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Abstract
Graph learning is being increasingly applied to image clustering to reveal intra-class and 
inter-class relationships in data. However, existing graph learning-based image clustering 
focuses on grouping images under a single view, which under-utilises the information pro-
vided by the data. To address that, we propose a self-supervised multi-view image cluster-
ing technique under contrastive heterogeneous graph learning. Our method computes a het-
erogeneous affinity graph for multi-view image data. It conducts Local Feature Propagation 
(LFP) for reasoning over the local neighbourhood of each node and executes an Influence-
aware Feature Propagation (IFP) from each node to its influential node for learning the 
clustering intention. The proposed framework pioneeringly employs two contrastive objec-
tives. The first targets to contrast and fuse multiple views for the overall LFP embedding, 
and the second maximises the mutual information between LFP and IFP representations. 
We conduct extensive experiments on the benchmark datasets for the problem, i.e. COIL-
20, Caltech7 and CASIA-WebFace. Our evaluation shows that our method outperforms the 
state-of-the-art methods, including the popular techniques MVGL, MCGC and HeCo.
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1 Introduction

Clustering is typically thought of as a single view problem in computer vision, where an 
algorithm groups individual data samples based on their overall qualities. These samples, 
however, may be the outcome of various interpretations or representations of the underly-
ing data. For instance, we can generate different sets of samples as Gabor [1], CLD [2] and 
HOG [3] descriptors of the images. These representations may hold complementary prop-
erties that can be leveraged for improved clustering. This fact has recently piqued interest 
of the computer vision community, resulting in an emerging topic of multi-view clustering 
(MVC) [4–12].

Another contemporary line of research for image clustering favors graph-based meth-
ods [13–17]. The main benefit of graphs for the clustering problem is that they naturally 
have the capacity to encode data structure information. For instance, methods like [13, 14, 
18–22] leverage trained Graph Convolutional Networks (GCNs) for images to reason about 
the linkage likelihoods between a given node and its neighbours for graph completion, 
thereby achieving more accurate clusters.

In general, graph-based methods are known to benefit from Contrastive Learning 
(CL) [23], which induces models using self-supervision. During training, it maximises the 
agreement between its predictions and the transformed samples of the original sample. For 
graphs, the analogous Contrastive Graph Learning (CGL) paradigm aims to maximise the 
prediction agreement on different views of the same underlying graph [4–7, 24]. These 
views are created by applying random operations, e.g., adding/deleting nodes/edges and 
dropping features, to an original graph. In line with the negative sample creation in CL, the 
CGL considers other original graphs as the negative samples. It learns node-level (intra-
view) or graph-level (inter-view) representations - illustrated in Fig.  1(a) - with a graph 
neural network and a contrastive loss function.

The self-supervised CGL paradigm naturally suites to the multi-view perspective. For 
instance, [25] and [26] created different graph views and then utilised node-level and 
graph-level representations for multi-view contrastive learning. These methods consider 
structural semantics as global information for learning the node-level embeddings, neglect-
ing the fact that each node can also have various features to provide more information. 
Coming back to our main problem of multi-view image clustering, existing methods gen-
erally first compute a data affinity matrix for raw features or learned representation under 
multiple views, and then perform clustering using the affinity matrix [27–34]. These meth-
ods concatenate multiple views to construct a denoised homogeneous graph for image clus-
tering. We provide a simple illustration of a multi-view homogeneous graph for image data 
in Fig. 1(b), where views are defined using compositional properties. The graph denoising 
operations, however, can lead to the loss of important semantic information. Additionally, 
the heterogeneous properties of multi-view data may become meaningless if several views 
are combined into a homogeneous graph. Theoretically, by treating images as nodes in het-
erogeneous graphs, it is possible to use more complementary information for multi-view 
image clustering - Fig. 1(c).

Considering the above narrative, in this work, we propose an inductive Multi-view 
Image Clustering framework with self-supervised contrastive heterogeneous Graph co-
learning (GoMIC). In GoMIC, we maintain the relationships between different views as 
a heterogeneous affinity graph, while preserving the uniqueness and independence of each 
view. Our heterogeneous graph consists of several homogeneous affinity graphs - Fig. 1(d). 
Each node can readily get the local neighbourhood data from each view by creating the 
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heterogeneous affinity graph. To understand the propagation of node features, we created 
two encoding schemes. In the first, we propagate feature from a node to its neighbourhood 
in its own and other views through several hops - Fig. 1(e). The second strategy is influ-
ence-aware propagation that learns how each node feature propagates towards the densest 
nodes - Fig. 1(f). Both encoding strategies employ a proposed attention mechanism to control 
the feature influence of different nodes. Furthermore, to better exploit the learned embed-
dings under CGL, we explicitly contrast each pair of nodes for mutual information maximisa-
tion. We also customise the contrastive loss function to fit our contrastive objective.

Our key contributions are summarised below. 

1. To the best of our knowledge, this is a pioneering multi-view image clustering method 
using heterogeneous information networks that leverages contrastive graph learning.

2. We devise two novel heterogeneous information network encoder strategies and an 
influence attention mechanism to learn the embedding of each node according to its 
local feature propagation and influence-aware feature propagation, respectively.

3. We enhance the loss function for contrastive graph learning to consider the mutual first 
neighbouring nodes as the mutual positive samples.

4. We conduct comprehensive experiments on three benchmark datasets, not only dem-
onstrating large improvements over the existing self-supervised heterogeneous graph 
methods, but achieving better results than popular supervised methods across the data-
sets.

Fig. 1  Illustrations of concepts used in the text. (a) Classic Contrastive Graph Learning (CGL) - learns and 
contrasts homogeneous graphs at node and graph level. (b) Nodes in a homogeneous graph can have multi-
ple views. (c) Relations among multiple views constitute a heterogeneous affinity graph. vi indicates a ran-
dom original node in the dataset, and mj

i
 is the j-th view of vi . Different colors of nodes indicate different 

views. (d) A heterogeneous affinity graph can be broken down into multiple affinity homogeneous graphs. 
(e) Our Local Feature Propagation (LFP) explores local neighbourhood relations. (f) Our Influence-aware 
Feature Propagation (IFP) explores relationships from a target node to the influential node in each view
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We discuss related work in Section  2. Section  3 demonstrates our proposed framework, 
GoMIC. In Section 4, we introduce three open multi-view image datasets and evaluate our 
proposed framework with comparing to 6 state-of-the-art MVC methods. Finally, Section 5 
concludes this paper.

2  Prior art & background

We discuss the related work below. This discussion also includes analytical details that are 
later utilised in discussing the methodology.

2.1  Heterogeneous graph neural network

In recent years, heterogeneous graphs are becoming increasingly popular in neural network 
research [35, 36]. For instance, [37] studied the use of hierarchical attentions to depict 
node-level and semantic-level structures in heterogeneous graphs. Similarly, [38] incorpo-
rated intermediate nodes of meta-paths in the networks. [39] developed GTN to automati-
cally identify useful graph connections. A technique dubbed MAHINDER is proposed in 
[40, 41] to employ and encode meta-paths over different views with attention on the impor-
tance of attributes and data views. In an unsupervised setting, a heterogeneous graph neu-
ral network is proposed in [42], which samples a fixed size of neighbours and fuses their 
features using LSTMs [43]. [44, 45] focused on network schema and preserved pairwise 
and network schema proximity simultaneously. [46] devised node- and edge-type depend-
ent parameters to characterise heterogeneous attention over graph edges. The above meth-
ods rely strongly on supervised signals of data to encode graphs, whereas graph structures 
among the nodes are neglected. In [47], a heterogeneous network HeCo is proposed, which 
generates meta-paths and network schemas and exploits contrastive learning to further use 
signals of data in a self-supervised manner. [48] and [49] created item clusters and entity 
clusters to organise the objects and their nearby entities in the knowledge graph. After 
that, the hierarchically combining the heterogeneity data derived from the clusters with 
the weights produced by the hierarchical attention layers yields the representations. Never-
theless, encoding graphs and nodes while comprehensively considering node relations and 
graph structures still remains largely unresolved for the method.

2.2  Feature propagation

Considering that we devise feature propagation scheme in our technique, it is imperative 
to discuss related research in this direction in more detail. Expanding a node’s feature by 
propagation is commonly conducted under a generalisation of pagerank equation [50, 51], 
which can be expressed as

where X contains the original features, A encodes the adjacency, W1 and W2 are coeffi-
cient matrices. However,  (1) is not naturally invertible. Therefore, [52] modified it with the 
degree matrix D as follows

(1)X̃ = XW1 + AX̃W2,

(2)X̃ = XW1 + D−1AX̃W2.
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The above is convergent if W2 is non-negative along other conditions. Still, this can only 
allow feature propagation on homogeneous graphs.

[53] attempted to extend feature propagation to heterogeneous graphs. In a heterogene-
ous graph, they assumed that there are two different sorts of nodes. With a threshold spar-
sifying the feature similarities, they first created a learnt feature similarity network for each 
type. Next, they generated the feature propagation graph for each type. Finally, the overall 
feature graph is obtained via channel attention [39]. Incidentally, there is a huge computa-
tional footprint of this method when dealing with a heterogeneous graph with large number 
of relations. More importantly, this method is more directed to heterogeneous graph sparsi-
fication rather than heterogeneous feature propagation.

2.3  Contrastive loss function

Contrastive Graph Learning (CGL) is derived from contrastive learning (CL) [23] for 
graph learning. CGL has been increasingly researched recently [4–7, 25] and has achieved 
excellent performance on graph or node classification by generating and contrasting posi-
tive and negative graph view pairs. Here, we organise our review by mainly focusing on 
contrastive loss function of the related CGL studies, which is helpful in understanding our 
contribution in Section 3.5. In [4, 7, 25, 54–56], the authors adopt the learning objective of 
CL rather straightforwardly. In doing so, they focused on node-level representations, and 
neglected the graph-level information. In [5, 6], for any node vi , its embedding generated in 
one view v′

i
 and the embedding in the other view v′′

i
 , form a positive pair, whereas embed-

dings of other nodes are negative samples. The pairwise objective for each positive pair 
(v�

i
, v��

i
) is defined as

where sim denotes the function computing cosine similarity, � is the temperature parame-

ter, E identifies contrasting of inter-view negative pairs as E =

N∑

k=1

1[k≠i]exp(sim
(
v�
i
, v��

k

)
∕�) , 

and A denotes the contrasting of intra-view negative pairs as 

A =

N∑

k=1

1[k≠i]exp(sim
(
v�
i
, v�

k

)
∕�) , where 1[k≠i] ∈ {0, 1} is an indicator function.

Connecting the above back to the heterogeneous graph neural networks, [47] proposed 
collaboratively contrastive optimization to expand the scope of defining positive samples 
and used it for self-supervised learning for heterogeneous graphs. However, in this state-
of-the-art contrastive objective for heterogeneous graph learning, there is still a lack of 
consideration on feature propagation in graphs. Also, the frequent use of thresholds in the 
existing techniques decreases the feasibility of proposed models.

3  Proposed approach

In this section, we discuss the proposed multi-view image clustering with self-supervised 
contrastive heterogeneous graph co-learning (GoMIC), illustrated in Fig.  2. Our method 
encodes nodes from the local neighbourhood context and influence-oriented context, which 

(3)�
(
v�
i
, v��

i

)
= − log

exp(sim
(
v�
i
, v��

i

)
∕�)

exp(sim
(
v�
i
, v��

i

)
∕�)positive pair +E +A

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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fully captures contrastive structure of the heterogeneous affinity graph. This ensures that 
our approach well involves clustering boundary nodes (i.e., vague nodes) in the computa-
tions. During the encoding, we design innovative attention mechanisms, which learn fea-
ture propagation embeddings naturally. Moreover, in our method, a novel contrastive graph 
learning framework enables embeddings to supervise each other informatively.

3.1  Preliminaries

In order to describe our method for multi-view image clustering with contrastive het-
erogeneous graph learning, we first formalise the following pertinent notions for better 
understanding.

Definition 1 (Multi-view Image Data) Given an image dataset V = {vi}
N
i=1

 and its feature 
set X = {xi}

N
i=1

 , where N denotes the number of data samples. Each node vi can be repre-
sented in multiple views {mn

i
}M
n=1

 with multi-view features {xn
i
}M
n=1

 , where M is the number 
of views.

Definition 2 (Heterogeneous Affinity Graph) A heterogeneous affinity graph 
G = (V ,E,�,�) is constructed from given and multi-view data. V and E are the node and 
the edge sets of the original X , � is the view-based node type mapping function, and � is 
the view-based edge type mapping function. We let �u(V) denote the node embedding of 
the u-th view, and �0(V) = V  , i.e., the original node features are the 0-th view. By analogy, 

Fig. 2  Overview of the proposed GoMIC framework. For a single-view image dataset, we utilise M fea-
ture descriptors to generate M views. Then, the heterogeneous affinity graph G(.) with M + 1 views (includ-
ing the original) is constructed, where M + 1 homogeneous affinity graphs are connected with the relations 
between the original feature view and each descriptor-based view. Next, we propose two feature propaga-
tion encoders, i.e. Local Feature Propagation (LFP) and Influence-aware Feature Propagation (IFP), for gen-
erating contrasting representations with cross-view contrastive attention and semantic attention respectively. 
Before the final contrastive objective, we extend the definition of positive samples to include the first neigh-
bour of each node, which are discovered with the help of LFP
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�0(E) = E . Also, we let �u(vi) = mu
i
 and �u(ei) = pu

i
 , where pu

i
 indicates an edge ei in the 

u-th view.

Definition 3 (Feature Propagation) Given the node feature set X = {xi}
N
i=1

 and the edge 
weight set W = {wi,j} , where i, j ∈ [1,N] and i ≠ j , the propagated feature of a node vi is 
governed by

where x̃j indicates the propagated feature set of vi neighbours, {wi,j} is the edge weight 
set of edges between vi and its neighbours, P is feature propagation function and �p is the 
propagation parameter.

Definition 4 (Local Propagation Network) The local propagation network 
G�(vi) = (V �(vi),E

�(vi),�,�) of a node vi is a directed graph, which consists of several local 
directed subgraphs. A local directed subgraph starts from vi though l hops, each of which 
finds kl nearest neighbours extracting the neighbourhood of vi . Let va be in the (h − 1)-th 
hop and vb in the h-th hop. If va and vb are the mutual first neighbours, this path stops walk-
ing at vb , i.e., a path will stop walking when a node in it meets its mutual first neighbour in 
the next step, or when the path reaches the l-th hop. From the first to l-th hop, the feature 
propagation influence decreases.

Definition 5 (Influential Node) The target node vi can walk l steps to find its influential 
node vi+l , which identifies a node with maximum degrees (i.e., degree centrality) and/or 
maximum density (i.e., density centrality) in the view-based subgraph of vi.

Definition 6 (Influence-aware Propagation Network) The influence-aware propagation 
network G��(vi) = (V ��(vi),E

��(vi),�,�) of a node vi is a directed graph, which consists of 
several paths. A path starts from vi to a influential node vi+l through the shortest distance in 
the M-th view, which is in the form of mM

i
⟶ mM

i+1
⟶ ⋯ ⟶ mM

i+l
 . From mM

i
 to mM

i+l
 , the 

feature propagation influence decreases.

3.2  Heterogeneous affinity graph construction

We construct the heterogeneous affinity graph G = (V ,E,�,�) from multiple views of 
images based on feature similarity. An edge in our graph indicates the possibility of two 
nodes having the same label. The graph G consists of M + 1 homogeneous affinity graphs, 
which are related by the connections between the original view and each descriptor view, 
i.e., there are M + 2 edge types in G. For each node vi and the original feature �i , its u-th 
view feature is �u

(
�i

)
 . According to these features, we adjust instance pivot subgraph (IPS)  

[13] to build the heterogeneous affinity graph G following the steps mentioned below.
Step 1: Feature extraction. In a single-view image dataset, given a node vi , we uti-

lise M different descriptors (e.g., Gabor [1], HOG [3]) to generate multiple views of vi - 
Fig. 2(a). This results in M + 1 views of vi and different view-based feature vectors, includ-
ing the original xi , where the n-th view-based feature vector of vi is denoted as xn

i
 . We note 

that, for benchmark multi-view image datasets [57, 58], standard multiple views of images 
are already available.

Step 2: Neighbourhood construction. In each view, we utilise h-hop kNN to build its 
neighbourhood-based subgraph. Let kt denote the k nearest neighbours at the t-th hop, where 

(4)x̃i = P(xi, {x̃j}, {wi,j};�p),
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t = 1, 2, ..., h . As t increases, the neighbourhood influence towards vi decreases. Hence, the 
number of connecting nearest neighbours kt decreases as well. We add graph edges and their 
weights along with the neighbourhood discovery. For instance, for an edge ei,j between vi and 
vj , their distance di,j is computed using their sparse construction error ci,j as

Then, the weight between vi and vj , i.e. wi,j is defined as

where sij is the similarity score (i.e., Euclidean distance) between node vi and vj , and 
sij = sji . Thus, we get the homogeneous affinity graph of each view. To constitute these 
affinity graphs as a heterogeneous affinity graph G = (V ,E,�,�) - Fig. 2(b), we connect 
each node vi with its corresponding other view-based nodes, where each edge weight is 
kept 1.

Step 3: Node density calculation. Based on the constructed heterogeneous affinity 
graph, we define the density for a node vi in the graph as

where Nk1
(vi) is the first hop k nearest neighbours of the node vi , and x̃i , x̃j are the �2-nor-

malised feature embeddings of node vi and vj . According to this formula, the density of vi is 
equal to the average of its similarity with its neighbours. Higher density nodes are consid-
ered more discriminative and are more influential in identifying cluster centres.

3.3  Local feature propagation encoder

The Local Feature Propagation (LFP) in our technique governs the interaction among 
the neighbourhood nodes. We aim to learn the propagated feature embedding of node vi 
through its neighbourhood, i.e. to find its neighbours with similar features. Here, we con-
duct feature propagation on each view-based homogeneous affinity graph, then process 
them with cross-view contrastive learning - Fig. 2(c). General aggregation strategies like 
mean-pooling and max-pooling cannot identify if nodes are important, i.e., their mutual 
first neighbours cannot be emphasised. We employ the following two steps to obtain the 
embedding of each node vi from the sight of local neighbourhood.

Step 1: Feature propagation. Based on  (2) and discussion in Section 2.2, we incor-
porate influence of the first neighbours in feature propagation. To explain the concept, we 
take the n-th view-based node mn

i
 as an example. Its feature propagated embedding, which 

considers feature information and structural information simultaneously by emphasising 
the importance of mutual first neighbours, is computed as

(5)di,j =
‖‖‖xi − ci,jxj

‖‖‖
2

2
.

(6)wi,j =

{
1 if i = j

1 −
(
sij + sji

)
∕2 if i ≠ j

,

(7)𝜌vi =
1

|Nk1
(vi)|

∑

vj∈Nk1
(vi)

x̃i
⊺
x̃j,

(8)

X̃(mn
i
) =W1X(m

n
i
) +W2

∑

mn
j
∈N(mn

i
)

1

di
X̃(mn

j
) ⋅ �[N

k=1
(vi)=vj]

+W3

∑

mn
j
∈N(mn

i
)

X(mn
j
) ⋅ �[N

k=1
(vi)=vj]

,
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where �[N
k=1

(vi)=vj]
 is the indicator function for the mutual first neighbour enhancement during 

feature propagation. It governs the weight of the first neighbour’s influence towards the tar-
get node mn

i
 . In  (8) di ∈ D , where D is the degree matrix. Other notations follow from Sec-

tion  2.2. For conciseness, the text below also avoids repeating explanation of other 
notations.

Step 2: Cross-view contrastive learning. After having the feature propagated embeddings 
of nodes in different M views, we feed them to a shared MLP which has a hidden layer to 
prepare them for the contrastive loss. In this case, we employ the conventional tactic of desig-
nating positive and negative samples. In other words, some view-based nodes that are formed 
from the same originating node form positive node pairs, whilst others form negative node 
pairs. However, our method aims at multi-view contrastive learning. Therefore, for the propa-
gated n-th view-based node m̃n

i
 , we define the following contrastive loss for LFP

where N(vi) indicates the nodes in the vi-oriented subgraph, and 1[i≠b] ∈ {0, 1} is an indica-
tor function that equals to 1 if i ≠ b . Then, the overall cost objective is given as

Through the cross-view contrastive objective, we optimise the encoder via back-propaga-
tion and learn the embeddings zLPF

i
 of nodes for vi.

3.4  Influence‑aware feature propagation encoder

We also aim to learn the embedding of node vi under influence-aware feature propagation 
(IFP) - Fig. 2(d). For the target node vi , different views contributes differently to its embed-
ding. The embedding can not only be affected by the nearest neighbours, but also by the influ-
ential nodes in its neighbourhood of various views. Thus, we devise the influence-aware fea-
ture propagation encoder at node-level and view-level to hierarchically aggregate underlying 
information through the shortest paths from the target node vi towards the influential node 
vi+l (excluding the edge between vi and vi+l ) in different view-based subgraphs (see Def. 6). 
Take the n-th view as an example, we define a path from mn

i
 to its influential node mn

i+1
 as 

p(mn
i
) = {mn

i
,⋯ ,mn

i+l
} (see Def. 6).

Each path is processed via a GCN-based encoder to learn feature propagation. As 
shown Fig. 2(d), for each node (as a target node), its corresponding paths in various views 
will be the input. Having the path p(mn

i
) = {mn

i
,⋯ ,mn

i+l
} , we define the affinity matrix 

A(mn
i
) ∈ ℝ

|p(mn
i )|×|p(m

n
i
)| with the initial feature matrix denoted as X(mn

i
) . In the k-th layer of 

GCN, we update the feature matrix as

(9)�(m̃n
i
) = − log

M∑
k=0

exp(sim
�
m̃n

i
, m̃k

i

�
∕�)

M∑
k=0

∑
vb∈N(vi)

1[i≠b]exp(sim
�
m̃n

i
, m̃k

b

�
∕�)

,

(10)J =
1

M ⋅ |N(vi)|

M∑

n=0

𝓁(m̃n
i
).

(11)
X
k
(
mn

i

)
=�(� ⋅ Xk−1

(
mn

i

)

+(1 − �)D−1
(
mn

i

)
A
(
mn

i

)
X
k−1

(
mn

i

)
Wk−1),
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where Xk−1
(
mn

i

)
 denotes the updated features of the k-1-th GCN layer for all nodes on the 

path of 
(
mn

i

)
 , D−1

(
mn

i

)
 is the diagonal matrix with Di,i

�
mn

i

�
=
∑

j Ai,j

�
mn

i

�
 , � is the ReLU 

activation, � is a learnable parameter that balances the importance of the updated features, 
and Wk−1 is the transformation parameter. Through GCN, we can receive the embedding of 
mn

i
 as hn

i
 . Next, we employ attention mechanism in view-level to hierarchically aggregate 

context information from other views to the target node vi . We firstly compute the impor-
tance of the n-th view as

where A⊤
IFP

 indicates the transpose of affinity graph A(mn
i
) , tanh(⋅) is the hyperbolic tan-

gent function, WIFP are learnable parameters for IFP, and BIFP denotes view-level attention. 
Then, we compute the final embedding as follows

3.5  Dual‑context contrastive graph learning

To maximise the mutual information between each pair of embeddings generated from 
LFP and IFP, we design a dual-context contrastive loss. To that end, we extend the defini-
tion of positive samples - Fig. 2(e). That is, for a node vi , not only its LFP and IFP embed-
dings (i.e., zLFP

i
 and zIFP

i
 ) are mutually positive, but also the embeddings of its mutual first 

neighbour vj (i.e., zLFP
j

 and zIFP
j

 ) would be considered as its positive samples. We denote the 
positive sample set of vi as ℙi . This aims to contribute to nailing down clustering centres. 
According to the extension of positive sample definition, we formulate the dual-context 
contrastive loss function as

We describe the computation of �(zLFP
i

) below. The �(zIFP
i

) is computed analogously. We 
let

In (15), Neg. refers to contrasting against negative samples, which is defined as

(12)𝛽n =
exp

�
1

�V�
∑

vi∈V
A
⊤
IFP

⋅ tanh
�
WIFPh

n
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where zIFP
a

 represents the IFP embedding of other nodes for contrasting, and two indicators 
separate out the negative samples. The overall contrastive objective of maximising mutual 
information is then

where hyper-parameter � controls the relative importance of the two embeddings.

4  Evaluation

4.1  Experimental Setup

Datasets: To establish the effectiveness of our technique, we perform bechmarking of our 
method on popular standard multi-view image datasets. 

1. COIL-20 [57] has 1,440 gray-scale images of 20 classes and each class contains 72 
images. Each image has been extracted under 3 views, where the first is a 1024-dimen-
sional intensity feature, the second is a 3304-dimensional LBP feature, and the third is 
a 6750-dimensional Gabor feature.

2. Caltech7 [58] contains 1,474 images of 7 classes. Each image has 6 views of features 
extracted. These views include 48-dimensional Gabor feature, 40-dimensional WM fea-
ture, 254-dimensional CENTRIST feature, 1984 dimensional HOG feature, 512-dimen-
sional GIST feature, and 928-dimensional LBP feature.

3. CASIA-WebFace (CWF) [59] is cleaned to contain 466,169 single-view face images of 
10,575 real identities collected from the web. To obtain a relatively large-scale dataset 
while constraining the image numbers for the available hardware, we select 18 classes 
of 10,791 images to conduct our experiments. To generate multi-view data, we utilise 
the 512-dimensional feature vectors extracted by CNN architecture to obtain 3 views 
(512-dimensional color histogram, 26-dimensional LBP and 512-dimensional Gabor) 
from each image.

Baseline Methods: For benchmarking, we compare with the following six existing tech-
niques that use a variety of approaches for multi-view image clustering. 

1. MIC [60] adopts the same strategy used by best single view (BSV) [61] to fill missing 
instances and then learns a non-negative low-dimensional consensus representation for 
all views. K-means is applied to the learned consensus representation for final clustering.

2. DCCAE [62] extends the method of combining the deep encoder with Canonical Cor-
relation Analysis by introducing a deep decoder, which has deep canonically correlated 
auto-encoders coordinating and extracting graph representations in a pairwise manner.

3. MVGL [27] learns individual graphs and then integrate the multiple learned graphs into 
a global graph with exactly k components.

4. MCGC  [28] learns a consensus graph by minimising the disagreement between different 
views and constraining the rank of the Laplacian matrix.

5. RHLC-CAGL [31] automatically captures a latent common Laplacian that is shared by 
all views.

(17)J =
1

N

N∑

i=1

[
� ⋅ �(zLFP

i
) + (1 − �) ⋅ �(zIFP

i
)
]
,
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6. HeCo [47] is a self-supervised heterogeneous GNN method, which leverages meta-path 
to extract two views for contrastive learning.

Implementation Details: In GoMIC, for the single-view image dataset (i.e., CASIA-
WebFace), we utilise commonly used feature descriptors, i.e.,  intensity, LBP and Gabor, 
to generate multiple views of each image. There are 2 hyperparameters for heterogene-
ous affinity graph construction in our method, namely, the number of hops h , and the 
number of each node’s nearest neighbours in each hop {ki}, i = 1, 2, ...,h . h and {ki} are 
defined according to the used dataset. We set h = 4, {ki} = {10, 5, 1, 1} for COIL-20, 
h = 4, {ki} = {20, 5, 1, 1} for Caltech7, and h = 4, {ki} = {50, 3, 1, 1} for CASIA-Web-
Face. Also, while setting up the GCN-based contrastive model, we optimise the learning 
rate in the range [ 1e − 4 , 5e − 3 ]. For the dropout function in encoding, we used the range 
[0.1, 0.5] with a step size 0.05, and � is tuned in the range [0.5, 0.9] with a step size 0.05, 
and � and � are both tuned in the range [0.1, 0.9] with a step size 0.1. Moreover, encoders 
only conduct aggregation once, i.e., we use 2-layer GCN on LFP and IFP. At the end of 
GoMIC, the images to be clustered are represented as a graph. Each edge in the graph is 
associated with a similarity weight in [0, 1]. To generate the clusters, we visit every node 
and only preserve its neighborhood nodes with the largest weight, i.e., the other neighbor 
nodes are disconnected from the node. Thus, the clusters get formed in an efficient manner.

4.2  Comparison with the existing state‑of‑the‑art

Table 1 reports the results of several popular multi-view clustering methods and a state-
of-the-art self-supervised heterogeneous contrastive graph learning technique, HeCo. The 
results reveal that multi-view clustering methods which make use of more views usu-
ally achieve higher performance. This explains why MIC  [60] and DCCAE  [62] gener-
ally have inferior clustering results. Since MIC relies on the best single view to conduct 
representation learning, and DCCAE correlates view-based graphs for embeddings pair-
by-pair, they are not able to perform as well as other methods. In contrast, methods pro-
posed more recently (MVGL [28], MCGC [28] and RHLC-CAGL [31]) aim to leverage 

Table 1  Comparison of clustering performance on three datasets. NMI, PUR and ACC respectively stand 
for normalised mutual information, purity and accuracy. Self-supervised graph learning-based methods are 
green highlighted. The best results in each column are bold faced

Dataset COIL-20 [57] Caltech7 [58] CWF [59]

Method NMI PUR ACC NMI PUR ACC NMI PUR ACC 

MIC [60] 72.42 80.49 58.64 37.99 81.29 58.64 31.84 29.44 24.37
DCCAE [62] 70.58 78.00 55.51 59.14 - 41.89 33.61 36.12 30.59
MVGL [27] 89.20 85.84 66.08 58.81 84.47 62.95 37.21 46.26 32.28
MCGC [28] 83.78 70.84 88.21 59.47 85.06 64.51 47.78 48.13 33.68
RHLC-CAGL [31] 79.81 - 72.10 79.60 - 69.30 52.34 50.41 37.46

 [47]
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more information from multiple views, which achieves better performance. In the table, 
HeCo  [47] deals with natural heterogeneous networks instead of directly dealing with 
multi-view images. Nevertheless, it performs reasonably well on this benchmark due to 
the suitability of heterogeneous graphs to the problem. This is inline with our intuition 
of exploiting heterogeneous properties of image views for clustering. It is therefore not 
surprising that the performance of our method, GoMIC, outperforms these powerful base-
lines. Our approach not only contrasts numerous views but also makes use of two recently 
developed feature propagation encoding schemes for enhanced contrastive learning.

4.3  Ablation study and parameter analysis

GoMIC encodes multi-view based graphs with two innovative encoding schemes, namely, 
LFP and IFP. Also, for better clustering centres, we adjust the contrastive loss function by 
extending the positive sample definition. To understand the impact of these factors in the 
overall performance of our technique, we introduce three variants of GoMIC to conduct 
an ablation study. These three variants are respectively denoted as: (1) GoLFP, which con-
tains only LFP as the encoder; (2) GoIFP, which only contains IFP as the encoder and (3) 
GoMIC-n/e, which has no extension of the positive sample definition. The results of these 
variants on all three datasets are summarised in Table 2. In the table, we can observe that 
GoMIC eventually outperforms all these variants by a considerable margin, establishing 
the benefits of synergising these proposed components. Furthermore, the performances of 
GoLFP and GoIFP decrease differently when applied to different datasets. This highlights 
that, for different cases, LFP and IFP are able to contribute differently to the overall per-
formance. A consistent gain of GoMIC over GoMIC-n/e also ascertains the importance of 
our positive sample definition extension. From the parameters viewpoint, GoMIC has two 
major hyper-parameters, � and � . We show the influence of adjusting their values on per-
formance in Fig. 3. The chosen range values are {0.1, 0.3, 0.6, 0.9}.

5  Conclusions

In order to understand and exploit relationships within image datasets from each node’s 
local neighbourhood and influence-aware context, we introduced an innovative multi-
view image clustering method called GoMIC. GoMIC takes advantage of the het-
erogeneous properties of multi-view image data under contrastive graph learning. To 

Table 2  Ablation study results for GoMIC. GoLFP only uses LFP encoder. GoIFP uses only the IFP 
encoder and GoMIC-n/e does not use the extended definition of positive samples, but uses both LFP and 
IFP. Difference of these variants to GoMIC highlights the contribution of the components

Dataset COIL-20 [57] Caltech7 [58] CWF [59]

Method NMI PUR ACC NMI PUR ACC NMI PUR ACC 

GoLFP 79.10 56.10 48.16 63.99 71.29 58.64 29.83 43.14 19.82
GoIFP 40.19 74.10 25.51 32.14 79.60 21.89 11.21 31.29 13.78
GoMIC-n/e 81.25 83.46 85.60 76.34 81.79 68.63 45.80 52.93 43.67
GoMIC 89.83 87.35 91.12 79.49 87.10 76.52 58.72 67.55 48.06
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extract and exploit more underlying information, we devised two strategies to encode 
the graphs, Local Feature Propagation (LFP) and Influence-aware Feature Propaga-
tion (IFP), to represent each node-based subgraph in two contrasting contexts. Also, we 
employed two contrastive loss functions, and adjusted them to fit the use of LFP and 
IFP. The first loss function aims to integrate multiple view-based LFP embeddings, and 
the second nails down the clustering centres with an extended positive sample defini-
tion for contrastive graph learning. Experimental results show that our proposed method 
consistently outperforms the state-of-the-art methods on multi-view clustering bench-
marks. Also, our ablation study demonstrates explicit contribution of each novel aspect 
in our overall technique. Currently, the framework works with the common assumption 
of balanced data. In the future, we will extend it to also handle imbalanced data.
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