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Abstract
Social influence prediction has permeated many domains, including marketing, behavior
prediction, recommendation systems, and more. However, traditional methods of predict-
ing social influence not only require domain expertise, they also rely on extracting user
features, which can be very tedious. Additionally, graph convolutional networks (GCNs),
which deals with graph data in non-Euclidean space, are not directly applicable to Euclidean
space. To overcome these problems, we extended DeepInf such that it can predict the social
influence of COVID-19 via the transition probability of the page rank domain. Furthermore,
our implementation gives rise to a deep learning-based personalized propagation algorithm,
called DeepPP. The resulting algorithm combines the personalized propagation of a neu-
ral prediction model with the approximate personalized propagation of a neural prediction
model from page rank analysis. Four social networks from different domains as well as two
COVID-19 datasets were used to analyze the proposed algorithm’s efficiency and effective-
ness. Compared to other baseline methods, DeepPP provides more accurate social influence
predictions. Further, experiments demonstrate that DeepPP can be applied to real-world
prediction data for COVID-19.

Keywords COVID-19 · Social influence · Personalized propagation · Deep learning

1 Introduction

With the explosion of big data, social networks are providing a plethora of information on
user interactions [1, 2]. For example, Twitter’s average realizable daily active count in the
second quarter of 2022 was 237.8 million, a year-on-year increase of 16.6% [3]. However,
what we are seeing with the isolation imposed by COVID-19 is social networks playing an
even more important role in the everyday interactions between people - particularly when it
comes to social influence. The term ’social influence’ is usually understood as the process
whereby a user’s emotions, opinions, or behaviors are shaped by their environment, i.e.,
the process by which people alter their behavior under the influence of others [3]. With
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the globalization of online social networks, social influence analysis has spread to many
domains, including marketing [4], behavior prediction [5], recommendation systems [6,
7], influence maximization [8], public opinion guiding [9], communities [10], and graph
anomaly detection [11]. We cannot deny that social influence has become ubiquitous and
complex in shaping our social decisions. Therefore, there is much interest in developing
methods to understand, describe, and identify the mechanisms and evolutions behind the
social influence.

The process of predicting influence on a user involves sampling local neighbors, build-
ing a local network from the samples, and then learning the potential predictive signals from
that network. Matsubara et al. [12] designed a dynamic model of social influence based
on a differential equation drawn from classic susceptibility theory. The approach proposed
by Li et al. [13] combines RNNs with representation learning to infer the cascading size
of features. With both these methods, the aim is to predict the statistical patterns of social
influence over time, including cascading size and global patterns. According to Qiu et al.
[14], the famous social influence prediction method, DeepInf, has been developed for gen-
eral social networks scenes. The idea is that we can predict the user’s behavior state by
taking into account the behavior state and characteristics of their neighbors. However, due
to the sparsity, the neighbor information of the COVID-19 network is very limited, so they
are invalid for the network-based COVID-19 prediction.

In this paper, to overcome these issues, we extended DeepInf such that our proposed
model utilizes personalized propagation to predict social influence at the user level. We
built on DeepInf [14] by integrating the transition probability α of the page rank domain
with a GCN model. Specifically, our proposed model first uses a graph neural network to
learn the latent social representation of users by taking their local network as input. We then
replace the GAT/GCN network with PPNP (personalized propagation of neural predictions)
[15], a model that enhances influence scores efficiently. Meanwhile, α adjusts the size of
the neighborhood influence. H is the prediction matrix, and αH offers greater flexibility, as
shown in Figure 1. Finally, the transition probability α provides us with a way to achieve
the ideal balance between maintaining locality (i.e., retaining a close proximity to the root
to avoid over-smoothing) and leveraging the information obtained from large neighbors. In
experiments, this propagation scheme has been shown to be extremely efficient and has the

Figure 1 The neural network first predicts the influence of each node according to its own characteris-
tics. Then, the personalized PageRank algorithm is used to propagate influence adaptively. (a) shows the
personalized propagation. (b) shows the improved personalized propagation
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benefit of being able to use far more propagation steps (an infinite number in fact) without
resulting in over-smoothing of the output. In short, we extended DeepInf by leveraging the
two algorithms, PPNP and APPNP (approximation to PPNP) [15] extended from a GCN,
and transplanting them from page ranking into social influence analysis. Our implementa-
tion gives rise to deep learning-based personalized propagation algorithm, called DeepPP.
The algorithm predicts how v will behave in the future based on its current behavior by ana-
lyzing the state of n neighbors around a user v. An active or inactive node (user) can exist
in the system. But, to forecast the state of v at the end of the interval, we need to know v’s
current state.

We examined four social networks in various domains to evaluate our algorithm’s effi-
ciency and effectiveness, including OAG, Digg, Twitter, and Sina Weibo, as well as two
COVID-19 datasets (Hubei and Holland). We compared DeepPP with: a conventional
GNN* model [16], the advanced PPNP and APPNP [15], and the most famous models,
DeepInf [14] and DeepEmLAN [17]. The results of an extensive study demonstrated that
DeepPP provided a better F1 − Measure than the current advanced baselines. On the
COVID-19 datasets, the DeepPP provided a higher level of precision. It has been demon-
strated that DeepPP can predict the social influence of COVID-19 based on excellent
performance on various datasets.

The following list summarizes our main contributions.

1. Inspired by DeepInf, we integrated the transition probability α of the page rank domain
into a GCN model, thereby extending DeepInf.

2. The resulting DeepPP algorithm repurposes PPNP and APPNP without any additional
time complexity from page ranking to social influence analysis.

3. Comprehensive evaluations of model performance show DeepPP to be more accurate
than the baseline methods.

Following is the remainder of this paper. We review the status of research on social influ-
ence prediction in Section 2. Section 3 introduces the overview of DeepPP and outlines
the personalized propagation process based on deep learning for modeling the social influ-
ence of COVID-19. Section 4 describes the experiments used to validate DeepPP. Section 5
highlights concluding remarks and next steps.

2 Related work

Our literature review covers the following topics: traditional social influence analysis, deep
learning-based social influence prediction, and graph representation learning. The results
show that an accurate model for predicting social influence may not have been established.

2.1 Methods of traditional social influence analysis

Social influence analysis is traditionally based on the study of interpersonal communica-
tions, where user features are typically extracted by hand, which can be tedious. Further,
the analyses are based on domain expertise in sociology or cognitive science and, therefore,
extending the results is difficult [14]. A study by Li et al. [18] distinguished two types of
social influence analysis models: (1) macro, which assumes all users have equal power to
influence; and (2) micro, which explores individual levels of user influence. Of the micro-
level influence models, independent cascade and linear threshold are the two most common.
Nevertheless, both types of models assume that users will not change their state, i.e., the
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probability of influencing others or being influenced [19] using Bayes Theorem [20, 21].
As such, they are not particularly reflective of real social networks.

2.2 Methods of social influence prediction with deep learning

Many fields have benefited from deep learning, and social influence analysis is no excep-
tion. However, its application to this field is relatively recent. To date, both micro- and
macro-level methods of analysis have been developed. Micro-level models focus on user
interactions. The key assumption is that user interactions, e.g., ratings, comments, retweets,
affect the behavior of others. One of the most advanced models is DeepInf [14], a model
that predicts user-level influence from end to end. It integrates a network embedding [22]
with a GAT [23] and a GCN [24]. Both GATs and GCNs are better suited to non-Euclidean
spatial data at aggregating features of neighbor vertices onto central vertices than traditional
machine learning methods [25]. In fact, experiments with DeepInf show the best predictive
performance with multi-headed GATs, even when compared to a GCN [24]. By using dual
GNNs instead of a single GNN in recommender systems, Wu et al. [26] designed a deep
latent representation of multifaceted social impact.

The macro-level solutions focus on the patterns of global social influence. For example,
DeepCas [13], a method of analyzing macro-social impact models using RNNs, involves a
pattern of cascading that includes all aspects of the cascading and their associations with
the final cascading size [22]. In this method, as a two-dimensional colored diagram, an
end-to-end predictor visualizes all cascades of influence information. Using DeepCas as
inspiration, Cao et al. [27] developed a method which represents information cascades using
an explainable model of the generation Hawkes process [28]. Their model showed bet-
ter performance than traditional generation and feature-based models. DeepHawkes [27],
as well as DeepInf, is data-driven, which means it can learn from previous cascades and
can take advantage of historical information. A data-driven cascading method called LST-
MICs, that uses long short-term memory (LSTM), was further developed and extended by
Gou et al. [29] to learn sequence features from cascading features and RNN functions.
They used a Weibo and a Twitter dataset to predict outbreaks more accurately than previ-
ous methods. With Cas2vec [30], it is possible to accurately predict virus cascades without
manually extracting the relevant information from the framework, which could be costly to
obtain. Time intervals are used instead of the information contained in the events to extract
information.

Social influence analysis models are closely related to graph representation learning,
and many studies have been conducted on graph representation learning as part of graph
mining, e.g., DeepWalk [31], Line [32], Node2vec [33], Metapath2vec [34], NetMF [35],
Graph Kernel [36], and the most advanced method PSCN [37]. More recently, researchers
have been exploring the notion of graph representation learning with semi-supervised infor-
mation. Some examples include GCN [24], GraphSage [38], and GAT [23] as the most
advanced model.

3 Methodology

Analyzing social influence with deep learning techniques is a problem related to GNN.
Because GNN in recommendation systems has other types of applications, such as col-
laborative filtering and predictive page ranking, drawing inspiration from other fields to
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improve our existing research is a highly useful exercise. Figure 2 illustrates personal-
ized propagation based on deep learning for modeling the social influence associated with
COVID-19.

3.1 Influence propagating

We extended DeepInf by leveraging two algorithms, PPNP and APPNP. Klicpera et al. [15]
proposed them by extending a GCN, where each node has the same effect on its neighbors.
In other words, the independent cascade model recalled in Section 2 has the same influence
scores and probability of being propagated to its neighbors for each edge. With the transition
probability α, information transmission is adjusted so that each node has a different influ-
ence on its neighbors. In experiments, PPNP and APPNP algorithms perform better than the
GNN algorithm when the transition probability α is set to between 0.05 and 0.2 [15]. This is
also compared to the GCN algorithm, which has an average effect on all neighbors. Given
that the graph G = (V, E) contains |V | vertices and |E | edges. A is the adjacency matrix
of G. In is the added self-loops for V . Let Â = A + In. The transport vector ix preserves
the local neighborhood of the node [39]. Essentially, the I (x, y) score (i.e. Influence of root
node x on non-root node y) is equivalent to the y(th) of a personalized page ranking πpr(ix).
A recursive equation with a transport vector is expressed with a transition probability α as:

πpr(ix) = α((In) − (1 − α)Â)−1ix, α ∈ (0, 1) (1)

The influence score in (1) can be used to generate the prediction objective function.

Z = sof tmax(α(In − (1 − α)Â)−1H),Hi,i = Fθ (Xi,s ) (2)

where Xi is the eigenmatrix. H is the prediction matrix. Fθ represents a neural network
that predicts H ∈ R

n×c. (1) and (2) are the PPNP model. However, calculating the time
complexity requires a dense matrix R

n×c with the time complexity O(n2). APPNP was
developed as a means of addressing this shortcoming. More specifically, by using the power
method, which has a linear computational complexity, the eigenvalues for diagonalizable
matrices are calculated as:

Z(0) = H = fθ (X) (3)

Z(k+1) = (1 − α)ÂZ(k) + αH (4)

Z(k) = sof tmax((1 − α)ÂZ(k−1) + αH) (5)

where Z(k) is a transport set that can effectively provide approximate predictions. The
integer k defines the number of steps required to perform a power iteration.

Our model is derived from a GCN and a graph attention network model as follows.

Figure 2 Overview of the DeepPP model. The neighbors of node v are sampled with the goal being to predict
the state of node v after a number of iterations
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3.2 Network encoding with a GCN

GCN, that analyses graph-structured data, is semi-supervised learning [24]. For eigen
decomposition, the GCN uses a Laplace graph of the Fourier domain. Specifically, the rule
in (6) for a GCN is layer-by-layer propagation, which consists of multiple GCN layers.

F
(
H(l),A

)
= σ

(
AH(l)W(l)

)
(6)

where,H(0) is the eigenmatrix. WhenD is normalized, the adjacency matrixA benefits from
a diagonal node degree matrix by preserving the graph’s self-loop. Putting all this together,
A is as follows:

A = D̂− 1
2 ÂD̂− 1

2 (7)

3.3 Multi-head attention with a GAT

Another neural network model, a GAT [40, 41], processes graphical structured data in the
propagation using self-attention techniques. In more detail, the GAT calculates the node
states based on the node’s neighbors, where each node is assigned an attention factor,
calculated using its coefficient of attention αij (i → j ).

αij =
exp

(
LeakyReLU

(
�αT

[
W�hi

∥∥∥W�hj

]))

∑
k∈Ni

exp
(
LeakyReLU

(
�αT

[
W�hi

∥∥∥W�hj

])) (8)

By the weight matrix
[
W�hi

∥∥∥W�hj

]
, (W ∈ R

F×F ), α as a weight vector. T stands for

transposition, ‖ stands for series operation. By combining the normalized attention coef-
ficient and the linear feature combination of the final output feature, we can obtain the
following expression.

�h′
i = σ

⎛
⎝∑

j∈Ni

αijW�hj

⎞
⎠ (9)

The characteristic functions can be concatenated using the k independent attention layers
in (9) through the multi-head attention technique, which is an appropriate approach for the
learning process:

�h′
i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k �hj

⎞
⎠ (10)

3.4 Modeling the social influence of COVID-19

Through deep learning, DeepInf can automatically identify hidden patterns at the user level
and predict their influence. PPNP is a personalized neural prediction propagation algo-
rithm. By combining the PPNP and APPNP algorithms, we improve the DeepInf method to
model the social influence of COVID-19. More specifically, we combine the personalized
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page ranking algorithms in the DeepInf method. The GAT/GCN network is replaced with a
personalized page ranking model, and a novel algorithm named DeepPP is devised.

We use the transfer probability α to adjust the size of the neighborhood influence. There-
fore, the regression equation of a stealthy transport vector enhancement is combined with
the prediction matrix H and the stealthy transfer probability α as (11)

ZDeepPP = sof tmax(α(In − (1 − α)Â)−1H + αH) (11)

PPNP’s linearity is reduced by adding αH. The flexibility of αH is apparent in practical
applications.

To demonstrate the algorithm, Figure 3 shows two examples from the Digg dataset.
Social influence prediction aims to predict the behavior state of target node v from neigh-
boring nodes. User v represents the target node. The solid nodes represent the active state
‘1’, and the hollow nodes represent the inactive state ‘0’. Figure 3(a) shows a social influ-
ence prediction with an active node, while Figure 3(b) shows a prediction with an inactive
node. Our experiments show that DeepPP predicts the ground truth more accurately than
DeepInf.

Figure 3 Two samples from the Digg dataset. (a) Social influence prediction with an active node. (b) Social
influence prediction with an inactive node
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4 Experiments

In our experiments, we compared the DeepPP model with the conventional models GNN*
[16], PPNP and APPNP [15], and the most advanced available models DeepInf [14] and
DeepEmLAN [17]. To avoid confusion with GNN in a broader sense, the particular method
we used has been named GNN*. GNN* is an extension to a common framework that
includes information diffusion, relaxation mechanisms, and a random walk model. Its input
can be a cyclic graph, a directed graph, an undirected graph, or a mixed graph. DeepEm-
LAN integrates different types of attributes and topologies into a single semantic space in
a seamless manner, while retaining different types of attributes and topologies to the extent
possible. The learning rate for all baselines was set to 0.1, and 1000 epochs for mean square
error loss.

4.1 Datasets

To train the classification models, three categories of features were considered for ego-
user:(a) vertex features; (b) pretrained network embeddings (in DeepWalk [31]); and (c)
hand-crafted features. They are listed in Table 1.

4.1.1 Four social networks in different domains

We conducted the experiment with four datasets from different fields. Table 2 presents the
statistical information. |V | and |E | represent the number of nodes and edges in graph G =
(V, E), respectively. There are N observable instances.

OAG . Microsoft Academic Graph and Aminer are linked in this dataset. [47]. We chose 20
major conferences in the areas of computer science and artificial intelligence, such as SIG-
COMM, SIGMOD, AAAI, NeurIPS, similar to the approach described in [48]. The social
networks were defined as co-author networks, and social behavior was defined as citation
behavior where one researcher cites a paper presented at the conference. Specifically, we
want to know how collaborators influence citation behavior.

Digg , a social news site, is based in the United States. There are two features, digging and
burying, based on whether people agree with the story. In this dataset, we provide data on
the stories that appeared on the front page of major newspapers in 2019.

Table 1 List of features for ego-user

Feature Description

Vertex PageRank [15], eigenvector centrality [12], reciprocal

of ego user’s degree [14], coreness [42], clustering

coefficient [43], hub score and authority score [44].

Embedding Embedding of pre-trained networks

Ego Active neighbors/ratio [45], the density of subnetworks

and the number of connected components

formed by active neighbors [46]
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Table 2 Statistics for the datasets

symbol OAG Digg Twitter Weibo

|V| 953,675 71,367 456,626 1,776,950

|E | 4,151,463 1,731,658 12,508,413 308,489,739

N 499,848 27,323 499,160 779,164

Twitter . The Twitter dataset was built from propagations of the announcement of the dis-
covery of the elusive Higgs boson on Twitter in July 2012. This is a friendship network
where social behaviors are mapped from retweets in Twitter.

Weibo [14]. Sina Weibo is the most widely used microblogging service in China. It’s a
social media platform based on user relationships. At present, the monthly active users are
523 million, and the daily active users are 229 million. This dataset contains target tracking
networks and tweets during Sept. 28-Oct. 29., 2012.

4.1.2 COVID-19 Datasets

Hubei (see Figure 4). This is a dataset of infected cases provided by the Hubei Provincial
Health Committee 1 [49]. In December 2019, COVID-19 first appeared in Wuhan, China.
On January 21st, 2020, Hubei Provincial Health Committee reported the first case outside
Wuhan. Then from February 15, 2020, the diagnostic policy was changed , resulting in a
sharp increase in the number of recorded infection cases. Therefore, this dataset is limited
to the period from January 21 to February 14, 2020.

Holland (see Figure 5). This dataset contains data on infection cases collected by the Dutch
National Institute for Public Health and the Environment 2 [50]. The first infection, diag-
nosed on February 27, 2020, went to Italy a week ago, after which the number of cases
grew rapidly. Reported cases reached their peak at the end of March, followed by a down-
ward trend in daily reported cases. As reported cases in Holland increased more slowly than
that in Hubei, the overall infection period was longer and there are more data points. The
gradually increasing number of infected cases is conducive to the accuracy of prediction.

4.2 Evaluation

The following metrics were used to measure performance in the experiments: AUC,
Precision, Recall, and F1 − Measure [51].

We first analyzed the overall performance of methods. We searched each parameter in
the threshold space across the six datasets and calculated the corresponding F1 to get the
most appropriate value, i.e., the best F1 − Measure (F1best ). Figure 6 shows the F1best

score and the total average of the datasets. On F1best , DeepPP was on average 2.01% higher
than DeepEmLAN, 2.80% higher than APPNP, 3.78% higher than PPNP, 6.26% higher

1http://wjw.hubei.gov.cn/fbjd
2https://www.rivm.nl
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Figure 4 Infection during COVID-19 in Hubei, China

than DeepInfGAT, and 8.73% higher than DeepInf-GCN. Hence, DeepPP yielded superior
results to the baselines.

To determine the effects of hyper-parameters, the transfer probability α was adjusted
from 0.2≤ α ≤1.0, in 0.2-step increments. We then ran 1024 mini batches over 1000
epochs. Moreover, we used dropout technology with a dropout rate of 0.2. We compared
predictions at α = 0.2, 0.4, 0.6, and 0.8. These results, as detailed in Table 3, clearly indi-
cate that DeepPP outperformed the other six method in terms of AUC, Precision, Recall,
and F1 Measure. In DeepInf, DeepInf-GAT had the higher predictive performance than
DeepInf-GCN. According to Table 3, DeepPP, DeepEmLAN, APPNP and PPNP were com-
petitive. However, DeepInf-GAT was especially good with regard to Precision on theWeibo,
Hubei, and Holland datasets.

Some models based on deep learning were proposed to analyze the social influence, such
as the famous DeepInf. We designed a novel model to improve the prediction, which draws
on DeepInf, PPNP and APPNP as inspiration. However, compared to the baseline methods,
DeepPP has: more flexibility in practical applications, a more convenient way to adjust the
parameters; and better performance with large and small datasets.

4.3 Parameters analysis

In terms of the gauging the influence of the other parameters, there are three categories
to test: 1) the basic training parameters, which include the window size and the z-variable
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Figure 5 Infections during COVID-19 in Holland

dimension of the potential space; 2) the temporal convolution network (TCN) unit param-
eters, i.e., the filter size and the TCN levels; and 3) the score attention parameters. For all
these experiments, we set α to 0.8.

First, we studied the effects of changing the windows size. This directly affects the
length of the time-dependencies in the historical data. The larger the window, the more data
dependencies that can be captured. However, as the window size increases, so does the com-
puting power required, which in turn affects the detection speed. The first row of Figures 7
and 8 shows that five window sizes were tested, i.e., 5, 20, 50, 100, 300. OAG and Weibo

Figure 6 A comparative analysis of DeepPP and baseline methods in F1best across six datasets
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Figure 7 The effect of parameters on OAG, Digg and Twitter

reached maximum F1− score at a window size of 50, while Digg, Twitter, Hubei and Hol-
land reached their maximums at a window size of 100. From this, we determined that the
optimal window size relates to the composition of the dataset. A small window expresses
better performance for datasets with weak time correlations. However, with time-dependent
datasets, small windows cannot capture long-term dependencies. Additionally, observing
the six datasets, all showed a performance degradation with a window size of 300. This
indicates that, if the length of the data is too long, the generalization ability of the model
will decrease. In addition, a too-large window will lead to a rapid increase in the required
computing power, a larger model scale, and a slower training speed.

Next, we studied the effects of the second basic parameter, being the variable z in the
m-dimension. The second row of Figures 7 and 8 shows the results for five z-variable dimen-
sions. What we see is poor performance with the OAG dataset with a small z-dimension.
This is because the dimension is mapped to a small potential variable space, which results
in a large amount of information loss in the encoder stage. In turn, the decoder is unable
to recover, resulting in performance degradation. We also observed that changes in the
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Figure 8 The effect of parameters on Weibo, Hubei and Holland

z-dimension had little effect on performance with the Hubei and Holland datasets. As z

increased, the loss in the training process changed greatly. However, many iterations helped
the models to stabilize.

The TCN filter size was next. Here, we fixed the expansion factor d, so only the filter
size needed to be adjusted to change the field size. The third row of Figures 7 and 8 show
the results for five filter sizes. As shown, the optimal filter size for the smaller Digg dataset
was 7, while for the Hubei and Holland datasets, the optimal size was 14. This indicates
that the optimal filter size is determined by the size of the dataset. However, due to the fixed
expansion coefficient, a model’s performance is relatively unaffected by the choice of filter
size.

In terms of TCN levels, we found that changes in the TCN level directly affected the
scale of the DeepPP model. The fourth row of Figures 7 and 8 shows the results for four
TCN levels. From a data perspective, OAG and Digg (group training) have a smaller data
scale, and so we saw better performance when using a smaller TCN level. Conversely, for
the large-scale Hubei and Holland datasets, representation performance was greatly reduced
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at a TCN level of 1. Moreover, the smaller models could not capture the time dependencies
effectively. From a model point of view, performance was excellent with a TCN level of 8.
However, at a TCN level of 14, although the Weibo dataset showed a slight improvement,
the size of the model almost doubled, which is unworkable in practice.

Next, we looked at score attention, varying the parameter’s value across 2, 5, 10, 25, 50.
The role of this mechanism is to improve the accuracy of abnormal data that is close to
normal. The results, appearing in the fifth row of Figures 7 and 8, show that varying this
parameter has little effect on the results. This therefore warrants further attention in our
ablation experiments.

Test Loss Figure 9 shows a common trend, namely, that the final test loss decreases with
an increase in α. In fact, the results show that the larger α is, the less the test loss and the
better the performance. From a comparison of four models with different datasets, as shown
in Figure 9, we see that DeepPP had better performance than any of the other algorithms.

4.4 Spread analysis of the COVID-19

To illustrate the advantages and disadvantages of our method, we chose a COVID-19 dataset
from two different regions, Hubei and Holland. Although these two areas do not represent
complete representations of COVID-19’s spread, they can reflect the spread of infectious
diseases in general.

4.4.1 Hubei

Figure 10 shows the change in prediction accuracy of different prediction algorithms
over time. The dates are displayed along the horizontal axis. From January 22, we used
all the available information to make COVID-19 day-ahead prediction. For example, in
Figure 10(a), the rightmost point displays the results from January 22 to February 13 to
predict what will happen on February 14.

Over time, the absolute percentage mean error (APME) error has a tendency to decrease
as the amount of data available increases. A rapid increase in infection cases was followed

Figure 9 Test loss with α ∈ (0.2, 1.0). (a) Test loss on OAG, (b) Test loss on Digg, (c) Test loss on Twitter,
(d) Test loss on Weibo, (e) Test loss on COVID-19 in Hubei, (f) Test loss on COVID-19 in Holland
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Figure 10 COVID-19 day-ahead predictions from Hubei China. Predictions are given over a 1-to-6-day
interval (see subfigures (a) to (f))

by a more gradual trend, displaying a sub exponential rise in daily infections. The APME
error will decrease with sub-exponential growth since it is a measure of relative error.
Also, as the prediction horizon extends, prediction accuracy decreases rapidly. As shown in
Figure 10(e) and (f), it is not possible to accurately predict the number of cases five or six
days before and after February 1.

DeepEmLAN performed better, but it did not find an accurate prediction before and after
January 31. The time series in the leftmost part of Figure 10 is the shortest, so there was less
data available to train DeepEmLAN. In these cases with short time series, the prediction
accuracy of this pure machine learning algorithm was lower than the other methods.

4.4.2 Holland

Prediction accuracy with the Holland dataset is shown in Figure 11. The COVID-19 situa-
tion in Holland was essentially the same as in Hubei prior to April 1, 2020. Here, DeepPP
proved to be the best method but with large deviations in prediction accuracy. All compared
algorithms have been roughly the same since April 1. Also, whether the network is initially
static or dynamic appears to have little effect on prediction accuracy. The DeepPP algorithm
is trained on more and more infection data over time. The DeepInf-GCN and DeepInf-
GAT separation methods performed best in the whole cycle, while PPNP and DeepEmLAN
performed worst.

The prediction accuracy of DeepPP and APPNP is comparable. One possible reason is
that the transmission of COVID-19 was primarily inter provincial interaction. The COVID-
19 spread mainly in the provinces after the end of March. We then compared the spread
of COVID-19 across all seven algorithms. The errors are listed in Table 4, obtained by
averaging all APME prediction errors over a 1-to-6-day prediction interval. Table 4 clearly
illustrates that the prediction error of DeepPP algorithm is smaller than the other algorithms,
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Figure 11 COVID-19 day-ahead predictions from Holland. Predictions are given over a 1-to-6-day interval
(see subfigures (a) to (f))

because DeepPP takes into account cities interact with each other. The prediction errors for
DeepPP in each city are equal to that of DeepEmLAN. In conclusion, the network-based
method offers better prediction accuracy.

4.4.3 Ablation experiments

In the ablation experiments, we compared multiple variants of DeepPP: DeepPP-RNN,
DeepPP-noPNF, DeepPP-noScoreAttention, DeepPP-noPointAdjust, using the DeepPP
prototype as the control model. DeepPP-RNN replaces the TCN unit with an RNN.
DeepPP-noPNF replaces the transformation process in the potential space with a Gaussian
distribution N(0, 1). DeepPP-noScoreAttention omits the score attention mechanism and,

Table 4 Error comparison of different methods

Algorithm Error in Hubei Error in Holland Bias

GNN* 0.15 0.043 under

DeepInf-GCN 0.14 0.042 over

DeepInf-GAT 0.13 0.044

PPNP 0.14 0.051 over

APPNP 0.14 0.043

DeepEmLAN 0.16 0.057 under

DeepPP 0.13 0.038
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Figure 12 A comparative analysis of ablation experiment in F1best on six datasets

similarly, DeepPP-noPointAdjust omits the point adjust method. For fairness, we also elim-
inated the peaks-over-threshold (POT) mechanism in our model and used F1best as the
evaluation indicator.

As can be seen from Figure 12, DeepPP-RNN did not perform as well as DeepPP. This is
because a simple RNN cannot capture the long-term dependencies in time series data. More-
over, DeepPP resulted in a much smaller model that took far less time to train compared to
DeepPP-RNN. Hence, training DeepPP would be much easier. From the perspective of the
impact of latent space, PNF can capture complex latent variable data patterns and help build
and generate latent space variables. From DeepPP-noPNF and DeepPP-RNN in Figure 12,
there is evidence that the noPNF variant has a lesser impact on the model compared to the
RNN variant, while the RNN variant had a greater impact with the Digg dataset. This is
because the scale of packet data in the Digg dataset is very small, so the RNN was able to
capture the time dependencies.

In general, the impact of DeepPP-noScoreAttention and DeepPP-noPointAdjust on
model organization was smaller than DeepPP-RNN and DeepPP-noPNF. After DeepPP-
noScoreAttention eliminates the abnormal scoring mechanism, the gap between DeepPP-
noScoreAttention and DeepPP is very small. This is because the score attention mechanism
has abnormal data close to normal data. The detection results have an impact, but the impact
is much smaller than with the overall model. DeepPP-noPointAdjust had the greatest impact
with the Twitter dataset. This is because point adjustment can effectively detect continuous
anomaly types. Compared to abnormally scattered datasets and massive data, the impact is
much greater.

5 Conclusion

We presented a deep learning-based personalized propagation algorithm, referred to as
DeepPP. By extending DeepInf, this algorithm integrates the transition probability of the
page rank domain with a GCN. The method can adjust the size of a neighbor’s influence. It
also has greater flexibility. A variety of social networks (OAG, Digg, Twitter, and Weibo) as
well as two COVID-19 datasets (Hubei and Holland) were studied in extensive experiments.
As demonstrated by the results, DeepPP yielded better F1 − Measure than the current
advanced baselines. The proposed method performed better on the COVID-19 datasets in
precision. The excellent performance of DeepPP on various datasets proves that it can be
effectively applied to general real-world scenarios for predicting the social influence of
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COVID-19. However, although we used a transition probability to achieve greater flexibil-
ity in our modeling, we did not consider any user-specified constraints. Further exploring
and incorporating these into the model is a worthy future research direction. Another excit-
ing direction would be to use reinforcement learning to combine sampling and learning for
modeling the social influence of COVID-19.
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