint
entity and event extraction framework based on generative adversarial imitation learning,
which is an inverse reinforcement learning method. OneIE [36] introduces a classification-
based information extraction system that employs global features and beam search to extract
event structures. Some other methods use token-level annotation. For instance, TANL [3]
is a sequence generation-based method that tackles event extraction in a trigger-argument

Table 1 Statistics of the event extraction datasets used in the paper, including the numbers of event types,
argument types, the type of instances, events per instance, and the number of instances in different splits

Dataset Event Type Argument Type Train Dev Test Instance Events per Instance

ACE05-EN 33 22 17,172 923 832 one sentence Single/Multiple

WikiEvents 33 59 206 20 20 Document Multiple

123

World Wide Web (2023) 26:3983–3999 3991

pipeline. Multi-task TANL is the extended version of TANL that transfers structure knowl-
edge from other tasks. BERT-QA [38] and MQAEE [39] consider event extraction as a
sequence of extractive question-answering problems. Similar to Text2Event [7], we use Par-
allel text-record annotation, which only requires (instance, event) pairs without expensive,
fine-grained token-level or entity-level annotations. As shown in an instance of such an anno-
tation, 〈“Evidence at a makeshift morgue points to mass executions by the Iraqi regime.”,
{Type: Execute, Trigger: executions, ...}〉, parallel text-record annotation is the least demand-
ing and therefore more practical annotation level. We compare our method with Text2Event
[7], which introduces a sequence-to-structure generation model that addresses the missing
event structure issue via constrained decoding. Given the BART-Gen [5] and Degree [6]
both using BART-large as the backbone model while we are using T5-base, and both of
the methods require the detected event type as prior, we list their results as another group
distinguished from our method and Text2Event. Furthermore, we evaluate KC-GEE against
zero-shot approaches on ACE05-EN [9, 10, 27].

5.1.4 Implementation details

We develop our KC-GEEmethod based on the T5-base pretrained language model, and train
it for 50 epochs with a learning rate of 1e-4 and batch size of 8 for the supervised setting.
For the zero-shot setting, we use a learning rate of 5e-5 and batch size of 16. To optimize
KC-GEE, we employ label smoothing [41] and AdamW [42]. The prefix length is set to 20
for all experiments in Section 5.2.

5.2 Main results

We compare our KC-GEE model in two evaluation settings: fully supervised and zero-shot.
For each setting, we organise the model evaluation by the characteristics of the datasets
including sentence-level (ACE05-EN) and document-level (WikiEvents).

5.2.1 Supervised setting

In this setting, each model is trained on the full training data of the respective dataset. Table 2
presents the sentence-level event extraction results on ACE05-EN. Note that except for the
last block, performance numbers of all baselines are taken directly from Text2Event [7].

From the table, it can be observed that our KC-GEE model outperforms Text2Event in
terms of F1 for both argument extraction and trigger extraction.

Sentence-level performance As discussed above, among all compared models, our KC-
GEE model, together with Text2Event [7], is trained on parallel text-record annotations
which represent the weakest form of supervision. In contrast, the other baseline models
require token-level annotations and entity annotations, which are more fine-grained and
expensive to collect. It is expected that models trained on more extensive data would perform
better. The last column of the table also shows that the better-performing models use larger
pretrained language models (PLMs), such as BERT-large. The larger capacity of these PLMs
also contributes to model’s performance.

Document-level performance Table 3 shows the performance of the baseline (Text2Event),
our model KC-GEE, and its different variants for document-level event extraction on the

123

3992 World Wide Web (2023) 26:3983–3999

Table 2 Experiment results for the fully supervised event extraction on ACE05-EN. PLM represents the
pretrained language model used by each model. We use text-record annotation, which only provides (instance,
event) pairs without expensive, fine-grained token-level or entity-level annotations

Models Annotation Arg-C Trig-C PLM
F1 P R F1 P R

Joint3EE [8] Token+Entity 52.1 52.1 52.1 69.8 68 71.8 -

DYGIE++ [40] Token+Entity 48.8 - - 69.7 - - BERT-large

GAIL[37] Token+Entity 52.4 61.6 45.7 72.0 74.8 69.4 ELMo

OneIE [36] Token+Entity 56.8 - - 74.7 - - BERT-large

BERT-QA [38] Token 53.3 56.8 50.2 72.4 71.1 73.7 2 x BERT-base

MQAEE [39] Token 53.4 - - 71.7 - - 3 x BERT-large

TANL [3] Token 47.6 - - 68.4 - - T5-base

Multi-Task TANL [3] Token 48.5 - - 68.5 - - T5-base

BART-GEN [5] Text-record+Type 53.7 - - 71.1 - - BART-large

Degree [6] Text-record+Type 55.8 - - 73.3 - - BART-large

Text2Event [7] Text-record 49.8 46.7 53.4 69.2 67.5 71.2 T5-base

KC-GEEFine tuning+Prefix Text-record 49.0 47.3 50.7 69.3 69.1 69.5 T5-base

KC-GEEFull Text-record 51.5 48.1 55.6 70.1 66.7 73.9 T5-base

WikiEvents dataset. Please note that BART-Gen [39] and Degree [6] rely on explicit anno-
tations of event type and assume the event-specific templates are given for document-level
argument and trigger extraction, while both Text2Event and our model implicitly perform
event detection and subsequent extraction. Furthermore, the remaining models listed in
Table 2 are designed for sentence-level tasks and do not support this specific task. To ensure
a fair comparison with other methods, we rigorously report our results under the identical
setting as indicated in Table 3.

The majority of document-level baselines focus only on event argument extraction from
WikiEvents dataset, which did not handle event types and triggers [20, 43, 44]. Our model
supports the joint extraction of both event triggers and arguments from the WikiEvents
dataset.

We can observe from the table that our full model achieves the best F1 values for both
argument extraction (Arg-C) and trigger detection (Trig-C) on WikiEvents. It is especially

Table 3 Results for supervised learning on the document-level event extraction dataset WikiEvents

Models Arg-C Trig-C
F1 P R F1 P R

Text2Event [7] 17.4 32.8 11.9 29.3 45.2 20.1

KC-GEEFull 28.5 (+11) 41.2 21.8 38.7 (+9.4) 46.2 33.2

KC-GEEAdapter 2.2 23.5 1.1 2.1 12.0 1.2

KC-GEEFine tuning+Adapter 16.1 25.1 11.9 28.3 37.3 22.8

KC-GEEPrefix 4.5 8.5 3.1 9.7 9.5 10.0

KC-GEEFine tuning+Prefix 23.2 32.5 18.1 38.2 45.0 33.2

123

World Wide Web (2023) 26:3983–3999 3993

noteworthy that KC-GEE achieves significant performance advantages over Text2Event of
+11.1 and +9.4 absolute F1 points for Arg-C and Trig-C, respectively.

The superiority of our model can be attributed to two design features. Firstly, our cross-
attention mechanism filters event type tokens and argument tokens, allowing the model to
handle long context better. Secondly, our knowledge-based conditioning mechanism injects
event type information into the model, enabling it to learn more effectively with less data. A
detailed analysis of the contributions of each model component are presented below.

5.2.2 Zero-shot setting

We evaluate KC-GEE’s ability to generalize to unseen event types in the zero-shot setting
for both sentence-level (ACE05-EN) and document-level (WikiEvents) event extraction
tasks. Specifically, for both datasets, we randomly split the instances into two subsets Source
and Target. Source contains the annotations of 23 event types, while Target only retains the
annotations of 10 instances for each of the 10 unseen event types. In this experiment, we first
pretrained each model on the Source dataset, which is evaluated on the 10 new event types
in the Target dataset without fine-tuning.

The results for both datasets are shown in Table 4. Once again, our full model significantly
outperforms baselines. On ACE05-EN, it obtains F1 gains of 27.7 and 9.2 absolute points
for Arg-C and Trig-C, respectively. On WikiEvents, the F1 gains over Text2Event are 4.4
and 5.4 absolute points for Arg-C and Trig-C, respectively. We attribute the strong zero-
shot generalizability of our model to knowledge-based conditioning. By casting the event
extraction task as a generation problem, and injecting event type names, the model gains
task-specific information that is especially valuable.

Table 4 Experiment results for zero-shot learning on sentence-level (ACE05-EN) and document-level
(WikiEvents) datasets

ACE05-EN
Models Arg-C Trig-C

F1 P R F1 P R

Zero-Shot [10] 6.3 - - 53.5 - -

Zero-Shot [9] 15.8 - - 49.1 - -

Zero-Shot [27] 16.8 - - 41.7 - -

Text2Event [7] 21.8 40.3 14.9 31.8 62.7 21.3

KC-GEEFull 49.5 (+27.7) 43.6 57.5 62.7 (+9.2) 59.1 66.7

KC-GEEAdapter 34.0 34.0 34.0 59.7 60.5 59.0

KC-GEEFine tuning+Adapter 42.6 32.6 61.7 53.1 44.1 66.7

KC-GEEPrefix 20.2 21.4 19.1 48.8 46.5 51.3

KC-GEEFine tuning+Prefix 43.2 37.5 51.1 58.1 53.2 64.1

WikiEvents

Text2Event [7] 15.8 20.1 13.0 30.7 41.9 24.2

KC-GEEFull 20.2 (+4.4) 23.3 17.8 36.1 (+5.4) 42.1 31.6

KC-GEEAdapter 0.9 3.1 0.5 2.7 9.4 1.6

KC-GEEFine tuning+Adapter 9.7 25.9 6.0 16.9 41.4 10.6

KC-GEEPrefix 7.1 11.3 5.1 14.9 17.0 13.3

KC-GEEFine tuning+Prefix 13.6 24.5 9.1 24.3 42.6 16.6

123

3994 World Wide Web (2023) 26:3983–3999

5.3 Ablation study

This section analyzes the effects of prefix encoder conditioning, prefix decoder condition-
ing, prefix cross-attention, and constrained decoding in KC-GEE. We designed five ablated
variants based on T5-base:

• w/o enc-cond indicates KC-GEE without prefix encoder conditioning.
• w/o dec-cond indicates KC-GEE without prefix decoder conditioning.
• w/o both-cond indicates KC-GEE without both prefix encoder and prefix decoder con-
ditioning.

• w/o const-dec discards the constrained decoding during inference and generates event
structures as an unconstrained generation model.

• w/o cross-att indicates KC-GEE without prefix cross-attention.

Table 5 shows the results of ACE05-EN on the test set for the supervised learning setting.
We observe that:

• constrained decoding helps, but not too much;
• prefix encoder and decoder conditioning are the most effective module if we use both of
them together.

Furthermore, as constraint decoding limits the argument and the trigger word generated by
the model, our method does not suffer from hallucination problems.

5.4 Analysis

In this section, we conduct comprehensive studies to analyze the design of our method from
different perspectives.

5.4.1 Prefix length

Longer prefixes provide more knowledge-based conditioning information to the model.
Table 6 summarizes the result of the model performance with different prefix lengths on
theWikiEvents dataset. As shown in the table, longer prefixes improve model performance
on Arg-C, while performance on Trig-C improves with increases in prefix length until 20,
after which the F1 value plateaus. However, longer prefixes requires more model parame-
ters. Therefore, we set the prefix length to 20 as a trade-off between model performance and
computational efficiency.

Table 5 The ablation study in the
supervised learning setting on the
ACE05-EN dataset based on
T5-base

Models Arg-C Trig-C
F1 P R F1 P R

w/o enc-cond 46.91 44.60 49.48 68.80 65.91 71.96

w/o dec-cond 45.59 42.02 49.83 68.79 65.89 71.94

w/o both-cond 49.41 47.44 51.56 68.35 66.35 70.47

w/o const-dec 48.06 45.83 50.52 67.92 64.72 71.46

w/o cross-att 49.10 45.01 53.99 68.77 64.84 73.20

KC-GEE Full 51.5 48.1 55.6 70.1 66.7 73.9

123

World Wide Web (2023) 26:3983–3999 3995

Table 6 Zero-shot learning on
WikiEnents with different prefix
lengths

Arg-C Trig-C
Prefix length F1 P R F1 P R

5 4.44 16.67 2.56 10.61 36.84 6.19

10 13.14 45.00 7.69 13.64 47.37 7.96

20 20.2 23.3 17.8 36.1 42.1 31.6

50 21.10 25.00 18.26 29.07 45.00 21.47

100 25.56 36.51 19.66 28.89 38.81 23.01

5.4.2 Knowledge-based conditioning

A key contribution to our method is the introduction of knowledge-based conditioning infor-
mation. We analyze this component from two perspectives: (1) conditioning information and
(2) injection mechanism.

Conditioning information In Table 7, we analyze in detail the effect of different knowledge-
based conditioning, in which we fix the prefix length at 20. As can be seen, having no
knowledge-based conditioning (None) results in poor performance across the board. Injecting
task-agnostic information (Pseudo token) provides noticeable gains on Trig-C. Furthermore,
injecting event type information substantially improves performance on bothArg-C and Trig-
C. Adding role information improves performance on Arg-C but decreases performance on
Trig-C. Finally, having all three types of conditioning does not bring additional benefits.

This comparison highlights the effectiveness of knowledge-based conditioning on event
type information. Additionally, incorporating role information enhances argument extraction
performance, although it comes at the expense of trigger extraction.

Injection mechanism The bottom four rows in Tables 3 and 4 display variants of our KC-
GEE model, where knowledge-based conditioning information is injected in different ways,
as depicted inFigure 3. Specifically, the “Adapter” variant injects knowledge-based condition-
ing information in an adapter layer over each Transformer layer while freezing the parameters
of the underlying languagemodel. The “Fine tuning+Adapter” variant employs adapter layers
and updates the language model’s parameters. The “Prefix” variant prepends the knowledge-
based conditioning vectors h to each layer in the language model while keeping the language
model’s parameters frozen. Finally, the “Fine tuning+Prefix” variant additionally updates the
parameters of the language model. We can make the following observations from Tables 3
and 4.

Table 7 Zero-shot learning on WikiEvents with different knowledge-based conditioning

Arg-C Trig-C
Conditioning information F1 P R F1 P R

None 6.3 11.9 4.3 3.9 7.5 2.7

Pseudo token 5.7 16.7 3.4 17.6 52.2 10.6

Event type 15.7 26.5 11.1 29.5 53.5 20.4

Event type + Role 20.2 23.3.7 17.8 36.1 42.1 31.6

Pseudo token + Event type + Role 15.4 21.5 12.0 16.6 22.1 13.3

123

3996 World Wide Web (2023) 26:3983–3999

As expected, updating the language model’s parameters (i.e. “Fine-tuning”) is much more
effective than when the parameters are frozen, regardless of whether Knowledge-based con-
ditioning information is injected as adapters or prefixes.

The “Adapter” style of injection performs especially poorly on WikiEvents in both the
supervised and zero-shot settings. In comparison, on WikiEvents, “Prefix” inject is able to
outperform Text2Event in the zero-shot setting and achieves competitive performance in the
supervised setting.

6 Conclusion

In this paper, we formulate the problem of event extraction as a natural-language generation
task. We propose KC-GEE, a generation-based document-level event extraction technique
that leverages large pretrained language models. A key component in KC-GEE is a novel
Knowledge-based conditioning technique that injects event type information into the model
as prefixes to enable zero-shot learning capability. The cross-attention mechanism in the
prefix generator also facilitates effective document handling. Extensive experiments on two
benchmark datasets demonstrate the effectiveness of KC-GEE, which achieves state-of-the-
art performance in document-level extraction in fully supervised and zero-shot settings. On
the challenging WikiEvents dataset, KC-GEE substantially outperforms the current best
model by up to 27.7 absolute points in F1. In future work, we will investigate incorporating
attention mechanisms or graph-based techniques to integrate external knowledge, like event
descriptions, improving zero-shot event extraction performance.

7 Limitations

In this paper, we explore a new method for solving zero-shot and document-level event
extraction through Knowledge-based conditioning. The model has the ability of zero-shot
transfer learning primarily from seen roles composition. This means that although the model
has not seen any instances of zero-shot event types during training, the schema of these event
types is available in the training stage. There is still a gap in the true zero-shot generalization.

Author Contributions Tongtong Wu: Model and algorithm design, implementation, data curation, evaluation
and analysis of results, writing the paper draft and final version. Fatemeh Shiri: Model and algorithm design
implementation, data curation, evaluation and analysis of results, writing the paper draft and final version.
Jingqi Kang: Data curation, conducting the ablation study. Guilin Qi: Results analysis, writing the final
version. GholamrezaHaffari: Conceptualization, model and algorithm design, results analysis and discussions,
writing the final version. Yuan-Fang Li: Conceptualisation, model and algorithm design, results analysis and
discussions, writing the final version.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This material
is based on research sponsored by Air Force Research Laboratory and DARPA under agreement number
FA8750-19-2-0501 and HR001122C0029. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.

Availability of data and materials All code and data will be made publicly available on acceptance of the
paper.

123

World Wide Web (2023) 26:3983–3999 3997

Declarations

Ethical approval Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Li, Q., Peng, H., Li, J., Hei, Y., Sun, R., Sheng, J., Guo, S., Wang, L., Yu, P.S.: A survey on deep learning
event extraction: Approaches and applications. TNNLS, 1–21 (2022)

2. Xu, R., Liu, T., Li, L., Chang, B.: Document-level event extraction via heterogeneous graph-based inter-
action model with a tracker. In: Proceedings of ACL, pp. 3533–3546 (2021)

3. Paolini, G., Athiwaratkun, B., Krone, J., Ma, J., Achille, A., Anubhai, R., Santos, C.N.d., Xiang, B.,
Soatto, S.: Structured prediction as translation between augmented natural languages. In: ICLR (2021)

4. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring
the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21(140), 1–67
(2020)

5. Li, S., Ji, H.,Han, J.: Document-level event argument extraction by conditional generation. In: Proceedings
of NAACL, pp. 894–908 (2021)

6. Hsu, I.-H., Huang, K.-H., Boschee, E., Miller, S., Natarajan, P., Chang, K.-W., Peng, N.: Degree: A
data-efficient generation-based event extraction model. In: Proceedings of NUSE@NAACL (2022)

7. Lu, Y., Lin, H., Xu, J., Han, X., Tang, J., Li, A., Sun, L., Liao, M., Chen, S.: Text2Event: Controllable
sequence-to-structure generation for end-to-end event extraction. In: Proceedings of ACL, pp. 2795–2806
(2021)

8. Nguyen, T.M., Nguyen, T.H.: One for all: Neural joint modeling of entities and events. In: Proceedings
of AAAI, vol. 33, pp. 6851–6858 (2019)

9. Huang, L., Ji, H., Cho, K., Dagan, I., Riedel, S., Voss, C.: Zero-shot transfer learning for event extraction.
In: Proceedings of ACL, pp. 2160–2170 (2018)

10. Zhang, H., Wang, H., Roth, D.: Zero-shot Label-aware Event Trigger and Argument Classification. In:
Findings of ACL, pp. 1331–1340 (2021)

11. Walker, C., Strassel, J.M.S., Maeda, K.: Ace 2005 multilingual training corpus. https://catalog.ldc.upenn.
edu/LDC2006T06 (2006)

12. Shiri, F., Wu, T., Li, Y.-F., Haffari, G.: Tcg-event: Effective task conditioning for generation-based event
extraction. In: Proceedings of ALTA workshop (2022)

13. Shen, S., Wu, T., Qi, G., Li, Y., Haffari, G., Bi, S.: Adaptive knowledge-enhanced bayesian meta-learning
for few-shot event detection. In: Findings of ACL, pp. 2417–2429 (2021)

14. Zhang, N., Chen, X., Xie, X., Deng, S., Tan, C., Chen, M., Huang, F., Si, L., Chen, H.: Document-level
relation extraction as semantic segmentation. In: Proceedings of IJCAI, pp. 3999–4006 (2021)

15. Huang, K.-H., Peng, N.: Document-level event extraction with efficient end-to-end learning of cross-event
dependencies. In: Proceedings of NUSE@NAACL, pp. 36–47 (2021)

16. Yang, H., Sui, D., Chen, Y., Liu, K., Zhao, J., Wang, T.: Document-level event extraction via parallel
prediction networks. In: Proceedings of ACL, pp. 6298–6308 (2021)

17. Liu, X., Luo, Z., Huang, H.: Jointly multiple events extraction via attention-based graph information
aggregation. In: Proceedings of EMNLP, pp. 1247–1256 (2018)

18. Lou, D., Liao, Z., Deng, S., Zhang, N., Chen, H.: Mlbinet: A cross-sentence collective event detection
network. In: Proceedings of ACL, pp. 4829–4839 (2021)

19. Ebner, S., Xia, P., Culkin, R., Rawlins, K., Durme, B.V.:Multi-sentence argument linking. In: Proceedings
of ACL, pp. 8057–8077 (2020)

123

http://creativecommons.org/licenses/by/4.0/
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06

3998 World Wide Web (2023) 26:3983–3999

20. Li, S., Ji, H.,Han, J.: Document-level event argument extraction by conditional generation. In: Proceedings
of NAACL, pp. 894–908 (2021)

21. Lison, P., Barnes, J., Hubin, A., Touileb, S.: Named entity recognition without labelled data: A weak
supervision approach. In: Proceedings of ACL, pp. 1518–1533 (2020)

22. Du, X., Rush, A.M., Cardie, C.: GRIT: generative role-filler transformers for document-level event entity
extraction. In: Proceedings of EACL, pp. 634–644 (2021)

23. Zhang, Z., Kong, X., Liu, Z., Ma, X., Hovy, E.H.: A two-step approach for implicit event argument
detection. In: Proceedings of ACL, pp. 7479–7485 (2020)

24. Geng, Y., Chen, J., Zhuang, X., Chen, Z., Pan, J.Z., Li, J., Yuan, Z., Chen, H.: Benchmarking knowledge-
driven zero-shot learning. J. Web Semant., 100757 (2023)

25. Chen, J., Geng, Y., Chen, Z., Horrocks, I., Pan, J.Z., Chen, H.: Knowledge-aware zero-shot learning:
Survey and perspective. In: Proceedings of IJCAI, pp. 4366–4373 (2021)

26. Zhang, H., Wang, H., Roth, D.: Zero-shot label-aware event trigger and argument classification. In:
Findings of ACL, pp. 1331–1340 (2021)

27. Lyu, Q., Zhang, H., Sulem, E., Roth, D.: Zero-shot event extraction via transfer learning: Challenges and
insights. In: Proceedings of ACL, pp. 322–332 (2021)

28. Wang, Y., Wood, I., Wan, S., Dras, M., Johnson, M.: Mention flags (MF): Constraining transformer-based
text generators. In: Proceedings of ACL), pp. 103–113 (2021)

29. Wang, Y., Xu, C., Sun, Q., Hu, H., Tao, C., Geng, X., Jiang, D.: PromDA: Prompt-based data augmentation
for low-resource NLU tasks. In: Proceedings of ACL), pp. 4242–4255 (2022)

30. Wang, Y., Zheng, J., Xu, C., Geng, X., Shen, T., Tao, C., Jiang, D.: KnowDA: All-in-one knowledge
mixture model for data augmentation in low-resource NLP. In: ICLR (2023)

31. Ye,H., Zhang,N., Bi, Z., Deng, S., Tan, C., Chen,H.,Huang, F., Chen,H.: Learning to ask for data-efficient
event argument extraction (student abstract). In: Proceedings of AAAI, pp. 13099–13100 (2022)

32. Yao, Y., Mao, S., Chen, X., Zhang, N., Deng, S., Chen, H.: Schema-aware reference as prompt improves
data-efficient relational triple and event extraction. CoRR (2022)

33. Liu, X., Huang, H., Shi, G., Wang, B.: Dynamic prefix-tuning for generative template-based event extrac-
tion. Proceedings of ACL (2022)

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.:
Attention is all you need. In: Proceedings of NeurIPS, pp. 5998–6008 (2017)

35. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. In: Proceedings of ACL,
pp. 4582–4597 (2021)

36. Lin, Y., Ji, H., Huang, F., Wu, L.: A joint neural model for information extraction with global features.
In: Proceedings of ACL, pp. 7999–8009 (2020)

37. Zhang, T., Ji, H., Sil, A.: Joint entity and event extraction with generative adversarial imitation learning.
Data Intell. 1(2), 99–120 (2019)

38. Du, X., Cardie, C.: Event extraction by answering (almost) natural questions. In: Proceedings of EMNLP,
pp. 671–683 (2020)

39. Li, F., Peng, W., Chen, Y., Wang, Q., Pan, L., Lyu, Y., Zhu, Y.: Event extraction as multi-turn question
answering. In: Findings of EMNLP, pp. 829–838 (2020)

40. Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event extraction with contextu-
alized span representations. In: Proceedings of EMNLP, pp. 5783–5788 (2019)

41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for
computer vision. In: Proceedings of CVPR, pp. 2818–2826 (2016)

42. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2017)
43. Liu, J., Chen, Y., Xu, J.: Machine reading comprehension as data augmentation: A case study on implicit

event argument extraction. In: Proceedings of EMNLP, pp. 2716–2725 (2021)
44. Lin, J., Chen, Q.: Poke: A prompt-based knowledge eliciting approach for event argument extraction.

CoRR (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

World Wide Web (2023) 26:3983–3999 3999

Authors and Affiliations

Tongtong Wu1,2 · Fatemeh Shiri2 · Jingqi Kang1 · Guilin Qi1 · Gholamreza Haffari2 ·
Yuan-Fang Li2

Tongtong Wu
wutong8023@seu.edu.cn; tongtong.wu@monash.edu

Fatemeh Shiri
fatemeh.shiri@monash.edu

Jingqi Kang
kjq@seu.edu.cn

Guilin Qi
gqi@seu.edu.cn

Gholamreza Haffari
gholamreza.haffari@monash.edu

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, Jiangsu,
China

2 Department of DS&AI, Faculty of IT, Monash University, Melbourne 3800, VIC, Australia

123

	KC-GEE: knowledge-based conditioning for generative event extraction
	Abstract
	1 Introduction
	2 Related work
	3 Generation-based event extraction
	4 Knowledge-based conditioning in event generation
	4.1 Encoder conditioning
	4.2 Decoder conditioning
	4.3 Prefix generation
	4.4 Training and inference

	5 Experiments
	5.1 Evaluation setup
	5.1.1 Datasets
	5.1.2 Evaluation metrics
	5.1.3 Baselines
	5.1.4 Implementation details

	5.2 Main results
	5.2.1 Supervised setting
	5.2.2 Zero-shot setting

	5.3 Ablation study
	5.4 Analysis
	5.4.1 Prefix length
	5.4.2 Knowledge-based conditioning

	6 Conclusion
	7 Limitations
	References

