
World Wide Web (2023) 26:3535–3559
https://doi.org/10.1007/s11280-023-01197-5

Neural-network-based parameter tuning for multi-agent
simulation using deep reinforcement learning

Masanori Hirano1 · Kiyoshi Izumi1

Received: 10 March 2023 / Revised: 27 June 2023 / Accepted: 12 July 2023 /
Published online: 3 August 2023
© The Author(s) 2023

Abstract
This study proposes a new efficient parameter tuning method for multi-agent simulation
(MAS) using deep reinforcement learning. MAS is currently a useful tool for social sciences,
but is hard to realize realistic simulations due to its computational burden for parameter
tuning. This study proposes efficient parameter tuning to address this issue using deep rein-
forcement learning methods. To improve compatibility with the tuning task, our proposed
method employs actor-critic-based deep reinforcement learning, such as deep deterministic
policy gradient (DDPG) and soft actor-critic (SAC). In addition to the customized version
of DDPG and SAC for our task, we also propose three additional components to stabilize
the learning: an action converter (DDPG only), a redundant full neural network actor, and a
seed fixer. For experimental verification, we employ a parameter tuning task in an artificial
financial market simulation, comparing our proposed model, its ablations, and the Bayesian
estimation-based baseline. The results demonstrate that our model outperforms the baseline
in terms of tuning performance, indicating that the additional components of the proposed
method are essential. Moreover, the critic of our model works effectively as a surrogate
model, that is, as an approximate function of the simulation, which allows the actor to tune
the parameters appropriately. We have also found that the SAC-based method exhibits the
best and fastest convergence, which we assume is achieved by the high exploration capability
of SAC.

Keywords Multi-agent simulation · Parameter tuning · Deep reinforcement learning ·
Artificial financial markets

This article belongs to the Topical Collection: Special Issue on Fairness-driven User Behavioral Modelling
and Analysis for Online Recommendation
Guest Editors: Jianxin Li, Guandong Xu, Xiang Ren, and Qing Li.

B Masanori Hirano
research@mhirano.jp

Kiyoshi Izumi
izumi@sys.t.u-tokyo.ac.jp

1 School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01197-5&domain=pdf

3536 World Wide Web (2023) 26:3535–3559

1 Introduction

Multi-agent simulation (MAS), which primarily simulates social phenomena by compiling
agent behaviors, is widely used in social sciences. For instance, MAS has been utilized in
analyses of the COVID-19 pandemic [1], financial markets [2, 3], demographic movements
[4], and evacuation or massive pedestrian control planning [5, 6]. Edmonds et al. [7] argued
that MAS can be used to validate wider possibilities in social sciences. Generally, dominant
equations do not exist in social phenomena, and interactions between people are unknown but
important; therefore, MAS enables us to understand and analyze meta-phenomena generated
by complex micro–macro interactions among agents (people).

Parameter tuning is an essential procedure in MAS. Generally, parameter tuning is used
for two reasons. The first is to adjust the parameters of the simulation model such that the
simulation results reflect real-world phenomena; this tuning is essential because agents’ and
environmental parameters cannot be directly observed in the real world. The second reason
is to determine the parameter values for optimizing social phenomena or resolving social
problems; for instance, because massive pedestrian simulations aim to create a more efficient
flow of people, various solutions have been proposed to determine a better flow.

However, parameter tuning is a challenging task because of the large dimensions of the
parameters and the computational cost of the simulations. As MAS typically employs many
agents in its simulations, the computational cost for each simulation is comparatively high.
Moreover, the parameters that should be tuned are also high-dimensional or large, as has
been indicated by [8, 9].

A fundamental solution to address this massive computational burden has not yet been
proposed, to the best of our knowledge. For instance, to reduce the computational burden,
Yamashita et al. [9] alternated part of the MASwith neural networks (NNs) to obtain the best
solution. Also, Bayesian optimization, such as the tree-structured Parzen estimator (TPE)
[10], has frequently been used in the parameter tuning of NNs. However, the proposed
solutions failed to fully resolve the dimensional problem because the dimensions of the
parameter exploration were not compressed.

Because MAS frequently exhibits chaotic behavior owing to complex agent interactions,
the exploration of optimized parameters is difficult. MAS aims to reproduce chaotic phe-
nomena that result from complex interactions. Therefore, it is often difficult to determine
optimal parameters from global estimates.

To address these issues, this study attempts to utilize deep reinforcement learning. Deep
reinforcement learning has recently been developed to handle high-dimensional problems.
For instance, Baker et al. [11] showed that it can learn complex hide-and-seek strategies
using tools that make the game more complex and high-dimensional. Therefore, we believe
that the utilization of deep reinforcement learning for MAS parameter tuning is promising.

Thus, this study proposes a parameter-tuning method that uses reinforcement learning
for MAS. As the first step in the introduction, we focus only on low-dimensional parame-
ter tuning. This is because low-dimensional tuning is possible even when using traditional
parameter tuning, which enables us to compare and estimate the capability of deep reinforce-
ment learning. In this study, we demonstrate the capability of deep reinforcement learning
for MAS parameter tuning.

Consequently, we show that the proposed model is promising. The contributions of this
study are as follows:

1. A reinforcement-learning-basedparameter tuningmodel forMASparameter tuningusing
some additional components to stabilize learning is proposed.

123

World Wide Web (2023) 26:3535–3559 3537

2. Our model outperforms the baseline model. Furthermore, the proposed additional com-
ponents are successful and necessary for our proposed model.

3. In our proposed model, actor-critic type reinforcement learning is employed. The results
demonstrate that the critic works as a surrogate model of the simulations, leading to the
actor being able to learn a better parameter.

4. We propose SAC- and DDPG-based models and confirm that the SAC-based method
exhibits the best and fastest convergence owing to its high exploration capability.

2 Related work

Edmonds et al. [7] argued that MAS is useful in social sciences, which have complex inter-
actions. MAS aims to imitate the real world by creating an imaginary world using agents on
computers. Simulations are beneficial because they enable the exploration of hypothetical
situations or the prediction of phenomena under certain conditions, such as new regulations.
As mentioned earlier, MAS has been utilized for the analysis of several domains, such as
COVID-19 [1], financial markets [2, 3], demographic movement [4], and evacuation or mas-
sive pedestrian control planning [5, 6]. The importance of agent-based simulations has been
debated, particularly in the context of financial markets [12, 13]. For instance, Lux et al.
[14] showed that interactions between agents in financial market simulations are necessary
to replicate stylized facts therein. Cui et al. [15] also showed that the trader model used
in artificial financial market simulations required intelligence to replicate stylized facts in
financial markets. Furthermore, Mizuta [16] demonstrated that the MAS of a financial mar-
ket can contribute to the implementation of rules and regulations in actual financial markets.
This study used artificial financial markets as an example of the application of the proposed
method.

Several practical studies have used artificial financial market simulations. Torii et al. [17]
revealed how the flow of a price shock was transferred to other stocks using an artificial
financial market based on the trader model proposed in [18]. The model proposed in this
study is also used as the parameter-tuning target. Mizuta et al. [2] tested the effect of tick
size on trading shares, that is, the price unit for orders, which led to a discussion on tick size
devaluation in the Tokyo Stock Exchange Market. Hirano et al. [3] assessed the effect of
the regulation of the capital adequacy ratio (CAR), such as the Basel regulatory framework,
and observed the risk of market price shocks and depressions due to CAR regulation. Some
studies also focused on flush crashes using artificial financial market simulations [19, 20]; as
an example of one such platform, Torii et al. [21] proposed “Plham” [22]. In this study, we
use the “PlhamJ” platform [23], the updated version of “Plham.” Meanwhile, other artificial
financial market simulators also exist, such as U-MART [24], the Santa Fe artificial stock
market [25], and the agent-based interactive discrete event simulation [26].

However, as mentioned in the introduction, MAS, including financial market simulations,
has a high computational burden; thus, several workarounds have been proposed. One solu-
tion is parallelization of simulations using simulation management software. Murase et al.
[27] proposed organizing assistants for comprehensive and interactive simulations (OACIS).
Murase et al. [28] subsequently proposed CARAVAN, a framework for comprehensive sim-
ulations of massive parallel machines, to optimize MAS parameters by parameter sampling.
These frameworks are mainly aimed at automating the parameter-tuning process and do not
address the high computational burden. Another method to reduce the computational burden
is introducing NNs. Yamashita et al. [9] alternated part of the MAS with NNs to obtain
the best solution and reduce the computational burden. The NN operates as an approximate

123

3538 World Wide Web (2023) 26:3535–3559

function ofMAS; this approach is known as a surrogate model. The potential of the surrogate
MAS model was investigated by Angione et al. [29]. In this study, part of our model can be
understood as a surrogate model of MAS.

This study employed reinforcement learning to reduce the computational burden of MAS
parameter tuning. In the context of reinforcement learning, numerous research and develop-
ment initiatives have been undertaken. Q-learning is a well-known off-policy reinforcement
learning method based on the Q-table [30]. Learning theory, that is, the temporal differ-
ence, was proposed in [31]. Tesauro proposed a method for applying temporal-difference
learning to backgammon [32]. SARSA, state–action–reward–state–action, is another exam-
ple of a simple reinforcement learning method proposed in [33]. There are numerous models
of reinforcement learning. The most significant discovery in reinforcement learning is its
combination with NNs. After deep reinforcement learning was invented, Mnih et al. [34]
demonstrated that deep Q-learning (Deep Q-Network, DQN) can outperform humans using
the Atari learning environment [35]. These neural-network-based models are known as deep
reinforcement learning and were also utilized in this study. These improvements are possible
owing to the invention of NNs and deep learning such as convolutional NNs for image clas-
sification [36]. Consequently, several reinforcement learning methods using deep learning
have been developed. As an extension of DQN, double DQN (DDQN) was proposed in [37],
which uses two networks and has better performance than DQN. These two networks were
also used in the proposed method. Moreover, the dueling DDQN was proposed using a new
state value function to improve learning performance [38]. As an extension of Q-learning, the
asynchronous advantage actor-critic [39] method uses deep learning asynchronously. This
is based on the actor-critic method proposed in [40], which is used in the deep reinforce-
ment learning of our proposed model. Subsequently, because the asynchronous method was
not important, the advantage actor-critic (A2C) method was proposed [41]. Hessel proposed
RainBow [42] as a method that combined the aforementioned methods. Ape-X DQN [43],
which used prioritized experience replay, andR2D2 [44],which used long short-termmemory
[45], were proposed as outperforming methods. Silver et al. proposed a reinforcement learn-
ing algorithm through self-playing, which achieved excellent performance in some games,
such as chess, shogi, and Go [46]; this algorithm is based on their previous study, which is
well known as “Alpha Go Zero” [47]. In this study, we used the deep deterministic policy
gradient (DDPG) [48] and the soft actor-critic (SAC) [49, 50], an actor-critic reinforcement
learning for continuous actions.

3 Proposedmethods

In the proposed method, we employed actor-critic-based deep reinforcement learning
methods with continuous action spaces, such as DDPG [48] and SAC [49, 50]. We selected
these for the following reasons. First, Figure 1 shows the typical parameter tuning and our
proposed schemes. At the tuning trial in the usual parameter tuning scheme, the parameter
tuner provides a parameter set for the parameter-tuning task. Subsequently, the simulator
runs using the parameter set and returns the results, and the analyzer (objective function)
returns the final objective value. Finally, the parameter tuner receives feedback and attempts
to modify the parameter set to maximize the objective value. To consider this scheme down to
the reinforcement learning scheme, the actor-critic framework exhibits a goodfit, as illustrated
in Figure 1. Second, the typical parameter-tuning tasks and parameter sets frequently include
continuous values; therefore, support of continuous values is required. The illustration in

123

World Wide Web (2023) 26:3535–3559 3539

Typical Parameter Tuning Scheme

Parameter
Tunner

Parameter
Set Simulator Simulation

Results
Objective

Value

Objective
Function

(Analyzer)

Proposed Scheme

Feedback

Actor Parameter
Set Simulator Simulation

Results
Objective

Value
Objective
Function

(Analyzer)

Critic Critic
Output

Surrogate

Figure 1 Parameter tuning scheme

Figure 1 represents the basic outline of our methods; however, the details are not exactly the
same as illustrated and explained hereafter.

The use of either DDPG or SAC with minor customization to adapt DDPG to our task
failed. Thus, we proposed three special components to enable their application to MAS
parameter tuning. The three components are as follows:

1. Action converter (AC)
2. Redundant full neural network actor (FNNA)
3. Seed fixer (SF)

An AC is employed to enforce action bounds; in SAC, action bounds are realized by the
squashing function for Gaussian sampling. Therefore, the AC is only used for DDPG. The
patterns of applicable components are listed in Table 1 and all the models are listed in Table
2.

We first explain the basemodels except for the baseline, that is, DDPG and SACwith small
customization, for MAS parameter tuning and thereafter describe the three components.

3.1 Customized DDPG

A customized DDPG functions similar to the original DDPG; however, the input/output is
different because of the task settings.

First, the actor in our model (A in Figure 2) does not accept any states. Typically, the actor
accepts the current state to calculate the best policy based on the current state. However,
the parameter-tuning task does not include any representation of the current state; moreover,
the output of our actor is a parameter set, because the parameter set is similar to an action.
Thus, our actor does not accept any state, and it only generates a policy for the parameter

Table 1 Models and additional
components

Base Model Additional Components
AC FNNA SF

Customized DDPG Applicable Applicable Applicable

Customized SAC N/A Applicable Applicable

123

3540 World Wide Web (2023) 26:3535–3559

Table 2 All models (Some models will not work properly in the following experiments)

Model Name Base Model Additional Components
AC FNNA SF

Baseline TPE: Optuna - - -

DDPG + AC + FNNA + SF Customized DDPG � � �
DDPG + FNNA + SF Customized DDPG - � �
DDPG + AC + SF Customized DDPG � - �
DDPG + AC + FNNA Customized DDPG � � -

DDPG + AC Customized DDPG � - -

DDPG + FNNA Customized DDPG - � -

DDPG + SF Customized DDPG - - �
SAC + FNNA + SF Customized SAC - � �
SAC + SF Customized SAC - - �
SAC + FNNA Customized SAC - � -

SAC Customized SAC - - �

sets as follows: Pi = A(), where Pi denotes the i th trial parameter set for the simulator. If
the parameter is N -dimensional, Pi = (

p1,i , p2,i , · · · , pN ,i
)
, and A denotes the actor.

Second, the critic also differs from the original DDPG. A typical critic of DDPG accepts
the state and action, but our critic only accepts a parameter set (action) similar to our actor.
Moreover, although the usual prediction target of the critic is the Q-value (the sum of the
discounted future returns), the prediction target of the proposed critic is only an objective
value of parameter tuning, as shown in Figure 2; this is because parameter tuning is a one-
shot trial and not a Markov process. In typical reinforcement learning tasks, every action is
supposed to have semi-permanent effects, and the value of each action must be evaluated
based on the future expected returns. However, the selection of one parameter does not affect
the future results of parameter-tuning tasks; thus, consideration of the discounted future
expected returns is not required. The loss function for our critic is defined as follows:

LC = MSE[oi ,C(Pi)] = (oi − C(Pi))
2, (1)

where oi denotes the objective value of the i th trial from the simulation results, C denotes
our critic, Pi denotes the i th trial parameter set given by the actor, and C(Pi) denotes the
critic output for the given parameter set Pi .

Customized DDPG

Actor
Parameter

Set Simulator Simulation
Results

Objective
Value

Objective
Function
(Analyzer)

Backpropagation

Critic
Critic

Output
()

Backpropagation

Figure 2 Model outline of customized DDPG

123

World Wide Web (2023) 26:3535–3559 3541

Therefore, actor loss is defined as,

L A = −C(A()) (2)

because our actor learns to maximize the objective value estimated by our critic. Thus, by
minimizing LC and L A alternately, our critic pursues the correct evaluation for a given
parameter set and our actor pursues a better parameter set to obtain higher objective values.
These procedures are similar to those used for the original DDPG.

Similar to the original DDPG, we employed the Ornstein–Uhlenbeck process [51] as an
exploration noise, replay buffer [52], and soft-target update.

Moreover, in the case of a simulation failure, a penalty for the objective value was applied
because the objective value could not be calculated. However, if the parameter is set inappro-
priately, the gradient cannot be calculated because all simulations will fail, and only penalties
are applied,which have no gradient. Thus, if the parameter is set to this value through learning,
the new parameter is selected again at random.

3.2 Customized SAC

Based on the original SAC [49, 50], we developed a customized SAC. Similar to the cus-
tomized DDPG, the most important customizations are the input and output. However, unlike
DDPG, SAC has a slightly more complex architecture than DDPG.

SAC is similar to DDPG in terms of supporting continuous action spaces. However,
unlike DDPG, SAC employs a stochastic policy and an entropy term of the policy in its
objective function, which enables high exploration capability. Figure 3 shows the outline of
the implementation of the customized SAC.

First, in our actor, the action is generated using the reparameterization trick as follows:

μ, σ = A(), (3)

Pi ∼ N (μ, σ), (4)

where A() denotes the SAC actor NN that generates R
2×N . N (μ, σ) is a Gaussian dis-

tribution, whose mean and variance are μ ∈ R
N and σ 2 ∈ R

N , respectively . Pi =(
p1,i , p2,i , · · · , pN ,i

)
are the N -dimensional simulation parameters for the i th iteration.

N

N

Figure 3 Model outline of customized SAC

123

3542 World Wide Web (2023) 26:3535–3559

In our SAC critic, unlike the customized DDPG, the model comprises two networks:
Q(Pi) and V (). V () does not accept any inputs and the target value is theoretically defined
as follows:

V () = EPi∼N (μ,σ) [Q(Pi) − α ln {Pr(Pi)}] , (5)

where Pr(Pi) denotes the probability that Pi is sampled from N (μ, σ) in (4), and α is
a hyperparameter which has been set to 0.2 in our experiments. In the usual reinforcement
learningmethod, Q(Pi) and V () denote the action value and state value function, respectively.
However, in our study, no such state existed. Thus, if we interpret them, Q(Pi) and V () are
considered the parameter value and exploration value function, respectively, because the
second term in V () denotes policy entropy. Moreover, although Pi appears on the right side
of (5), V () does not depend on Pi because it evaluates the current state in the original theory
of reinforcement learning, and no state is available in this task.

The loss functions of the critic are defined as follows:

LQ = MSE[oi , Q(Pi)] = (oi − Q(Pi))
2, (6)

LV = MSE[Q(Pi) − α ln {Pr(Pi)}, V ()] (7)

= [Q(Pi) − α ln {Pr(Pi)} − V ()]2 . (8)

In our experiments, we employed target networks. Therefore, Q(Pi) in (7) and (8) is the
fixed network and no gradient is passed.

However, the loss function of the actor is obtained as follows:

L A = −V () = −EPi∼N (A()) [Q(Pi) − α ln {Pr(Pi)}] . (9)

Here, backpropagation is realized using the aforementioned reparameterization trick for some
samples.

In the original study on SAC [49, 50], squashing of the action space (enforcing action
bounds in the original context) was also employed. In our experiments, the parameters had
positive value restrictions. Therefore, we formulated a squashed Gaussian policy. In our
model, we employed the function f (x) = ln(1 + exp(x)). Thus, the Gaussian policy is
converted to,

ln {Pr(Pi)} = ln {PrN (u)} +
∑

j

Pi, j −
∑

j

u j , (10)

where Pi = ln(1 + exp(u)), u ∼ N (μ, σ) and PrN (u) denotes the sampling probability.
This definition differs from that in (4) because of the use of action squashing.

In addition, in a customized SAC, the replay buffer [52], soft target update, and penalty
for invalid simulations are employed.

3.3 Action converter (AC)

We propose an AC to introduce parameter restrictions into a customized DDPG. The AC
converts the output of the actor into a restricted parameter space, like action squashing in the
SAC algorithm. In our study, we mainly used this for a non-negative constraint parameter
using the function f (x) = ln(1 + exp(x)) as in SAC.

This is similar to the aforementioned enforcing action bounds in SAC [49, 50]; however,
only the aim (enforcing action bounds) is common to our AC; notably, SAC is not a deter-
ministic reinforcement learning. Although SAC squashes its action probability, DDPG does

123

World Wide Web (2023) 26:3535–3559 3543

not have an action probability but only employs exploring noise. Thus, DDPG requires action
space squashing instead of probability squashing to bind the action space.

Thus, we assumed that a more relaxed squashing than that of SAC should be applied as an
AC. Excessive changes should be avoided, particularly in areas that do not require constraints,
to avoid disturbing DDPG exploration. Thus, for the non-negative constraint, we employed
f (x) = ln(1 + exp(x)). This is because ∂ f (x)

∂x = ex
1+ex = 1 − 1

1+ex , which is almost one
when x is sufficiently large.

However, it is also possible to consider other functions. In addition, we did not discuss
and examine the AC for other parameter constraints.

A practical application of AC is to the constraint parameters of the actor output. For
instance, suppose that the parameter space is two-dimensional, and all parameters have non-
negative constraints. In this case, Pi = (

p1,i , p2,i
)
, and we define p�

1,i = ln(1 + exp(p1,i))

and p�
2,i = ln(1 + exp(p2,i)). Subsequently, the final parameter set P�

i =
(
p�
1,i , p

�
2,i

)
is

obtained and used instead of Pi .
Note that AC is applied only to the customized DDPG; it is not necessary for SAC because

it has enforcing action bounds.

3.4 Redundant full neural network actor (FNNA)

For a simple implementation of our models, that is, the customized DDPG and SAC, the
actor is only required to return the gradient-enabled parameters like the left panel of Figure
4. Thus, the minimum implementation is for the actor to have only N parameters when the
dimension of the parameter set is N because the actors in our models do not accept an input.

However, we propose an actor with a redundant NN called a redundant full NN actor
(FNNA). As the right panel of Figure 4 shows, the FNNA architecture contains a multi-layer
perceptron (MLP), and the actor accepts a dummy vector all of whose components are one.

Although this architecture seems redundant and meaningless, it is similar to the lottery
ticket hypothesis [53]. We assume that FNNA worked better than the minimum implemen-
tation of our models because NN performs similar to collective intelligence or learning and
are stabilized according to the lottery ticket hypothesis.

Moreover, when we employed SAC and FNNA, the FNN was also applied to the V-net
(V ()).

3.5 Seed fixer (SF)

MASfrequently exhibits various behaviors depending on randomseeds.Randomvariables
are used in many MAS routines to realize the probabilistic decisions of agents. However,
because of the complex interactions between agents, slight state differences cause chaoti-
cally significant differences. Thus, differences in random variables could cause significant
differences, as illustrated in the left panel of Figure 5.

The effects of random seeds are significant in learning. A critic was introduced to learn
the relationship between the simulation parameter sets and simulation results. The actor was
trained using the gradients obtained from the critic. The smoothness of the critic gradient,
that is, the smooth response of the critic outputs to the input parameter, is necessary. Thus,
the difference in the objective values caused by small changes in the parameter set must be
greater than the effect of the random seeds.

123

3544 World Wide Web (2023) 26:3535–3559

Fi
gu

re
4

FN
N
A
bl
ue

pr
in
t

123

World Wide Web (2023) 26:3535–3559 3545

Pr
ic

e

Time Time

When the seed is the same and

Figure 5 Blueprint of the seed fixer. Plots represent each path of financial market simulation. The left panel
illustrates the images when the simulation seed is different. The right panel illustrates the images when the
simulation seed is the same, and the simulation parameter is slightly different

Although a larger number of simulations generally eases the effect of random seeds, it is
insufficient to erase their effects for critic gradients. Moreover, it is difficult to increase the
number of simulations when the computational cost is large.

The SF provides one solution and fixes the seeds used in each set of simulations, as
illustrated in the right panel of Figure 5. The objective values obtained through the simulations
illustrated in Figure 1 are calculated by the mean of M trials for stabilization. Thus, the SF
fixes M random seeds in the simulations; this implies that the set of random seeds for M
simulations is always the same.

Introducing an SF eliminates the effect of random seeds and smoothens the gradient of
the critic. Although simulations can exhibit chaotic behavior, they are improved.

However, this component has a trade-off, in that the learning results are biased. As the
random seeds are fixed to only M patterns, and M is generally excessively small to cover all
possible states, the results are biased by these M patterns. Thus, there is a tradeoff between
the gradient smoothness of the critic and the possibility of bias. Although employing a larger
M could be a solution, it could also increase the computational burden. Fortunately, in our
experiments, M = 100 did not appear to cause a significant bias.

4 Experiments

4.1 Task setting

Weemployed an artificial financialmarket simulation as aMAS for the experiments.Recently,
particularly after the 2007–2008 financial crisis, financial market simulations have gained
focus. For instance, Bookstaber [54] argued that MAS for financial markets was important
for avoiding future crashes caused by the complex interaction of financial market factors.
Mizuta [16] argued that MAS could contribute to the discussion of regulations in financial
markets.

An artificial financial market simulation seems an ideal task for testing our method. It is
because statistical indicators are used in actual financial markets and can be used for tuning
targets. It enables us to set a reasonable tuning target.

123

3546 World Wide Web (2023) 26:3535–3559

Our experiments employ the stylized financial market simulation proposed in [17], which
is widely used as an artificial financial market simulation. This simulation is available via
PlhamJ, a platform for large-scale, high-frequency artificial financial markets (Java version)
[23].

Moreover, our proposed method can be applied to other simulations as long as Key Per-
formance Indicators (KPIs) for the output are defined. Therefore, although this study only
tests our method on an artificial financial market simulation, it is also applicable to other
MAS tasks and simulation models.

4.1.1 Simulation

Only 100 stylized trader agents based on [17] and one continuous double-auction market
exist in the simulation. At time t , the stylized trader agent i determines its trading actions
using the following criteria: fundamentals, chartists (trends), and noise. Initially, the agents
calculate the following three factors:

• Fundamental factor:

Fi
t = 1

τ ∗i ln
{
p∗
t

pt

}
. (11)

where τ ∗i denotes the mean reversion-time constant of agent i , p∗
t denotes the funda-

mental price at time t , and pt denotes the price at time t .
• Chartist factor:

Ci
t = 1

τ i

τ i∑

j=1

r(t− j) = 1

τ i

τ i∑

j=1

ln
p(t− j)

p(t− j−1)
, (12)

where τ i denotes the time window size of agent i and rt denotes the logarithmic return
at time t .

• Noise factor:
Ni
t ∼ N (0, σ). (13)

denotes that Ni
t obeys a normal distribution with zero mean and variance σ 2.

Subsequently, the agents calculate the weighted averages of these three factors as follows:

r̂ it = 1

wi
F + wi

C + wi
N

(
wi

F F
i
t + wi

CC
i
t + wi

N N
i
t

)
, (14)

where wi
F , wi

C , and wi
N denote the weights of agent i for each factor.

Next, the expected price of agent i is calculated using the following equation:

p̂it = pt exp
(
r̂ it τ

i
)
. (15)

Subsequently, using a fixed margin of ki ∈ [0, 0.1], we determine the actual order prices
using the following rules:

• If p̂it > pt , agent i places a bid (buy order) at the following price:

min
{
p̂it (1 − ki), paskt

}
. (16)

• If p̂it < pt , agent i places an ask (sell order) at the following price:

max
{
p̂it (1 + ki), pbidt

}
. (17)

123

World Wide Web (2023) 26:3535–3559 3547

Here, pbidt and paskt denote the best bid and ask prices, respectively.
The parameters employed for this type of trader are as follows: p∗

t = 300, wi
N ∼

Ex(1.0), σ = 0.001, τ ∗ ∈ [50, 100], and τ ∈ [100, 200], which were mainly determined
based on [17]. Here, Ex(λ) indicates an exponential distribution with an expected value of
λ. The values of wF , wC in wi

F ∼ Ex(wF) and wi
C ∼ Ex(wC) were the tuning targets in

this experiment.

4.1.2 Objective value

The objective values are the skewness and kurtosis of the log-returns of the market prices.
The values are calculated as follows:

xt := ln

{
pt
pt−1

}
, (18)

skewness = 1

T

T∑

t=1

(xt − x)3

(xt − x)2
3
2

, (19)

kurtosis = 1

T

T∑

t=1

(xt − x)4

(xt − x)2
2 , (20)

where T denotes the total number of simulation steps, which was 10,000 in this study.
According to the results in [55], we set the targets of skewness and kurtosis to 0.0 and 6.0,

respectively; these values are approximates as these values differ across financial markets.
However, this was not important because we focused only on the tuning efficiency of the
proposed method in this study.

Subsequently, the total mean square error (MSE) of both the skewness and kurtosis of the
targets was calculated. Thus,

MSE[(skewness, kurtosis), (0.0, 6.0)] = (skewness − 0.0)2 + (kurtosis − 6.0)2.

(21)

If the simulations fail, the MSE is replaced by the penalty, which was set to 1, 000 for
this study. Simulation failures could occur because the price increased to infinity owing to
inappropriate parameters.

Then, the final objective values were calculated as the negativeMSE because the objective
values are maximized.

In the tuning phase, all simulationswere performed 100 times and themean of the objective
values was used as the final objective value to stabilize these objective values. Moreover,
in the final evaluation phase after tuning, we performed 1,000 simulations to evaluate the
performance of the tuners.

4.2 Models

As mentioned in the task settings, our parameter-tuning task aims to obtain a better wF and
wC to provide a better objective value. As per the baseline model representing the typical
parameter-tuning scheme shown in Figure 1, we employed a TPE (Optuna). In the following
section, we explain this as well as the detailed settings of our proposed models.

123

3548 World Wide Web (2023) 26:3535–3559

4.2.1 Baseline model: tree-structured parzen estimator (Optuna)

We employed a TPE [10] as a baseline model for MAS parameter tuning. This estimator is
frequently used for parameter tuning in machine learning and is known as Optuna [56]. TPE
is a Bayesian optimization method that pursues the best parameter set for a higher objective
value as a black box optimization problem.

4.2.2 Our customized DDPG

All schemes and learning theories are explained in Section 3. Here, we describe the settings
in detail, including the model parameters in the customized DDPG used in our experiments.

• Actor (FNNA): four-layered MLP with 100-dimension hidden layers returning two-
dimension output. Each layer, except for the last layer, uses layer normalization and
ReLU activations. This implies that a 100-dimensional dummy vector filled with ones is
accepted as the input.

• Actor (not FNNA): always returns only two gradient-enabled parameters.
• Critic: four-layered MLP with 100-dimension hidden layers accepting two-dimensional
input (parameter set) and retuning one-dimensional output (estimated objective value).
Each layer, except for the last layer, uses layer normalization and ReLU activations.

• Soft target update ratio of DDPG: 0.1
• Actor learning rate: 10−4

• Critic learning rate: 10−3

• Batch size: 100
• Buffer size of experience replay: 1,000

4.2.3 Our customized SAC

All schemes and learning theories are explained in Section 3. Here, we explain the settings
in detail, including the model parameters in the customized SAC used in our experiments.

• Actor (FNNA): three-layered common MLP with 100-dimension hidden layers and the
final linear layers returning two-dimension outputs for μ and σ , respectively. All linear
layers use layer normalization and each layer in the three-layered common MLP uses
ReLU activations. This implies that a 100-dimensional dummy vector filled with ones is
accepted as the input.

• Actor (not FNNA): always returns two two-dimensional gradient-enabled parameters for
μ and σ , respectively.

• Q-net (V (Pi)): four-layered MLP with 100-dimension hidden layers accepting two-
dimensional input (parameter set) and retuning one-dimensional output (estimated
objective value). Each layer, except for the last layer, uses layer normalization and ReLU
activations.

• V-net (V () with FNNA): four-layered MLP with 100-dimension hidden layers accepting
a 100-dimensional dummy vector filled with ones and retuning one-dimensional output
(V ()). Each layer, except for the last layer, uses layer normalization andReLUactivations.

• V-net (V ()without FNNA): always returns one-dimensional gradient-enabled parameters
for V ().

• Soft target update ratio of SAC: 0.1
• Actor learning rate: 10−4

123

World Wide Web (2023) 26:3535–3559 3549

• Critic learning rate: 10−3

• Batch size: 100
• Buffer size of experience replay: 1,000

4.3 Evaluation

For fair evaluation, the number of simulations available for training was limited to 100,000 at
all. This implies that each epoch of training performed 100 simulations; thus, 1,000 epochs
were performed.

After the training phase, the final evaluation test was performed with 1,000 simulations
using the best-performing model during training (based on objective values for training
simulations).

5 Results

Table 3 summarizes the results of each of the ten experiments. This table lists the loss
(negative objective value), kurtosis, and skewness of the tuning results of all models, as well
as the mean (and standard deviation) and median values.

The loss is defined by (21), and a smaller loss indicates better parameter tuning.Moreover,
as mentioned earlier, the loss is the negative value of the objective values because the actor-
critic framework generallymaximizes the objective value. In our settings,MSEwas employed
for this loss; thus, the loss was always non-negative.

According to the results in Table 3, the SAC + FNNA + SF setup exhibits the best perfor-
mance in terms of loss. However, SAC + FNNA + SF shows not only the best mean of the
loss but also the best deviation and median of the loss compared with those of the baseline
and other models.

The SAC-basedmodel achieved the best results, but theDDPG-basedmodel outperformed
the baseline. However, SAC-based models appear to be more stable than DDPG-based mod-
els.

Comparing all the results of the DDPG-based models with those of other DDPG-based
models missing the specified components, it is thus confirmed that all three components
(AC, FNNA, and SF) are essential for our proposed DDPG-based model, even if one of the
components is missing, performance degrades significantly. In particular, AC is necessary
to tune because learning does not work completely if the AC is missing. When the AC is
missing, the non-negative constraints of the parameters in our task are not always satisfied,
thus causing an invalid simulation. An invalid simulation always returns a fixed penalty,
which leads to the missing parameter-tuning gradient. Thus, at least in our task, the AC is a
necessary feature for DDPG-based models to run the tuner practically.

Comparing the effects of each component of the DDPG-based models, AC > FNNA >

SF was observed in the sequence of larger effects. The effect of the SF seems comparatively
small, but if it is missing, our DDPG-based models do not exhibit better performance than
the baseline.

In contrast, for SAC-basedmodels, only the SF is a necessary component. FNNAperforms
better only when the SAC-based model employs the SF. In contrast to DDPG-based models,
the AC is not applicable. However, the dynamics of the effects of the additional components
are also different from those of DDPG-based models.

123

3550 World Wide Web (2023) 26:3535–3559

Ta
bl
e
3

E
va
lu
at
io
n
R
es
ul
ts
(s
ta
tis
tic

am
on
g
10

ex
pe
ri
m
en
ts
).
SA

C
+
FN

N
A
+
SF

sh
ow

s
th
e
be
st
re
su
lts

an
d
is
st
at
is
tic
al
ly

di
ff
er
en
t(
si
gn
ifi
ca
nc
e
le
ve
lo

f5
%
)f
ro
m

ot
he
rs
ex
ce
pt

fo
r
SA

C
+
SF

L
os
s
(−

o i
)

K
ur
to
si
s

Sk
ew

ne
ss

M
od
el

M
ea
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

B
as
el
in
e
(T
PE

:O
pt
un
a)

3.
41

08
30

±
5.
99

36
05

0.
55

85
68

6.
62

96
70

±
0.
43

77
44

6.
40

70
23

0.
00

64
60

±
0.
00

97
37

0.
00

61
79

D
D
PG

+
A
C
+
FN

N
A
+
SF

0.
72

75
02

±
0.
56

06
71

0.
48

97
55

6.
28

86
74

±
0.
09

21
82

6.
15

84
37

0.
00

74
88

±
0.
00

47
75

0.
00

40
05

D
D
PG

+
FN

N
A
+
SF

C
an
no
tb

e
tu
ne
d
at
al
l

D
D
PG

+
A
C
+
SF

17
91
1.
68

±
21

98
5.
85

49
42

.0
05

26
.3
50

92
±

23
.8
04

22
7.
16

07
22

0.
01

49
36

±
0.
03

77
76

0.
00

04
24

D
D
PG

+
A
C
+
FN

N
A

10
94

.9
91

±
32

52
.0
00

0.
65

27
49

8.
63

12
69

±
4.
52

39
29

6.
89

25
26

0.
00

53
24

±
0.
02

01
19

0.
01

07
44

D
D
PG

+
A
C

36
87
1 .
57

±
47

94
2.
91

20
39

7.
35

44
.5
91

21
±

45
.6
58

28
7.
13

88
84

−0
.0
35

96
3

±
0.
08

13
53

−0
.0
01

54
2

SA
C
+
FN

N
A
+
SF

0.
19

44
73

±
0.
04

59
63

0.
19

50
69

6.
24

54
87

±
0.
08

75
51

6.
22

23
21

0.
00

65
81

±
0.
00

46
71

0.
00

49
43

SA
C
+
SF

0.
20

32
58

±
0.
04

54
76

0.
20

90
67

6.
27

56
84

±
0.
05

08
73

6.
24

38
06

0.
00

70
37

±
0.
00

46
22

0.
00

69
78

SA
C
+
FN

N
A

21
.4
16

06
±

14
.7
03

67
25

.6
05

99
9.
85

53
62

±
1.
98

50
68

9.
58

31
12

0.
00

95
23

±
0.
00

86
16

0 .
00

75
00

SA
C

17
.4
50

62
±

14
.4
89

98
21

.8
54

46
9.
36

34
88

±
2.
02

83
99

9.
17

66
51

0.
00

79
01

±
0.
00

66
55

0.
00

84
29

123

World Wide Web (2023) 26:3535–3559 3551

Figures 6, 7, 8, 9, 10, 11, 12, 13 and 14 show the losses of all models for each epoch.
The evaluation losses are plotted in these figures. The loss values plotted in these figures
were calculated using an additional 1,000 simulations only for evaluations. Figure 6 shows
the results for the baseline (TPE: Optuna). In this figure, a type of overfitting of the training
samples can be observed. In contrast, in Figure 7, the DDPG-based model (DDPG + AC +
FNNA+SF) exhibits a slower convergence. Unlike these twomodels, according to Figure 11,
the SAC-based model (SAC + FNNA + SF) exhibits faster and more stable convergence in its
loss. In addition, from these figures, we can assume that the SAC-based model outperforms
other models. Moreover, as shown in Figures 11 – 14, we can observe that the SF leads to
faster convergence.

6 Discussion

Our proposed model exhibited better tuning performance than the baseline model. In our
evaluation, the SAC-based models exhibited the best performance, particularly with the
SF. As mentioned earlier, our task setting was less dimensional; therefore, the baseline
method has several advantages. Although our proposed method exhibited its advantages
in higher-dimensional parameter tuning under our assumption, the results demonstrated that
our proposed model works well and seems promising.

Moreover, our proposed components of DDPG and one component (SF) of SAC were
found to be essential. If one of these three components for DDPG were missing, the DDPG-
basedmodelswould have performedworse than the baseline.Moreover, if the SFwasmissing
for SAC, the SAC-based models would also have performed worse than the baseline. Faster
convergence caused by the SF was also clearly observed as shown in Figures 11 and 13,
and Figures 12 and 14. According to these results, the SF is the most important factor for
parameter tuning in MAS. In our proposition, we assumed that differences in the random
variables could cause significant differences because of the chaotic behavior of MAS as a
complex system. Our results demonstrated that this assumption was valid.

According to the results, SAC-basedmodels outperformedDDPG-basedmodels. The first
possible reason is that SAC is not deterministic. Because of the deterministic policy ofDDPG,
DDPG-based models only achieved parameter tuning by continuous exploration. The action

Figure 6 Evaluation loss of the baseline model (TPE: Optuna)

123

3552 World Wide Web (2023) 26:3535–3559

Figure 7 Evaluation loss of DDPG + AC + FNNA + SF

Figure 8 Evaluation loss of DDPG + AC + SF

Figure 9 Evaluation loss of DDPG + AC + FNNA

123

World Wide Web (2023) 26:3535–3559 3553

Figure 10 Evaluation loss of DDPG + AC

Figure 11 Evaluation loss of SAC + FNNA + SF

Figure 12 Evaluation loss of SAC + SF

123

3554 World Wide Web (2023) 26:3535–3559

Figure 13 Evaluation loss of SAC + FNNA

space, that is, the parameter space in this task, is extremely broad; thus, it is difficult to find
a sweet spot through continuous exploration. However, SAC enables stochastic exploration,
which causes a difference in results. The second possible reason is the SAC policy entropy.
Because of the policy entropy term (the second term in (5)), SAC has a rich and wide
exploration capability. Thus, compared to DDPG, SAC has a higher exploration capability,
which led to better results in our task.

The fact that our actor-critic-based methods could tune the parameters of the simulation
implies that the critic works as an approximate function of the simulations and analysis in our
model. As explained and illustrated in Figure 1, our actor did not receive feedback directly
from the simulation output. During the actor learning procedure, the actor received feedback
on the evaluation score of the critic for the output parameter of the actor. This implies that
the critic works sufficiently as a simulation approximation, and that the simulations are
unnecessary for actor learning. This further implies that the critic successfully works as an
end-to-end surrogate model. Owing to the approximation by the critic, the actor successfully
obtained a gradient for parameter tuning.

Figure 14 Evaluation loss of SAC

123

World Wide Web (2023) 26:3535–3559 3555

In terms of the evaluation, our experiments should also be updated for a more accurate
evaluation. Our experimental task simply tuned kurtosis and skewness; however, this is far
from practical. Therefore, the task settings should be updated for more practical tuning.

Considering the situation in which our models exhibited potential, we should test them
for the task of high-dimensional parameter tunings. In the context of deep reinforcement
learning, our proposedmethod can be assumed to outperform high-dimensional tasks because
deep reinforcement learning has outperformed high-dimensional tasks in previous studies.
By contrast, in the context of surrogate models, when the parameter dimension is large,
the approximation of simulations by the critic may become more complex and require more
data for learning approximation. Moreover, for the more dimensional task, evaluation criteria
(objective function) should also be enrichedmore. For tuning a small number of parameters, a
low-dimensionalKPI is enough.However, ifwe consider tuningmore dimensional tasks, low-
dimensional KPI, such as our experiment only using Kurtosis and Skewness, is not enough
to set a tuning task without multiple local optima. Therefore, for testing more dimensional
parameter tuning tasks, we also try to build better evaluation criteria, and the building is not
easy. Thus, it remains unclear whether our reinforcement-learning-based models work well
for high-dimensional tasks and need to be addressed in future studies.

Finally, applicability to the other tasks is also a possible future work. The only requirement
of our proposed method is the KPI of outputs. Although building a KPI for tuning is difficult
as we discussed above, if the KPI exists, our method seems applicable for any simulation
parameter tuning tasks. However, if KPI is inappropriate, the tuning will fail. Therefore, also
on simulations of other fields, both construction of KPIs and the experiments of our method
are necessary.

7 Conclusion

This study proposed a method for tuning the simulation parameters for MAS using a
customized reinforcement learning method. In our proposed method, actor-critic-type rein-
forcement learning methods such as DDPG and SAC were modified for MAS parameter
tuning. Moreover, we proposed three additional components: AC, FNNA, and SF. For the
experiments, we employed an artificial financial market simulation for the tuning task. The
objective function in tuning is the negative MSE between the target and simulations such
that the skewness and kurtosis are close to realistic values. In our experiments, we com-
pared our proposed method with a baseline known as TPE (Optuna), which is based on
Bayesian estimation. The results demonstrated that the proposed method outperformed the
baseline method. In particular, our SAC-based models outperformed other models, includ-
ing the baseline. These results indicate that the proposed method is promising. Moreover, it
was also indicated that AC, FNNA, and SF for DDPG-based models and SF for SAC-based
models were essential components. Interestingly, the results demonstrated that the critic of
our proposed model worked well as a surrogate model for the simulations. Subsequently,
owing to the critic, the actor could be assumed to learn better parameters. Based on these
results, we conclude that the proposed model is promising. In future work, we plan to address
the learning stability or the evaluation of other tasks, such as high-dimensional parameter-
tuning tasks, in which the method based on reinforcement learning can fully demonstrate its
advantages.

Acknowledgements This workwas supported by JSPSKAKENHIGrant Number JP 21J20074 (Grant-in-Aid
for JSPS Fellows).

123

3556 World Wide Web (2023) 26:3535–3559

Author Contributions M.H. made the conception or design and the softwear, conducted experiments and
analysis, and wrote the main manuscript text. All authors reviewed the manuscript.

Funding Open access funding provided by The University of Tokyo. This work was supported by JSPS
KAKENHI Grant Number JP 21J20074 (Grant-in-Aid for JSPS Fellows).

Availability of data andmaterials No data is used in this study.

Declarations

Ethical Approval Not applicable

Competing interests The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Kurahashi, S.: Estimating Effectiveness of Preventing Measures for 2019 Novel Coronavirus Diseases
(COVID-19). Proceeding of 2020 9th Int. Congress Adv. Appl. Inf. 487–492 (2020). https://doi.org/10.
1109/IIAI-AAI50415.2020.00103

2. Mizuta, T., Kosugi, S., Kusumoto, T., Matsumoto, W., Izumi, K., Yagi, I., Yoshimura, S.: Effects of Price
Regulations and Dark Pools on Financial Market Stability: An Investigation by Multiagent Simulations.
Intell. Syst. Account. Finance Manag. 23(1–2), 97–120 (2016). https://doi.org/10.1002/isaf.1374

3. Hirano, M., Izumi, K., Shimada, T., Matsushima, H., Sakaji, H.: Impact Analysis of Financial Regulation
on Multi-Asset Markets Using Artificial Market Simulations. J. Risk Financial Manag. 13(4), 75 (2020).
https://doi.org/10.3390/jrfm13040075

4. Sajjad, M., Singh, K., Paik, E., Ahn, C.W.: A data-driven approach for agent-based modeling: Simulating
the dynamics of family formation. J. Art. Soc. Soc. Simul. 19(1), 9 (2016). https://doi.org/10.18564/jasss.
2988

5. Nonaka, Y., Onishi, M., Yamashita, T., Okada, T., Shimada, A., Taniguchi, R.I.: Walking velocity model
for accurate and massive pedestrian simulator. IEEJ Trans. Electron. Inf. Syst. 133(9), 1779–1786 (2013).
https://doi.org/10.1541/ieejeiss.133.1779

6. Shigenaka, S., Onishi, M., Yamashita, T., Noda, I.: Estimation of LargeScale PedestrianMovement Using
Data Assimilation. IEICE Trans. Inf. Syst. D. J. 101(9), 1286–1294 (2018). https://doi.org/10.14923/
transinfj.2017SAP0014

7. Moss, S., Edmonds, B.: Towards Good Social Science. J. Art. Soc. Social Simul. 8(4), 13 (2005). http://
jasss.soc.surrey.ac.uk/8/4/13.html

8. Matsushima, H., Uchitane, T., Tsuji, J., Yamashita, T., Ito, N., Noda, I.: Applying Design of Experiment
based Significant Parameter Search and Reducing Number of Experiment to Analysis of Evacuation
Simulation. Trans. Japanese Society Art. Intell. 31(6), 1–9 (2016). https://doi.org/10.1527/TJSAI.AG-E

9. Yamashita, Y., Shigenaka, S., Oba, D., Onishi, M.: Estimation of Large-scale Multi Agent Simulation
Results Using Neural Networks [in Japanese]. In: 39th Japanese Special Interest Group on Society andAr-
tificial Intelligence (SIG-SAI), p. 05 (2020). https://doi.org/10.11517/JSAISIGTWO.2020.SAI-039_05

10. Ozaki, Y., Tanigaki, Y., Watanabe, S., Onishi, M.: Multiobjective treestructured parzen estimator for
computationally expensive optimization problems. In: Proceedings of 2020 Genetic and Evolutionary
Computation Conference, pp. 533–541 (2020). https://doi.org/10.1145/3377930.3389817

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/IIAI-AAI50415.2020.00103
https://doi.org/10.1109/IIAI-AAI50415.2020.00103
https://doi.org/10.1002/isaf.1374
https://doi.org/10.3390/jrfm13040075
https://doi.org/10.18564/jasss.2988
https://doi.org/10.18564/jasss.2988
https://doi.org/10.1541/ieejeiss.133.1779
https://doi.org/10.14923/transinfj.2017SAP0014
https://doi.org/10.14923/transinfj.2017SAP0014
http://jasss.soc.surrey.ac.uk/8/4/13.html
http://jasss.soc.surrey.ac.uk/8/4/13.html
https://doi.org/10.1527/TJSAI.AG-E
https://doi.org/10.11517/JSAISIGTWO.2020.SAI-039_05
https://doi.org/10.1145/3377930.3389817

World Wide Web (2023) 26:3535–3559 3557

11. Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., Mordatch, I.: Emergent Tool
Use From Multi-Agent Autocurricula. In: Proceedings of the International Conference on Learning Rep-
resentations (2020). https://doi.org/10.48550/arxiv.1909.07528

12. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460(7256), 685–686 (2009).
https://doi.org/10.1038/460685a

13. Battiston, S., Farmer, J.D., Flache, A., Garlaschelli, D., Haldane, A.G., Heesterbeek, H., Hommes, C.,
Jaeger, C., May, R., Scheffer, M.: Complexity theory and financial regulation: Economic policy needs
interdisciplinary network analysis and behavioral modeling. Science 351(6275), 818–819 (2016). https://
doi.org/10.1126/science.aad0299

14. Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market.
Nature 397(6719), 498–500 (1999). https://doi.org/10.1038/17290

15. Cui, W., Brabazon, A.: An agent-based modeling approach to study price impact. In: Proceedings of 2012
IEEE Conference on Computational Intelligence for Financial Engineering and Economics, pp. 241–248
(2012). https://doi.org/10.1109/CIFEr.2012.6327798

16. Mizuta, T.: An agent-based model for designing a financial market that works well. arXiv (2019). https://
doi.org/10.48550/arXiv.1906.06000

17. Torii, T., Izumi, K., Yamada, K.: Shock transfer by arbitrage trading: analysis using multi-asset artificial
market. Evol. Inst. Econ. Rev. 12(2), 395–412 (2015). https://doi.org/10.1007/s40844-015-0024-z

18. Chiarella, C., Iori, G.: A simulation analysis of the microstructure of double auction markets. Quantitative
Finance 2(5), 346–353 (2002). https://doi.org/10.1088/1469-7688/2/5/303

19. Leal, S.J., Napoletano, M.: Market stability vs. market resilience: Regulatory policies experiments in an
agent-based model with low- and high-frequency trading. J. Econ. Behav. Organ. 157, 15–41 (2019).
https://doi.org/10.1016/j.jebo.2017.04.013

20. Paddrik, M., Hayes, R., Todd, A., Yang, S., Beling, P., Scherer, W.: An agent based model of the E-Mini
S&P500 applied to flash crash analysis. In: Proceedings of 2012 IEEEConference onComputational Intel-
ligence for Financial Engineering and Economics, pp. 257–264 (2012). https://doi.org/10.1109/CIFEr.
2012.6327800

21. Torii, T., Kamada, T., Izumi, K., Yamada, K.: PlatformDesign for Largescale ArtificialMarket Simulation
and Preliminary Evaluation on the K Computer. Art. Life Robotics 22(3), 301–307 (2017). https://doi.
org/10.1007/s10015-017-0368-z

22. Torii, T., Izumi, K., Kamada, T., Yonenoh, H., Fujishima, D., Matsuura, I., Hirano, M., Takahashi, T.:
Plham: Platform for Large-scale and Highfrequency Artificial Market (2016). https://github.com/plham/
plham

23. Torii, T., Izumi, K., Kamada, T., Yonenoh, H., Fujishima, D., Matsuura, I., Hirano, M., Takahashi, T.,
Finnerty, P.: PlhamJ (2019). https://github.com/plham/plhamJ

24. Sato, H., Koyama, Y., Kurumatani, K., Shiozawa, Y., Deguchi, H.: U-mart: a test bed for interdisciplinary
research into agent-based artificial markets. In: Evolutionary Controversies in Economics, pp. 179–190
(2001). https://doi.org/10.1007/978-4-431-67903-5_13

25. Arthur, W.B., Holland, J.H., LeBaron, B., Palmer, R., Tayler, P.: Asset pricing under endogenous expec-
tations in an artificial stock market. The Economy as an Evolving Complex System II, 15–44 (1997).
https://doi.org/10.1201/9780429496639-2

26. Byrd, D., Hybinette, M., Hybinette Balch, T., Morgan, J.: ABIDES: Towards High-Fidelity Multi-Agent
Market Simulation. In: Proceedings of the 2020 Conference on Principles of Advanced Discrete Simula-
tion, pp. 11–22 (2020). https://doi.org/10.1145/3384441.3395986

27. Murase, Y., Uchitane, T., Ito, N.: A Tool for Parameter-space Explorations. Phys. Proced. 57(C), 73–76
(2014). https://doi.org/10.1016/J.PHPRO.2014.08.134

28. Murase, Y., Matsushima, H., Noda, I., Kamada, T.: CARAVAN: A Framework for Comprehensive Sim-
ulations on Massive Parallel Machines. Massively Multi-Agent Systems II, 130–143 (2019). https://doi.
org/10.1007/978-3-030-20937-7_9

29. Angione, C., Silverman, E., Yaneske, E.: Using machine learning as a surrogate model for agent-based
simulations. PLOS ONE 17(2), 0263150 (2022). https://doi.org/10.1371/JOURNAL.PONE.0263150

30. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). https://doi.org/10.1007/
bf00992698

31. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988).
https://doi.org/10.1007/BF00115009

32. Tesauro, G.: Temporal Difference Learning and TD-Gammon. Commun. ACM 38(3), 58–68 (1995).
https://doi.org/10.1145/203330.203343

33. Rummery, G.A., Niranjan, M.: On-line Q-learning Using Connectionist Systems. University of Cam-
bridge, Department of Engineering Cambridge, England (1994)

123

https://doi.org/10.48550/arxiv.1909.07528
https://doi.org/10.1038/460685a
https://doi.org/10.1126/science.aad0299
https://doi.org/10.1126/science.aad0299
https://doi.org/10.1038/17290
https://doi.org/10.1109/CIFEr.2012.6327798
https://doi.org/10.48550/arXiv.1906.06000
https://doi.org/10.48550/arXiv.1906.06000
https://doi.org/10.1007/s40844-015-0024-z
https://doi.org/10.1088/1469-7688/2/5/303
https://doi.org/10.1016/j.jebo.2017.04.013
https://doi.org/10.1109/CIFEr.2012.6327800
https://doi.org/10.1109/CIFEr.2012.6327800
https://doi.org/10.1007/s10015-017-0368-z
https://doi.org/10.1007/s10015-017-0368-z
https://github.com/plham/plham
https://github.com/plham/plham
https://github.com/plham/plhamJ
https://doi.org/10.1007/978-4-431-67903-5_13
https://doi.org/10.1201/9780429496639-2
https://doi.org/10.1145/3384441.3395986
https://doi.org/10.1016/J.PHPRO.2014.08.134
https://doi.org/10.1007/978-3-030-20937-7_9
https://doi.org/10.1007/978-3-030-20937-7_9
https://doi.org/10.1371/JOURNAL.PONE.0263150
https://doi.org/10.1007/bf00992698
https://doi.org/10.1007/bf00992698
https://doi.org/10.1007/BF00115009
https://doi.org/10.1145/203330.203343

3558 World Wide Web (2023) 26:3535–3559

34. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller,
M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D.,Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

35. Bellemare, M.G., Veness, J., Bowling, M.: The Arcade Learning Environment: An Evaluation Platform
for General Agents. J. Art. Intell. Res. 47, 253–279 (2013). https://doi.org/10.1613/jair.3912

36. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural net-
works. In: Adv. Neural Inf. Process. Syst. 2, 1097–1105 (2012). https://doi.org/10.1145/3065386

37. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-Learning. In: Proceed-
ings of 30th AAAI Conference on Artificial Intelligence, pp. 2094–2100 (2016). https://doi.org/10.1609/
aaai.v30i1.10295

38. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Frcitas, N.: Dueling Network Archi-
tectures for Deep Reinforcement Learning. In: Proceedings of 33rd International Conference on Machine
Learning, pp. 2939–2947 (2016)

39. Fortunato, M., Azar, M.G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., Legg, S.: Noisy Netw. Explor. arXiv (2017). https://doi.org/10.48550/arXiv.
1706.10295

40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, USA (2018)
41. OpenAI: OpenAI Baselines: ACKTR & A2C (2017). https://openai.com/blog/baselines-acktr-a2c/

Accessed 2019-11-06
42. Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,W., Horgan, D., Piot, B., Azar,

M., Silver, D.: Rainbow: Combining improvements in deep reinforcement learning. In: Proceedings of
32nd AAAI Conference on Artificial Intelligence, pp. 3215–3222 (2018). https://doi.org/10.1609/aaai.
v32i1.11796

43. Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., Silver, D.: Distributed
Prioritized Experience Replay. arXiv (2018). https://doi.org/10.48550/arXiv.1803.00933

44. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., Dabney, W.: Recurrent Experience Replay in
Distributed Reinforcement Learning. In: Proceedings of International Conference on Learning Repre-
sentations, pp. 1–15 (2019)

45. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9(8), 1735–1780 (1997).
https://doi.org/10.1162/neco.1997.9.8.1735

46. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.: A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Sci. 362(6419), 1140–1144 (2018). https://doi.org/
10.1126/science.aar6404

47. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai,
M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van Den Driessche, G., Graepel, T., Hassabis,
D.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017). https://
doi.org/10.1038/nature24270

48. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous
control with deep reinforcement learning. In: Proceedings of 4th International Conference on Learning
Representations (2015). https://doi.org/10.48550/arxiv.1509.02971

49. Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,
Abbeel, P., Levine, S.: Soft Actor-Critic Algorithms and Applications. arXiv (2018). https://doi.org/10.
48550/arxiv.1812.05905

50. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: OffPolicy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor. Proc. 35th Int. Conf. Mach. Learn. 2976–2989 (2018).
https://doi.org/10.48550/arxiv.1801.01290

51. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian motion. Physi. Rev. 36(5), 823 (1930).
https://doi.org/10.1103/PhysRev.36.823

52. Wawrzyński, P., Tanwani, A.K.: Autonomous reinforcement learning with experience replay. Neural
Netw. 41, 156–167 (2013). https://doi.org/10.1016/j.neunet.2012.11.007

53. Frankle, J., Carbin, M.: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. Pro-
ceedings of 7th International Conference on Learning Representations (2018). https://doi.org/10.48550/
arxiv.1803.03635

54. Bookstaber, R.M.: The End of Theory: Financial Crises, the Failure of Economics, and the Sweep of
Human Interaction. Princeton University Press, USA (2017)

55. Corsi, F.: Measuring and modelling realized volatility: from tick-by-tick to long memory. PhD thesis,
Universitá della Svizzera italiana (2005)

123

https://doi.org/10.1038/nature14236
https://doi.org/10.1613/jair.3912
https://doi.org/10.1145/3065386
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.48550/arXiv.1706.10295
https://doi.org/10.48550/arXiv.1706.10295
https://openai.com/blog/baselines-acktr-a2c/
https://doi.org/10.1609/aaai.v32i1.11796
https://doi.org/10.1609/aaai.v32i1.11796
https://doi.org/10.48550/arXiv.1803.00933
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arxiv.1509.02971
https://doi.org/10.48550/arxiv.1812.05905
https://doi.org/10.48550/arxiv.1812.05905
https://doi.org/10.48550/arxiv.1801.01290
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1016/j.neunet.2012.11.007
https://doi.org/10.48550/arxiv.1803.03635
https://doi.org/10.48550/arxiv.1803.03635

World Wide Web (2023) 26:3535–3559 3559

56. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter opti-
mization framework. In: Proceedings of the 25th International Conference on Knowledge Discovery &
Data Mining, pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/3292500.3330701

	Neural-network-based parameter tuning for multi-agent simulation using deep reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Proposed methods
	3.1 Customized DDPG
	3.2 Customized SAC
	3.3 Action converter (AC)
	3.4 Redundant full neural network actor (FNNA)
	3.5 Seed fixer (SF)

	4 Experiments
	4.1 Task setting
	4.1.1 Simulation
	4.1.2 Objective value

	4.2 Models
	4.2.1 Baseline model: tree-structured parzen estimator (Optuna)
	4.2.2 Our customized DDPG
	4.2.3 Our customized SAC

	4.3 Evaluation

	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgements
	References

