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Abstract
Personalized decision-making can be implemented in a Federated learning (FL) framework 
that can collaboratively train a decision model by extracting knowledge across intelligent 
clients, e.g. smartphones or enterprises. FL can mitigate the data privacy risk of collabo-
rative training since it merely collects local gradients from users without access to their 
data. However, FL is fragile in the presence of statistical heterogeneity that is commonly 
encountered in personalized decision making, e.g., non-IID data over different clients. 
Existing FL approaches usually update a single global model to capture the shared knowl-
edge of all users by aggregating their gradients, regardless of the discrepancy between their 
data distributions. By comparison, a mixture of multiple global models could capture the 
heterogeneity across various clients if assigning the client to different global models (i.e., 
centers) in FL. To this end, we propose a novel multi-center aggregation mechanism to 
cluster clients using their models’ parameters. It learns multiple global models from data 
as the cluster centers, and simultaneously derives the optimal matching between users and 
centers. We then formulate it as an optimization problem that can be efficiently solved by a 
stochastic expectation maximization (EM) algorithm. Experiments on multiple benchmark 
datasets of FL show that our method outperforms several popular baseline methods. The 
experimental source codes are publicly available on the Github repository (GitHub reposi-
tory: https:// github. com/ mingx uts/ multi- center- fed- learn ing).
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1 Introduction

The widespread of social networks and mobile APPs has witnessed a huge volume of data 
generated by end-users on mobile devices [4]. Generally, a service provider on the server 
side collect users’ data and train a global machine learning model such as deep neural net-
works. Such a centralized machine learning approach causes severe practical issues, e.g., 
communication costs, consumption of device batteries, and the risk of violating the privacy 
and of user data. Moreover, each user or client may have different decision making prefer-
ences that may caused by the changes of their life events and dynamic networks.

The modern decision-making system is generally empowered by various deep neural 
network-based intelligent models that include two components: embedding and decision. 
The embedding component could be a backbone is composed of CNN [16, 53], GCN [30, 
58], RNN/LSTM [12, 64], or Self-attention/Transformer modules [46, 55] to transform the 
multi-modal data, such as images, graphs, time series, sequential behavior and texts, into 
numeric vectors for further processing. The decision component usually takes a multi-layer 
fully connected neural network to model the complex relationship between inputs and deci-
sions (outputs). Then, the embedding and decision components will be connected to form 
an entire deep learning model to be trained in an end-to-end manner.

Federated learning (FL)  [43] is a new machine learning paradigm that learns models 
collaboratively using the training data distributed on remote devices to boost communica-
tion efficiency. There are three advantages that can make FL be the best option to imple-
ment a personalized decision-making system. First, the deep learning model requires a 
huge volume of training data that is usually impractical for a single client, thus, the FL-
based framework enables the clients to collaboratively train a model with abundant train-
ing data. Second, the FL separates the model training and data storage, which can greatly 
reduce the privacy risk for participating clients. Third, each client can take part in the 
model training process of the FL system, and then it can take the opportunity to train a 
personalized decision-making model by leveraging both the globally shared knowledge and 
locally stored data.

The vanilla FL addresses a practical setting of distributed learning, where 1) the central 
server is not allowed to access any user data which protects users’ privacy, and 2) the data 
distribution over different users is non-IID, which is a natural assumption of real-world 
applications. However, early FL approaches [43, 59] use only one global model as a single-
center to aggregate the information of all users. The stochastic gradient descent (SGD) for 
single-center aggregation is designed for IID data, and therefore, conflicts with the non-IID 
setting in FL. The observed data in each device are generated or produced by the user. The 
dataset across devices are usually non-IID that reflects different preferences or decision 
logic of users. We assume the whole population could be partitioned into different clusters 
or groups in which the users have similar preferences. Therefore, learning an intelligent 
model customised for each group with non-IID data can assist users to make decision-mak-
ing by considering personal preferences.

Recently, the non-IID or heterogeneity challenge of FL has been studied to improve 
the robustness of global models against outlier/adversarial users and devices  [15, 25, 
26]. Moreover, [50] proposed an idea of clustered FL (FedCluster) that addresses the 
non-IID issue by dividing the users into multiple clusters. However, the hierarchical 
clustering in FedCluster is achieved by multiple rounds of bipartite separation, each 
requiring the federated SGD algorithm to run until convergence. Hence, its compu-
tational and communication efficiency will become bottlenecks when applied to a 
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large-scale FL system. More recently, [42] and [14] proposed to cluster the local models 
according to the loss of hypothesis. In particular, each user will try all K global models 
representing K clusters, and then select the best global model as the cluster ID by con-
sidering the lowest loss of running the global model on local data. However, this posts 
high communication and computation overheads because the selected nodes will spend 
more resources for receiving and running multiple global models.

In this paper, we propose a novel multi-center FL framework that updates multiple 
global models by aggregating information from multiple user groups. In particular, the 
datasets of the users in the same group are likely to be generated or derived from the 
same or similar distribution. We formulate the problem of the multi-center FL as the 
joint clustering of users, and then optimizing of the global model for users in each clus-
ter. In particular, (1) each user’s local model is assigned to its closest global model, and 
(2) the global model in each cluster leads to the smallest loss over all the associated 
users. The proposed multi-center FL not only inherits the communication efficiency of 
the federated SGD but also retains the capability of handling non-IID data on hetero-
geneous datasets. Lastly, we propose a new optimization method in line with EM algo-
rithm to train our model.

We summarize our main contributions as:

• We propose a novel multi-center aggregation approach (Section 4.1) to address the 
non-IID challenge of personalized decision-making system.

• We design an objective function, namely multi-center federated loss (Section 4.2), 
for user clustering in FL.

• We propose Federated Stochastic Expectation Maximization (FeSEM) (Section 4.3) 
to solve the optimization of the proposed objective function.

• We present the algorithm as an easy-to-implement and strong baseline for FL. Its 
effectiveness is evaluated on benchmark datasets. (Section 6)

2  Related work

2.1  Personalized decision‑making

Decision making is the process of making choices by identifying a decision, gather-
ing information, and assessing alternative resolutions. In most of the scenarios, each 
individual person usually makes a personal choice given the collected information. To 
model the personalized decision-making process [41, 47], a general solution is to collect 
the user’s personal characteristics, e.g. demographics [45], behavior history [51], and 
social networks [63], as part of the input to be considered by a centralized intelligent 
model. This solution usually train a large-scale machine learning or recommendation 
models at cloud server using the collected personal data from users, thus it will cause 
privacy concerns. In recent, a new service architecture has been proposed to provide 
service based on a standalone on-device intelligent [23] in each smart device. In par-
ticular, a unique intelligent model customized for each user will be deployed to the user’ 
smart device, so as to provide service independently while not relying on the decision 
from the cloud server. The user’s personal data will be stored locally to train the intel-
ligent model, thus no personal data will be uploaded to the server.
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2.2  Federated learning

Federated learning (FL) enables users to leverage rich data for machine learning models 
without compromising their data. It has attracted a significant amount of research inter-
est since 2017, with many studies investigating FL from several aspects, e.g., system 
perspective, personalized models, scalability  [3], communication efficiency  [24], and 
privacy [13]. Most of the related work addresses a particular concern such as security or 
privacy [6, 35, 49]. It has been applied to various industry applications, such as banking 
[37], healthcare [36, 48, 57], and mobile internet applications [21].

FL is designed for specific scenarios that can be further expanded to a standard 
framework to preserve data privacy in large-scale machine learning systems or mobile 
edge networks [32]. For example, [59] expanded FL by introducing a comprehensive, 
secure FL framework that includes horizontal FL, vertical FL, and federated transfer 
learning. The work in [28, 39] surveyed the FL systems in relation to their functions on 
privacy protection and security threats. [22] discussed the advances and open problems 
in FL. [5] proposed LEAF – a benchmark for federated settings with multiple datasets. 
[38] proposed an object detection-based dataset for FL.

Heterogeneity is a core challenge in the federated setting and has been widely studied 
from various perspectives. [17] conducted theoretical convergence analysis for FL with het-
erogeneous data. [19] measured the effects of non-IID data for federated visual classifica-
tion. [60] proposed a heterogeneity-aware platform design for FL. [31] discussed the local 
representations that enable data to be processed on new devices in different ways according 
to their source modalities instead of using a single global model. The single global model 
might not generalize to unseen modalities and distributions of data. [27] proposed a new 
federated setting composed of a shared global dataset and many heterogeneous datasets 
from devices. [20] and [33] proposed to integrate knowledge distillation with FL to tackle 
the model heterogeneity. [61] proposed a general FL framework to align heterogeneous 
model architectures and functional neurons. [54] proposed to a prototype learning-based 
FL framework to tackle the challenges of task heterogeneity across devices. Particularly, it 
aggregates the prototypes rather than model parameters, and then the communication effi-
ciency is much higher than gradient-based algorithm, such as FedAvg.

To solve the problem caused by non-IID data in a federated setting [5, 50] proposed 
clustered FL (FedCluster) by integrating FL and bi-partitioning-based clustering into 
an overall framework, and [14, 42] proposed a hypothesis-based federated clustering 
that assigns the cluster by considering the loss of running the global model on local 
data. [15] proposed a robust FL comprising three steps: 1) learning a local model on 
each device, 2) clustering model parameters to multiple groups, each being a homoge-
neous dataset, and 3) running a robust distributed optimization [29] in each cluster. [40] 
propose a general form to model the clustered FL problem into a bi-level optimization 
framework, and then conduct theoretical analysis on the convergence.

[26] proposed FedDANE by adapting the DANE [52] to a federated setting. In par-
ticular, FedDANE is a federated Newton-type optimization method. [25] proposed 
FedProx for the generalization and re-parameterization of FedAvg [43]. It adds a proxi-
mal term to the objective function of each device’s supervised learning task, and the 
proximal term is to measure the parameter-based distance between the server and the 
local model. [1] added a personalized layer for each local model, i.e., FedPer, to tackle 
heterogeneous data. [8] propose to a structure-based model aggregation mechanism to 
enhance the personalized federated learning.
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3  Background

3.1  Overall framework

This section will introduce the overall framework of the proposed multi-center Federated 
Learning. As shown in Figure 1, each client could be an intelligent device or computer in 
an enterprise, and they will collaboratively train an intelligent model via a coordinating 
server. First, the client initializes its local model using the global model from the feder-
ated learning server. Second, the client trains the local model using its own data. Third, 
the trained model will be uploaded into the server that will conduct client clustering across 
clients’ model parameters, and then conduct model aggregation in each cluster. Fourth, the 
model in each cluster will be dispatched to the corresponding clients. The multi-center FL 
framework will repeat these four steps till convergence or the stop condition is satisfied.

In the following subsections, we will give a formal formulation of the proposed prob-
lem, and then explain the motivation of the design. The detailed method and optimization 
procedure is provided in Section 4.

3.2  Problem setting

In FL, each device-i has a private dataset Di = {Xi,Yi} , where Xi and Yi denote the input 
features and corresponding gold labels respectively. Each dataset Di will be used to train a 
local supervised learning model Mi ∶ Xi → Yi . M denotes a deep neural model param-
eterized by weights W. It is built to solve a specific task, and all devices share the same 
model architecture.

For the i-th device, given a private training set Di , the training procedure of Mi is repre-
sented in brief as

Fig. 1  Overall framework of multi-center Federated Learning
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where Ls(⋅) is a general definition of the loss function for any supervised learning task, and 
its arguments are model structure, training data and learnable parameters respectively, and 
W ′ denotes the parameters after training. In general, the data from one device is insufficient 
to train a data-driven neural network with satisfactory performance. An FL framework 
optimizes the local models in a distributed manner and minimizes the loss of the local data 
on each device.

Hence, the optimization in vanilla FL over all the local models can be written as

where m denotes the number of devices, and �i =
�Di�∑
j �Dj�

 is an importance weight that is 
measured by the number of samples on each clients.

On the server side, the vanilla FL aggregates all local models into a global one 
Mglobal which is parameterized by W̃g . In particular, it adopts a weighted average of the 
local model parameters [Wi]

m
i=1

 , i.e.,

which is the nearest center for all {Wi}
m
i=1

 in terms of a weighted L2 distance:

More generally, we can replace the L2 distance in (3) by other distance metric Dist(⋅, ⋅) and 
minimize the difference between the global model and all the local models, i.e.,

The above aims to find a consistent solution across global model and local models. Note 
that a direct macro average is used here regardless of the weight of each device, which 
treats every device equally. The weights used in () can easily be incorporated for a micro 
average.

The divergence Dist(⋅, ⋅) between the global model and local models plays an essen-
tial role in the FL objective. The simple L2 distance for Dist(⋅, ⋅) does not take into 
account the fact that two models can be identical under the arbitrary permutation of 
neurons in each layer.

Hence, the lack of neuron matching may cause misalignment in that two neurons 
with similar functions and different indexes cannot be aligned across models [62]. How-
ever, the index-based neuron matching in FL [52] is the most widely used method and 
works well in various real applications. One potential reason for this is that the index-
based neuron matching can also slowly align the function of neurons by repeatedly ini-
tializing all local models with the same global model. To simplify the description, we 
will discuss our method for index-based neuron matching.

(1)min
Wi

Ls(Mi,Di,Wi),

min
{Wi}

m
i=1

�iLs(Mi,Di,Wi)

(2)W̃g =

m∑

i=1

𝛼iWi,

(3)W̃g ∈ argmin
W̃

m�

i=1

𝛼i‖W̃ −Wi‖22.

(4)min
W̃

1

m

m∑

i=1

Dist(Wi, W̃).
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3.3  Motivation

Federated learning (FL) usually aggregates all local models to a single global model. 
However, this single-center aggregation is fragile under heterogeneity. In contrast, we 
consider FL with multiple centers to better capture the heterogeneity by assigning nodes 
to different centers so only similar local models are aggregated. Consider two extreme 
cases for the number of centers, K: (1) when K = 1 , it reduces to the FedAvg with a sin-
gle global model, which cannot capture the heterogeneity and the global model might 
perform poorly on specific nodes; (2) When K = m , the heterogeneity problem can be 
avoided by assigning each node to one global model. But the data on each device used 
to update each global model can be insufficient and thus we lose the main advantage of 
FL. Our goal is to find a sweet point between these two cases to balance the advantages 
of federated averaging and the degradation caused by underlying heterogeneity.

Learning one unique model for each node has been discussed in some recent FL stud-
ies for better personalized models. They focus on making a trade-off between shared 
knowledge and personalizing. The personalizing strategy either applies fine-tuning of 
the global model [65] for each node, or only updates a subset of personalized layers 
for each node [1, 31], or deploys a regularization term in the objective [10, 11, 18]. In 
contrast, Multi-center FL in this paper mainly focuses to address the heterogeneity chal-
lenge by assigning nodes to different global models during aggregation. But it can be 
easily incorporated in these personalization strategies. In the following, we will start 
from the problem setting for the the vanilla FL, and then elucidate our motivation of 
improving FL’s tolerance to heterogeneity by multi-center design.

4  Methodology

4.1  Multi‑center model aggregation

To overcome the challenges arising from the heterogeneity in FL, we propose a novel 
model aggregation method with multiple centers, each associating with a global model 
W̃ (k) updated by aggregating a cluster of user’s models with nearly IID data. In particu-
lar, all the local models will be grouped to K clusters, denoted as C1,⋯ ,CK , each cover-
ing a subset of local models with parameters {Wj}

mk

j=1
.

An intuitive comparison between the vanilla FL and our multi-center FL is illustrated 
in Figure 2. As shown in the left figure, there is only one center model in vanilla FL. In 
contrast, the multi-center FL shown in the right has two centers, W (1) and W (2) , and each 
center represents a cluster of devices with similar data distributions and models. Obvi-
ously, the right one has a smaller intra-cluster distance than the left one. As discussed 
in the following Section  4, intra-cluster distance directly reflects the possible loss of 
the FL. Hence, a much smaller intra-cluster distance indicates our proposed approach 
potentially reduces the loss of FL.
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4.2  Problem formulation

4.2.1  Solving a joint optimization on a distributed network.

The multi-center FL problem can be formulated as an optimisation framework as below.

where � controls the trade-off between supervised loss and distance. We solve it by apply-
ing an alternative optimization between server and user: (1) on each node-i, we optimize 
the above objective w.r.t. Wi while fixing all the other variables; and (2) on the server, we 
optimize {r(k)

i
}, {W̃ (k)} for i ∈ [m] and k ∈ [K] while fixing all local models {Wi}.

4.2.2  Multi‑center assignment at the server end.

The second term in (5) aims to minimize the distance between each local model and 
its nearest global model. Under the non-IID assumption, the data located at different 
devices can be grouped into multiple clusters where the on-device data in the same clus-
ter are likely to be generated from one distribution. As illustrated on the right of Fig-
ure 2, we optimizes the assignments and global models by minimizing the intra-cluster 
distance, i.e,

(5)

min
{Wi},{r

(k)

i
},{W̃ (k)}

m∑

i=1

𝛼iLs(Mi,Di,Wi)

+
𝜆

m

K∑

k=1

m∑

i=1

r
(k)

i
Dist(Wi, W̃

(k)),

Fig. 2  Comparison between single-center aggregation in vanilla FL (left) and multi-center aggregation in 
the proposed one (right). Each W

i
 represents the local model’s parameters collected from the i-th device, 

which is denoted as a node in the space. W̃ represents the aggregation result of multiple local models
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where cluster assignment r(k)
i

 , as defined in (8), indicates whether device-i belongs to clus-
ter-k, and W̃ (k) is the parameters of the aggregated model for cluster-k.

4.2.3  Distance‑constrained loss for local model optimization.

Because the distance between the local model and the global model are essential to our 
new loss, we don’t expect the local model will be changed too much during the local updat-
ing stage. The new loss consists of a supervised learning loss and a regularization term 
to constrain the local model to ensure it is not too far from the global model. This kind of 
regularization term is also known as the proximal term in [25] that can effectively limit 
the impact of the variable local updates in FL. We minimize the loss below for each local 
model Wi as follows:

4.3  Optimization algorithm

In general, Expectation-Maximization (EM) [2] is an optimisation framework to solve 
alternative updating of multiple parameters, for example, K-Means clustering with updates 
on cluster centers and cluster assignments. However, in contrast to the general objective of 
clustering, our proposed objective, as described in (6), has a dynamically changing Wi dur-
ing optimization. Therefore, we adapt the Stochastic Expectation Maximization (SEM) [7] 
optimization framework by adding one step, i.e., updating Wi . In the modified SEM optimi-
zation framework, named federated SEM (FeSEM), we will iterative conduct a sequence of 
actions as below.

Firstly, for the E-Step, we update cluster assignment r(k)
i

 with fixed Wi . We calculate the 
distance between the cluster center and nodes – each node is the model’s parameters Wi , 
then update the cluster assignment r(k)

i
 by

Secondly, for the M-Step, we update the cluster center W̃ (k) according to the Wi and r(k)
i

 , 
i.e.,

Thirdly, to update the local models, the global model’s parameters W̃ (k) are sent to each 
device in cluster k to update its local model, and then we can fine-tune the local model’s 
parameters Wi using a supervised learning algorithm on its own private training data while 
considering the new loss as described in (7). The local training procedure is a supervised 

(6)min
{r

(k)

i
},{W̃ (k)}

1

m

K∑

k=1

m∑

i=1

r
(k)

i
Dist(Wi, W̃

(k)),

(7)min
Wi

𝛼iLs(Mi,Di,Wi) +
𝜆

m

K∑

k=1

r
(k)

i
Dist(Wi, W̃

(k))

(8)r
(k)

i
=

{
1, if k = argminj Dist(Wi, W̃

(j))

0, otherwise.

(9)
W̃ (k) =

1
m∑
i=1

r
(k)

i

m�

i=1

r
(k)

i
Wi.
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learning task by adding a distance-based regularization term. The local model is initialized 
by the global model W̃ (k) which belong to the cluster associated with the node.

Lastly, we repeat the three stochastic updating steps above until convergence. The 
sequential executions of the three updates comprise the iterations in FeSEM’s optimi-
zation procedure. In particular, we sequentially update three variables r(k)

i
 , W̃ (k) , and Wi 

while fixing the other factors. These three variables are jointly used to calculate the 
objective of our proposed multi-center FL in (6).

We implement FeSEM in Algorithm  1 which is an iterative procedure. As elabo-
rated in Section 4.2, each iteration comprises of three steps to update three sets of vari-
ables that are cluster assignment r for each client, the representation of cluster centre 
W̃  , and the local models’ parameters W, respectively. In particular, the update of the 
local model is executed on the client by fine-tuning the model as in Algorithm 2.
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5  Some possible extensions

To further handle heterogeneous data in FL scenario, our multi-center FL approach can 
be easily extended with other packages. We discuss two beneficial techniques here.

5.1  Model aggregation with neuron matching

The vanilla FL algorithm, FedAvg [43], uses model aggregation with index-based neu-
ron matching which may cause the incorrect alignment. Neurons with similar functions 
usually take different indexes in two models. Recently, a function-based neuron match-
ing [56] in FL is proposed to align two models by matching the neurons with similar 
functions. In general, the index-based neuron matching can gradually align the neuron’s 
functionality across nodes by repeatedly forcing each local model to be initialized using 
the same global model. However, the function-based neuron matching can speed up 
the convergence of neuron matching and preserve the unique functional neuron of the 
minority groups.

In this work, we integrate layer-wise matching and then averaging(MA) [56] into 
ours to increase the capacity to handle heterogeneous challenges. In the model aggre-
gation step at the FL server, we need to align the layer-wise parameters among models 
from different clients. For example, given a layer with three neurons {A1, A2, A3} in 
model A, and a layer with neurons {B1, B2, B3} in model B, the neuron matching is to 
find an alignment between two sets that could be seen as a bi-party alignment problem. 
If we use index-based neuron matching, e.g. FedAvg [43], we just simply aggregate the 
parameters of A1 and B1 according to their index number in each model. If we choose 
function-based neuron matching, e.g. FedAvg [56], we probably will aggregate the neu-
ron A1 to B3 that they maybe share similar functions with different indexes in each 
model. The distance between the local model and the global model is the neuron match-
ing score that is calculated by estimating the maximal posterior probability of the j-th 
client neuron l generated from a Gaussian with mean Wi , and � and f (⋅) are guided by 
the Indian Buffet Process prior [62].

5.2  Selection of K

The selection of K, the number of centers, is essential for a multi-center FL. In general, 
the K is defined based on the prior experience or knowledge of data. If there is no prior 
knowledge, the most straightforward solution is to run the algorithm using different K 
and then select the K with the best performance in terms of accuracy or intra-cluster 
distance. Selecting the best K in a large-scale FL system is time consuming, hence we 
simplify the process by running the algorithm on a small number of sampled nodes with 
several communication rounds. For example, we can randomly select 100 nodes and test 
K in FL with three communication rounds only, and then apply the K to the large-scale 
FL.
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6  Experiments

As a proof-of-concept scenario to demonstrate the effectiveness of the proposed method, 
we experimentally evaluate and analyze FeSEM on two datasets.

6.1  Training setups

6.1.1  Datasets

We employed two publicly-available federated benchmarks datasets introduced in 
LEAF  [5]. LEAF is a benchmarking framework for learning in federated settings. The 
datasets used are Federeated Extended MNIST (FEMNIST)1  [9] and Federated CelebA 
(FedCelebA)2 [34]. We follow the setting of the benchmark data in LEAF. In FEMNIST, 
images is split according to the writers. For FedCelebA, images are extracted for each per-
son and developed an on-device classifier to recognize whether the person smiles or not. A 
statistical description of the datasets is described in Table 1.

6.1.2  Local model

We use a CNN with the same architecture from [34]. Two data partition strategies are used: 
(a) an ideal IID data distribution using randomly shuffled data, (b) a non-IID partition by 
use a �k ∼ DirJ(0.5) . Part of the code is adopted from [56]. For FEMINST data, the local 
learning rate is 0.003 and epoch is 5. and for FedCelebA, 0.03 and 10 respectively.

6.1.3  Baselines

In the scenario of solving statistical heterogeneity, we choose FL methods as follows:

 1. NonFed: We will conduct the supervised learning task at each device without the FL 
framework.

 2. FedSGD: uses SGD to optimize the global model.
 3. FedAvg: is an SGD-based FL with weighted averaging. [43] .
 4. FedCluster: is to enclose FedAvg into a hierarchical clustering framework [50].
 5. HypoCluster(K): is a hypothesis-based clustered-FL algorithm with different K [42].

Table 1  Statistics of datasets DATASET FEMNIST FedCelebA

# of data points 805,263 200,288
# of device 3,550 9,343
# of Classes 62 2
Model architecture CNN CNN

1 http:// www. nist. gov/ itl/ produ cts- and- servi ces/ emnist- datas et
2 http:// mmlab. ie. cuhk. edu. hk/ proje cts/ CelebA. html
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 6. Robust our implementations based on the proposed method in [15], see this baseline 
settings in Appendix.

 7. FedDANE: this is an FL framework with a Newton-type optimization method. [26].
 8. FedProx: this is our our own implementations following [25]. We set scaler of proxi-

mal term to 0.1.
 9. FedDist: we adapt a distance based-objective function in Reptile meta-learning [44] 

to a federated setting.
 10. FedDWS: a variation of FedDist by changing the aggregation to weighted averaging 

where the weight depends on the data size of each device.
 11. FeSEM(K): our multi-center FL implemented on federated SEM with K clusters.

6.1.4  Training settings

We used 80% of each device’s data for training and 20% for testing. For the initialization of 
the cluster centers in FeSEM, we conducted pure clustering 20 times with randomized ini-
tialization, and then the “best” initialization, which has the minimal intra-cluster distance, 
was selected as the initial centers for FeSEM. For the local update procedure of FeSEM, 
we set N to 1, meaning we only updated Wi once in each local update.

6.1.5  Evaluation metrics

Given numerous devices, we evaluated the overall performance of the FL methods. We 
used classification accuracy and F1 score as the metrics for the two benchmarks. In addi-
tion, due to the multiple devices involved, we explored two ways to calculate the met-
rics, i.e., micro and macro. The only difference is that when computing an overall metric, 
“micro” calculates a weighted average of the metrics from devices where the weight is pro-
portional to the data amount, while “macro” directly calculates an average over the metrics 
from devices.

Table 2  Comparison of our 
proposed FeSEM(K) algorithm 
with the baselines on FEMNIST. 
Note the number in parenthesis 
following “FeSEM” denotes the 
number of clusters, K 

Dataset FEMNIST

Metrics(%) Micro-Acc Micro-F1 Macro-Acc Macro-F1

NoFed 79.0±2.0 67.6±0.6 81.3±1.9 51.0±1.2
FedSGD 70.1±2.2 61.2±3.4 71.5±1.8 46.7±1.2
FedAvg [43] 84.9±2.0 67.9±0.4 84.9±1.6 45.4±1.9
FedDist [44] 79.3±0.8 67.5±0.5 79.8±1.1 50.5±0.5
FedDist+WS 80.4±0.8 67.2±1.6 80.6±1.2 51.7±1.1
Robust(TKM) [15] 78.4±1.0 53.1±0.5 77.6±0.7 53.6±0.7
FedCluster [50] 84.1±1.1 64.3±1.3 84.2±1.0 64.4±1.6
HypoCluster(3) [42] 82.5±1.7 61.3±0.6 82.2±1.3 61.6±0.9
FedDane [26] 40.0±2.9 31.8±3.1 41.7±2.4 31.7±1.6
FedProx [25] 72.6±1.8 62.8±1.6 74.3±2.1 50.6±1.2
FeSEM(2) 84.8±1.1 65.5±0.4 84.8±1.6 52.0±0.5
FeSEM(3) 87.0±1.2 68.5±2.0 86.9±1.2 41.7±1.5
FeSEM(4) 90.3±1.5 70.6±0.9 91.0±1.8 53.4±0.6
FeSEM-MA(3) 90.4±1.5 71.4±0.5 87.0±2.0 64.3±0.5
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6.2  Experimental study

6.2.1  Comparison study

As shown in Tables 2 and 3, we compared our proposed FeSEM with the baselines and 
found that FeSEM achieves the best performance in most cases. But, it is observed that 
the proposed model achieves an inferior performance for Micro F1 score on the FedCel-
ebA dataset. A possible reason for this is that our objective function defined in (6) does 
not take into account the number of samples per device as important weights. Hence, 
our model is able to deliver a significant improvement in terms of “macro” metrics. Fur-
thermore, as shown in the last four rows in Tables 2 and 3, we found that FeSEM with a 
larger number of clusters empirically achieves a better performance, which verifies the 
correctness of the non-IID assumption of the data distribution. It is worth noting that 
the FeSEM-MA is comparable or worsen than FeSEM in our experiment. Because the 
Matched Averaging method usually works well that each client is randomly initialised 
while the FedAvg and our FeSEM initialized all clients using the global model. Differ-
ent initialization strategies will cause different scales of diversity across local models, 
thus contributing to the performance in different ways.

We also notice that FedAvg and NoFed perform better than some clustered FL base-
line. The reason is that our experiment using the original federated learning setting that 
only split the dataset according to users or by the random split. Therefore, the non-IID 
and clustering assumption is not obvious in this situation. Therefore, the FedAvg and 
noFed perform well. In recent, some advanced data split methods have been used to 
further disturb the non-IID distribution across clients. For example, exaggerate the label 
distribution across devices by aggregating sample imbalance, or randomly assign differ-
ent label set to each device. In these new settings, the FedAvg will perform worse, and 
the clustered FL methods will perform relatively better. Due to the limited space, we 
will use the original FL setting, and leave the new setting for future work.

Table 3  Comparison of our 
proposed FeSEM(K) algorithm 
with the baselines on FedCelebA. 
Note the number in parenthesis 
following “FeSEM” denotes the 
number of clusters, K 

Dataset FedCelebA

Metrics(%) Micro-Acc Micro-F1 Macro-Acc Macro-F1

NoFed 83.8±1.4 66.0±0.4 83.9±1.6 67.2±0.6
FedSGD 75.7±2.3 60.7±2.4 75.6±2.0 55.6±2.6
FedAvg [43] 86.9±0.5 78.0±1.0 86.1±0.4 54.2±0.6
FedDist [44] 71.8±0.9 61.0±0.8 71.6±1.0 61.1±0.7
FedDist+WS 73.4±1.7 59.3±0.9 73.4±1.9 50.3±0.5
Robust(TKM) [15] 90.1±1.3 68.0±0.7 90.1±1.3 68.3±1.1
FedCluster [50] 86.7±0.7 67.8±0.9 87.0±0.9 67.8±1.3
HypoCluster(3) [42] 76.1±1.5 53.5±1.0 72.7±1.8 53.8±1.9
FedDane [26] 76.6±1.1 61.8±2.0 75.9±1.0 62.1±2.2
FedProx [25] 83.8±2.0 60.9±1.2 84.9±1.8 65.7±1.2
FeSEM(2) 89.1±1.3 64.6±1.0 89.0 ±1.3 56.0±1.3
FeSEM(3) 88.1±1.9 64.3±0.8 87.5±2.0 55.9±0.8
FeSEM(4) 93.6±2.7 74.8±1.5 94.1±2.2 69.5±1.1
FeSEM-MA(3) 84.5±0.8 64.1±0.7 85.1±1.0 63.0±1.3
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6.2.2  Convergence

To verify the convergence of the proposed approach, we conducted a convergence analysis 
by running FeSEM with different cluster numbers K (from 2 to 4) in 100 iterations. As 
shown in Figure 3, FeSEM can efficiently converge on both datasets and it can achieve the 
best performance with the cluster number K = 4.

6.2.3  Clustering analysis

To check the effectiveness of our proposed optimization method and whether the 
devices grouped into one cluster have similar model, we conducted a clustering analysis 
via an illustration. We used two-dimensional figures to display the clustering results of 
the local models derived from FeSEM(4) on the FEMNIST dataset. In particular, we 
randomly chose 400 devices from the dataset and plotted each device’s local model as 
one point in the 2D space after PCA dimension reduction. As shown in Figure 4, the 
dataset suitable for four clusters that are distinguishable to each other. It is worth noting 

Fig. 3  Convergence analysis for 
the proposed FeSEM with differ-
ent cluster number (in parenthe-
sis) in terms of micro-accuracy

Fig. 4  Clustering analysis for different local models (using PCA) derived from FeSEM(4) using FEMNIST 
and Celeba data
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that the clustering algorithm will converge very fast. In general, it takes no more than 10 
iterations to converge. One can find detailed theoretical and empirical analyses on the 
convergence for general clustered FL in a recent work [40].

6.2.4  Case study on clustering

To intuitively judge whether nodes grouped into the same cluster have a similar data 
distribution, we conducted case studies on a case of two clusters that are extracted from 
a trained FeSEM(2) model. For FMNIST, as shown on the top of Figure 5, cluster on 
the right consists writers who are likely to recognize hand-writings with a smaller font, 
and on the left consists writers who are likely to recognize hand-writing with a bolder 
and darker font. For FedCelebA, see full face images in Appendix Section 2, the face 
recognition task in cluster1 is likely to handle the smiling faces with a relatively simple 
background, also exhibits to be young people. While cluster on the right is likely to 
handle the faces with more diverse background and also seems to be more older people.

7  Case study

The cluster results are based on the distance metric for client-wise model parameters. 
The model could be viewed as a map function f ∶ x → y that is to map the input x into 
an output y. The function is parameterised by model parameters w, thus a similar w 
pair indicate that the two clients are likely to have similar preferences in decision-mak-
ing. As shown in Figure 5, there are two clusters for FEMNIST and CIFAR-10 datasets 
respectively. The left part shows the clustering effect of FeSEM on dataset MINIST 
by writers, on the red rectangle (upper) are three writers handwritten digits which are 
smaller and lighter than those in the blue rectangle (bottom). The right figure shows the 
clustering of CIFAR-10 data with 10 classes in which one class is about people. In the 
class of people, our algorithm finds one cluster to represent young beauties as shown in 
the red rectangle (upper) and another cluster to represent the aging people in the blue 
rectangle (bottom).

Fig. 5  Cluster demonstrations on FEMINIST (left) and CIFAR-10 (right). Two rectangles represent differ-
ent cluster discovered by the proposed method
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8  Conclusion

This work proposes a novel FL algorithm to tackle the non-IID challenge, which is towards 
better personalization of decision-making in non-IID FL. Since the proposed method uses 
Kmeans as the clustering algorithm, it also suffers the drawbacks of Kmeans, e.g., compu-
tational efficiency for high dimension data and robustness to outliers. Moreover, the clus-
tering algorithm usually requires the full participation of all clients in the training process. 
A more practical clustered federated learning could be developed to address the large-scale 
federated learning system, and also to explore how to adapt to new clients out of the train-
ing set.
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