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Abstract
Tor is an open source software that allows accessing various kinds of resources, known as hid-
den services, while guaranteeing sender and receiver anonymity. Tor relies on a free, world-
wide, overlay network, managed by volunteers, that works according to the principles of onion 
routing in which messages are encapsulated in layers of encryption, analogous to layers of an 
onion. The Tor Web is the set of web resources that exist on the Tor network, and Tor websites 
are part of the so-called dark web. Recent research works have evaluated Tor security, its evo-
lution over time, and its thematic organization. Nevertheless, limited information is available 
about the structure of the graph defined by the network of Tor websites, not to be mistaken 
with the network of nodes that supports the onion routing. The limited number of entry points 
that can be used to crawl the network, makes the study of this graph far from being simple. In 
the present paper we analyze two graph representations of the Tor Web and the relationship 
between contents and structural features, considering three crawling datasets collected over 
a five-month time frame. Among other findings, we show that Tor consists of a tiny strongly 
connected component, in which link directories play a central role, and of a multitude of ser-
vices that can (only) be reached from there. From this viewpoint, the graph appears inefficient. 
Nevertheless, if we only consider mutual connections, a more efficient subgraph emerges, that 
is, probably, the backbone of social interactions in Tor.

Keywords Tor · Web graph · Dark web · Complex networks

 * Alessandro Celestini 
 a.celestini@iac.cnr.it

 Massimo Bernaschi 
 m.bernaschi@iac.cnr.it

 Marco Cianfriglia 
 mcianfriglia@uniroma3.it

 Stefano Guarino 
 s.guarino@iac.cnr.it

 Flavio Lombardi 
 f.lombardi@iac.cnr.it

 Enrico Mastrostefano 
 e.mastrostefano@iac.cnr.it

1 Institute for Applied Computing, National Research Council of Italy, Via dei Taurini 19, Rome, Italy
2 Department of Mathematics and Physics, Roma Tre University, Largo San Leonardo Murialdo 1, Rome, Italy

Published online: 1 April 2022

World Wide Web (2022) 25:1287–1313

/

http://orcid.org/0000-0003-3661-9836
http://orcid.org/0000-0002-8493-4550
https://orcid.org/0000-0002-6775-7804
http://orcid.org/0000-0002-0023-7943
http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01044-z&domain=pdf


1 3

1 Introduction

“Dark web” is a generic term for the subset of the Web that, other than being non-indexed 
by popular search engines, is accessible only through specific privacy-preserving browsers 
and overlay networks. Those networks, often called darknets, implement suitable crypto-
graphic protocols to the purpose of keeping anonymous the identity of both the services 
offering contents and the users enjoying them. The best known and most widespread of 
them is probably Tor, which takes its name from The Onion Routing protocol it is based 
upon. Tor guarantees privacy and anonymity by redirecting traffic through a set of relays, 
each adding a layer of encryption to the data packets they forward. The equivalent of a 
domain on the surface Web is called Hidden Service (HS) in Tor.

Past research on the Tor network has evaluated its security [8], evolution [22], and the-
matic organization [36]. Nevertheless, an in depth study of Tor’s characteristics is difficult 
due to the limited number of Tor entry points on the surface web. In this paper, building 
on and extending over previous results on the topic [5, 6], we aim at better characterizing 
the Tor Web by analyzing three crawling datasets collected over a five-month time frame. 
In line with previous work on the WWW [11] and with a recent trend for criminal networks 
and dark/deep web [5, 13, 20, 34], we investigate Tor as a complex system, shedding new 
light on usage patterns as well as dynamics and resilience of the Tor Web. We consider the 
Tor Web graph aggregated by HS, i.e., the network of Tor HSs connected by hyperlinks 
– not to be mistaken with the network of Tor relays. We analyze the topology of two dif-
ferent graph representations of the Tor Web – directed and undirected – also using local 
properties of the graphs to characterize the role that different services play in the network. 
Relying on a large dataset of manually tagged HSs [2], we relate a few structural properties 
with the thematic organization of Tor’s web content.

Along with the three snapshot graphs induced by the three crawling data sets, we also con-
sider an intersection graph and an union graph, in an effort to discriminate intrinsic features 
from noise. As a side effect, the present paper also addresses several open questions about the 
persistence of the Tor Web, showing the actual changes that took place in the quality, quantity 
and shape of available services and in their interconnections over the considered time span.

Overall, Tor comes out having significant structural differences with respect to the 
WWW. Our main findings may be summarized as follows:

– The Tor Web is a network which resembles a small world one but is somehow ineffi-
cient, consisting of a tiny strongly connected component (SCC) surrounded by a multi-
tude of services that can be reached from the SCC but do not allow getting back to it.

– The stable core of the Tor Web is mostly composed of in- and out-hubs, whereas the 
periphery is highly volatile. The in- and out-hubs are generally separate services in Tor.

– The (relatively small) undirected subgraph of the Tor Web, obtained only considering 
mutual connections, is quite efficient despite it lacks most of the features of a small 
world network. As a matter of fact, the undirected graph better preserves the social 
organization of the graph, such as its community structure, which appears to be gener-
ally stable and, as such, meaningful.

– Both the volatility of Tor’s HSs and the tendency of the HSs to cluster together are 
unrelated to the services’ content.

– With a few exceptions, the topological metrics are scarsely informative of the activ-
ity occurring on a service; however, the “hubbiness” of a HS may be of some help in 
detecting “suspicious” activities (as defined in [1]).
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To the best of our knowledge, the amount of data we collected for the study of the Tor 
Web exceeds previous efforts reported in the literature [6, 7, 20, 36], making possible an 
in-depth analysis.

1.1  Related Work

Interesting works studying the topology of the underlying network and/or semantically 
analyzing Tor contents have appeared so far.

Biryukov et al. [8] managed to collect a large number of hidden service descriptors by 
exploiting a presently-fixed Tor vulnerability to find out that most popular hidden services 
were related to botnets. Owen et al.  [32] reported over hidden services persistence, con-
tents, and popularity, by operating 40 relays over a 6 month time frame.

ToRank [1], by Al-Nabki et al. is an approach to rank Tor hidden services. The authors 
collected a large Tor dataset called DUTA-10K extending the previous Darknet Usage 
Text Address (DUTA) dataset [2]. The ToRank approach selects nodes relevant to the Tor 
network robustness. DUTA-10K analysis reveals that only 20% of the accessible hidden 
services are related to suspicious activities. It also shows how domains related to suspi-
cious activities usually present multiple clones under different addresses. Zabihimayvan 
et al. [39] evaluate the contents of English Tor pages by performing a topic and network 
analysis on crawling-collected data composed of 7,782 pages from 1,766 unique onion 
domains. They classify 9 different domain types according to the information or service 
they host. Further, they highlight how some types of domains intentionally isolate them-
selves from the rest of Tor. Contrary to  [1], their measurements suggest how market-
places of illegal drugs and services emerge as the dominant type of Tor domain. Similarly, 
Takaaki et al. [37] analyzed a large amount of onion domains obtained using the Ichidan 
search engine and the Fresh Onions site. They classified every encoutered onion domain 
into 6 categories, creating a directed graph and attempting to determine the relationships 
and characteristics of each instance. Ghosh et  al.  [18] employed another automated tool 
to explore the Tor network and analyze the contents of onion sites for mapping onion site 
contents to a set of categories, and clustered Tor services to categorize onion content. The 
main limitation of that work is that it focused on page contents/semantics, and did not con-
sider network topology.

A few research works focus on Tor’s illegal marketplaces. Duxbury et  al.  [16] exam-
ine the global and local network structure of an encrypted online drug distribution net-
work. Their aim is to identify vendor characteristics that can help explain variations in 
the network structure. Their study leverages structural measures and community detection 
analysis to characterize the network structure. Norbutas et  al. [31] made use of publicly 
available crawls of a single cryptomarket (Abraxas) during 2015 and leveraged descrip-
tive social network analysis and Exponential Random Graph Models (ERGM) to analyze 
the structure of the trade network. They found out the structure of the online drug trade 
network to be primarily shaped by geographical boundaries, leading to strong geographic 
clustering, especially strong between continents and weaker for countries within Europe. 
As such, they suggest that cryptomarkets might be more localized and less international 
than thought before. Christin et al. [13] collected crawling data on specific Tor hidden ser-
vices over an 8 month lifespan. They evaluated the evolution/persistence of such services 
over time, and performed a study on the contents and the topology of the explored network. 
The main difference with our work is that the Tor graph we explore is much larger, not 

1289World Wide Web (2022) 25:1287–1313



1 3

being limited to a single marketplace. In addition, we present here a more in depth evalua-
tion of the graph topology.

De Domenico et  al. [15], used the data collected in  [4] to study the topology of the 
Tor network. They gave a characterization of the topology of this darknet and proposed 
a generative model for the Tor network to study its resilience. Their viewpoint is quite 
different from our own here, as they consider the network at the autonomous system 
(AS) level. Griffith et al. [20] performed a topological analysis of the Tor hidden services 
graph. They crawled Tor using the scrapinghub.com commercial service through the tor-
2web proxy onion link. Interestingly, they reported that more than 87% of dark websites 
never link to another site. The main difference with our work lies in both the extent of the 
explored network (we collected a much more extensive dataset than that accessible through 
tor2web) and the depth of the network analysis (we evaluate a far larger set of network 
characteristics).

So far, one of the largest Tor dataset collected from an automated Tor network explora-
tion is due to Bernaschi et al. [5]. They aimed at relating semantic contents similarity with 
Tor topology, searching for smaller connected components that exhibit a larger semantic 
uniformity. Their results show that the Tor Web is very topic-oriented, with most pages 
focusing on a specific topic, and only a few pages dealing with several different topics. Fur-
ther work [6] by the same authors features a very detailed network topology study investi-
gating similarities and differences from surface Web and applying a novel set of measures 
to the data collected by automated exploration. They show that no simple graph model 
fully explains Tor’s structure and that out-hubs govern the Tor’s Web structure.

1.2  Roadmap

The rest of the paper is organized as follows. In Section  2 we describe: (i) our dataset, 
including statistics about the organization of the hidden services as websites (tree map, 
amount of characters and links); (ii) the DUTA dataset we used for content analysis. In 
Section 3 we describe how we extracted our graph representations from the available data 
and we recall the definition of all graph-related notation and metrics used throughout the 
paper. In Section 4 we discuss and present the results of our in-depth analysis of the Tor 
Web, carried out through a set of structural measures and statistics. We study properties 
such as bow-tie decomposition, global and local (i.e., vertex-level) metrics, degree dis-
tributions, community structure, and content related distribution and metrics. Finally, we 
draw conclusions in Section 5.

2  Data

The present paper analyzes a dataset that is the result of three independent six-week runs 
of our customized crawler, resulting in three “snapshots” of the Tor Web: SNP1, SNP2 and 
SNP3. The design of the crawler and the outcome of the scraping procedures are reported 
in Appendix 1 and more extensively discussed in [6, 12].

It is quite common to analyze a dataset obtained by crawling the web. Yet, it must 
be kept in mind that the analysis may be susceptible to fluctuations due to the order in 
which pages have been first visited – and, hence, not revisited thereafter  [26]. In the 
case of the Tor Web, the issue is exacerbated by the renowned volatility of Tor hidden 
services [7, 8, 32]. By executing three independent scraping attempts over five months, 
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we aimed at making our analysis more robust and at telling apart “stable” and “tempo-
rary” features of the Tor Web.

In total, we reached millions of onion pages (more than 3 millions in the second run 
alone) and almost 30 thousands distinct hidden services. The distribution of these hid-
den services across the three snapshots is reported in Table  1. Albeit active services 
may temporarily appear offline to the crawler (e.g., due to all paths to those services 
being unavailable), these statistics are quite informative about the volatility of the Tor 
web. Just 10685 onion URLs were successfully reached by all three crawling runs. It 
is quite likely that those hidden services were durably present over the considered five 
months time frame; they account for, respectively, 83.3% of SNP1, 42.2% of SNP2 and 
61.2% of SNP3. Among the hidden services that are absent in just one of the three data 
sets, especially notable are the 76 hidden services that reappeared in SNP3 after they 
disappeared during SNP2.

To provide a better picture of the complexity of Tor websites, for each and every hid-
den service, we proceeded as follows: i) we reconstructed the whole tree-structure of sub-
domains and pages; ii) we computed the total number of characters and the total number of 
hyperlinks (i.e., number of hrefs in the HTML source). Figure 1 shows the statistical distri-
bution of tree heights for the three snapshots and the distribution of tree height variations 
across different snapshots (for hidden services present in, at least, two snapshots). The trees 
are generally very short and do not vary remarkably over time, yet exceptions exist with 
variations comparable to the maximum “size” of a hidden service. The char count is gener-
ally variable, whereas services with 0 hyperlinks are predominant. A significant number 
of hidden services has one hyperlink every 20 to 200 chars (i.e., from ≈ 3 words up to ≈ 2 
sentences). In the following sections we rely on the ratio of number of hyperlinks over 
number of characters (links-to-char ratio, or LCRatio) to assess whether hidden services 
that are central in the Tor Web graph are indeed just link directories or not. It is worth 
noting that, of the 10685 hidden services reached in all three snapshots, only ≈ 65% had a 
constant tree height and only ≈ 43% had a constant char count across all snapshots. Auto-
matically detecting hidden services that stay durably online but with different names (e.g., 
to prevent being tracked down) thus requires manual work that lies beyond the scope of the 
present paper.

For contents analysis we rely on the DUTA dataset, the widest publicly available the-
matic dataset for Tor, consisting of a three-layer classification of 10250 hidden services [1, 
2]. Albeit the DUTA classification does not cover our dataset entirely, the percentage of 
HSs of our snapshots contained in the DUTA dataset is significant: for instance, ≈ 49.5% 
of the fully persistent HSs found in all three snapshots, and ≈ 85% of the 200 HSs having 
most hyperlinks to other HSs, have a DUTA tag. In addition, the DUTA dataset has the 

Table 1  Services persistence over time; in total we reached almost 30000 different hidden services

Snapshot Number of HS Percentage of HS Persistence Type

SNP1 and SNP2 and SNP3 10685 36.25% Fully persistent
SNP1 and SNP2 1612 5.47% Partially persistent
SNP2 and SNP3 3066 10.40% Partially persistent
SNP1 and SNP3 76 0.26% Reappeared
SNP1 only 456 1.55% Seen once
SNP2 only 9945 33.74% Seen once
SNP3 only 3633 12.33% Seen once
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undeniable advantage of being manually tagged – by choosing it rather than carrying out a 
fresh new classification of our dataset, we trade coverage for accuracy.

The DUTA dataset provides a two-layer thematic classification plus a language tag for 
each service. The thematic classes are further categorized as “Normal”, “Suspicious” or 
“Unknown”. The “Unknown” category only includes classes that correspond to services 
whose nature could not be established: “Empty”, “Locked” or “Down”. Due to the limited 
information provided by these tags, we ignore all “Unknown” services in the following. 
For certain first layer classes (e.g., “Marketplace”) that can be both “Suspicious” and “Nor-
mal”, the second layer is exactly used to tell apart “Legal” and “Illegal” content. We con-
sider the second layer for this purpose only, thus obtaining the customized version of the 
DUTA thematic classification reported in Table 2.

3  Methods

3.1  Graph construction

From each of the three WARC 1 files obtained from the scraping procedures we extracted 
two graphs: a Directed Service Graph (DSG) and an Undirected Service Graph (USG). As 
detailed in [12], a vertex of these graphs represents the set of pages belonging to a hidden 
service. In the DSG a directed edge is drawn from hidden service HS1 to HS2 if any page 
in HS1 contains, at least, a hypertextual link to any page in HS22. The directed graphs 
obtained from the three snapshots are denoted DSG1, DSG2, and DSG3, respectively. In 
the USG, instead, an undirected edge connects hidden services HS1 and HS2 if they are 
mutually connected in the corresponding DSG, that is, if there exists at least one page in 
HS1 linking any page in HS2 and at least one page in HS2 linking any page in HS1. More 
formally an edge (u, v) ∈ EUSG iff (u, v) ∈ EDSG and (v, u) ∈ EDSG , Figure 2 shows an exam-
ple of construction of a DSG and a USG. When we consider just mutual connections, a 
vast majority of vertices remains isolated. These are ignored in the following since they 

Fig. 1  Distribution of tree heights in the three snapshots (a) and distribution of tree height variations across 
different snapshots for hidden services present in at least two snapshots (b)

1 Web ARChive https:// www. iso. org/ obp/ ui/# iso: std: iso: 28500: ed-2: v1: en
2 Edges from/to the surface web have been ignored.
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convey no structural information. In other words, we consider edge-induced graphs. The 
undirected graphs obtained from the three snapshots are denoted USG1, USG2, and USG3 
respectively.

Since the snapshot graphs are inevitably conditioned by the effect of scraping a reputedly volatile 
network, we also consider the edge-induced intersection and union of the aforementioned graphs. 
Precisely, we denote DSGI the graph induced by the edge set EDSGI = EDSG1 ∩ EDSG2 ∩ EDSG3 
and DSGU the graph induced by the edge set EDSGU = EDSG1 ∪ EDSG2 ∪ EDSG3. Analogously, 

Table 2  The content-based 
classification used in this paper

Class name by type

Normal Suspicious

Art Counterfeit Credit-Cards
Casino Counterfeit Money
Cryptocurrency Counterfeit Personal-Identification
Forum (Legal) Cryptolocker
Hosting Drugs
Library Forum (Illegal)
Marketplace (Legal) Fraud
Personal Hacking
Politics Human-Trafficking
Religion Leaked-Data
Services (Legal) Marketplace (Illegal)
Social-Network Porno

Services (Illegal)
Violence

Fig. 2  A toy example showing a Directed Service Graph (DSG) and an Undirected Service Graph (USG). 
The USG is built from the DSG by keeping only mutually connected hidden services. We consider edge-
induced graphs, thus isolated vertices are ignored

1293World Wide Web (2022) 25:1287–1313
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USGI is induced by the edge set EUSGI = EUSG1 ∩ EUSG2 ∩ EUSG3 and USGU is induced by the 
edge set EUSGU = EUSG1 ∪ EUSG2 ∪ EUSG3.

We do not preserve multi-edges in order to allow a direct comparison with most previ-
ous work on other web and social/complex networks. However, in both directed and undi-
rected graphs, we store the information about the number of links that have been “flat-
tened” onto an edge as a weight attribute assigned to that edge – taking the minimum 
available weight for edges of our intersection graph and the maximum for the union. We 
interpret the edge weight as a measure of connection strength that does not alter distances 
but expresses endorsement/trust and quantifies the likelihood that a random web surfer [33] 
travels on that edge.

3.2  Graph Analysis

In line with previous work on Web and social graphs [11, 19, 21, 26], we analyze the Tor 
Web graph through a set of structural measures and statistics, including a bow-tie decom-
position of the directed graphs, global and local (i.e., vertex-level) metrics, and modularity-
based clustering. The main graph-based notions and definitions are reported in the follow-
ing, while graph-related symbols used throughout the paper are reported in Table 3.

Bow-Tie decomposition In a directed graph, two vertices u and v are strongly connected 
if there exists a path from u to v and a path from v to u. Strong connectedness defines 
equivalence classes called strongly connected components. A common way to character-
ize a directed graph consists in partitioning its vertices based on whether and how they 
are connected to the largest strongly connected component of the graph. This “bow-tie” 
decomposition [26] consists of six mutually disjoint classes, defined as follows: (i) a vertex 
v is in LSCC if v belongs to the largest strongly connected component; (ii) v is in IN if v is 
not in LSCC and there is a path from v to LSCC; (iii) v is in OUT if v is not in LSCC and 
there is a path from LSCC to v; (iv) v is in TUBES if v is not in any of the previous sets and 
there is a path from IN to v and a path from v to OUT; (v) v is in TENDRILS if v is not in 
any of the previous sets and there is either a path from IN to v or a path from v to OUT, but 
not both; otherwise, (vi) v is in DISCONNECTED.

Global metrics To characterize our ten graphs we resort to well-known metrics, sum-
marized in Table  4. Most of these metrics have a straightforward definition. Let us just 
mention that: in directed graphs, following Newman’s original definition  [30], the assor-
tativity � measures the correlation between a node’s out-degree and the adjacent nodes’ 
respective in-degree; in undirected graphs, � measures the correlation between a node’s 
degree and the degree of its adjacent nodes; the global efficiency Eglo is the average of 
inverse path lengths; in directed graphs, the transitivity T measures how often vertices 

Table 3  Basic graph notations 
and definitions used throughout 
the paper

Symbol Definition

G = (V ,E) Graph with vertex set V and edge set E
N Number of nodes: N = |V|
M Number of edges: M = |E|
�vu Number of shortest paths from v to u
�vu(t) Number of shortest paths from v to u including t
dist(v, u) Shortest path length from v to u
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that are adjacent to the same vertex are connected in, at least, one direction; the clustering 
coefficient C is the transitivity in undirected graph, defined as the ratio of closed triplets 
over total number of triplets. Many of the metrics from Table 4 are undefined for discon-
nected graphs, or may provide misleading results when evaluated over multiple isolated 
components. To make up for it and allow for a fair comparison, we only consider the giant 
(weakly) connected component of all disconnected graphs. It is worth mentioning that the 
three Directed Service Graphs (DSGs), and therefore their union DSGU, consist of a sin-
gle weakly connected component. On the contrary, all Undirected Service Graphs (USGs) 
are weakly disconnected graphs. DSGI is also disconnected, albeit only two hidden ser-
vices – violet77pvqdmsiy.onion and typefacew3ijwkgg.onion – are isolated from the rest 
and connected by an edge. We instead consider the graphs in their entirety for other types 
of analysis.

Correlation analysis of centrality metrics We perform a correlation analysis of several 
local structural properties to the purpose of sorting out the possible roles of a service in the 
network. We rely on Spearman’s rank correlation coefficient – rather than the widely used 
Pearson’s – for a number of reasons: (i) we are neither especially interested in verifying lin-
ear dependence, nor we do expect to find it; (ii) we argue that not all the considered metrics 
yield a clearly defined interval scale – while they apparently provide a ordinal scale; (iii) 
when either of the two distributions of interest has a long tail, Spearman’s is usually pref-
erable because the rank transformation compensates for asymmetries in the data; and (iv) 
recent work [27] showed that Pearson’s may have pathological behaviors in large scale-free 
networks. The considered metrics3 are shown in Table 5. In words: the betweenness of v 
measures the ratio of shortest paths that pass through v; the closeness of v is the inverse of 
the average distance of v from all other vertices; the pagerank of v measures the likelihood 
that a random web surfer ultimately lands on v; the authscore and hubscore of v, jointly 
computed by the HITS algorithm [25], respectively measure how easy it is to reach v from 

Table 4  Global metrics notations 
and definitions

Symbol Definition
Global metrics valid for both DSG and USG

⟨deg⟩ Average (in-/out-) degree
� Assortativity: see (26) in [30]
d Diameter: maxv∈V maxu∈V dist(v, u)

⟨dist⟩ Average shortest path length
Eglo Global efficiency: 1

N(N−1)

∑
u≠v∈V

1

d(u,v)

Global metrics valid for DSG only
�in∕N Normalized maximum in-degree
�out∕N Normalized maximum out-degree
Cenout Out-degree centralization: N∗�out−

∑
v∈V degout (v)

(N−1)2

T Global transitivity: #(u,v,w)∶ u→v∧u→w∧(v→w∨w→v)

#(u,v,w)∶ u→v∧u→w

Global metrics valid for USG only
�∕N Normalized maximum degree
Cen Degree centralization: N∗�−

∑
v∈V deg(v)

(N−1)(N−2)

C Global clustering coefficient: # closed triplets

# all triplets

3 Beware that some of these metrics are only defined for directed graphs.

1295World Wide Web (2022) 25:1287–1313



1 3

a central vertex or to reach a central vertex from v; the efficiency of v is the average inverse 
distance of v from all other vertices; the transitivity of v is the ratio of pairs of neighbors 
of v which are themselves adjacent; the eccentricity of v is the maximum distance of any 
other vertex from v; the LCRatio of v is not a graph-based metrics, but we defined it as the 
ratio of number of hyperlinks over number of characters in the text extracted from the HS 
associated to v.

Degree distribution We perform a log-normal and a power-law fit of the degree distri-
bution of all graphs using the statistical methods developed in [14], relying on the imple-
mentation provided by the powerlaw python package [3]. A log-normal distribution may 
be a better fit of degree distributions in many complex networks [28], and a recent work 
suggests that a log-normal distribution may emerge from the combination of preferential 
attachment and growth [35]. Nevertheless, using a power-law fit is standard practice in the 
study of long-tailed distributions and allows direct comparison with previous works. It is 
worth specifying that powerlaw autonomously finds a lower-bound kmin for degrees to be 
fitted. In our case, even if kmin is much less than the maximum degree, all values greater 
than kmin account for just a small percentage of the whole graph. However, we believe this 
should not prevent from taking these fits seriously into consideration: the tail of the distri-
bution de facto describes the central part of the graph that actually has a meaningful struc-
ture – as opposed to the bulk of the distribution mostly depicting vertices with out-degree 
0 (83% to 95% of the graph according to the specific DSG considered) and/or in-degree 
1 (17% to 43%). The procedure by which we calculate the reach of the most important 
hubs of each network is the following: taking into account just the giant component, we i) 
sort the hidden services by degree (out-degree in the DSGs); ii) compute the cumulative 
percentage of the giant component that is at distance one from one of the first i hubs, for 
i ∈ {1,… , 25}.

Community structure To extract a community structure for our graphs we rely on the 
well-known Louvain algorithm [9], based on modularity maximization. As often done in 
the literature  [19], we consider edge weights to make it harder to break an edge corre-
sponding to a hyperlink that appears several times in the dataset. To compare the clusters 
emerged across different graphs, we consider how common vertices are grouped in each 
graph using the well-known Adjusted Mutual Information (AMI) to measure the similarity 
of two partitions. The AMI of two partitions is 1 if the two partitions are identical, it is 0 
if the mutual information of the two partitions is the expected mutual information of two 

Table 5  Local metrics notations 
and definitions

Short name Full name and definition

betweenness Betweenness centrality: BC(v) =
∑

s≠v≠t∈V

�st (v)

�st

closeness Closeness centrality: CC(v) = N−1∑
u∈V d(u,v)

pagerank PageRank: see [17]
authscore Authority score: see [24]
hubscore Hub score: see [24]
efficiency Efficiency: E(v) = 1

deg(v)(deg(v)−1)

∑
u≠w∶ v→u∧v→w

1

d(u,w)

transitivity Transitivity: T(v) = #(u,w)∶ v→u∧v→w∧(u→w∨w→u)

#(u,w)∶ v→u∧v→w

eccentricity Eccentricity: �(v) = maxu∈V d(v, u)

LCRatio Links-to-chars ratio, see Section 2
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random partitions, and it is negative if the mutual information of the two partitions is worse 
than the expected one. Since a single label from Table 2 is assigned to each service, the 
DUTA classification naturally induces three hard partitions, denoted “duta” (the individual 
classes), “duta type” (the macro categories “Normal” and “Suspicious”) and “lang” (the 
language) in the following. For the set of hidden services that our graphs share with the 
DUTA dataset, we can assess the coherence of topic-based and modularity-based cluster-
ing by computing the AMI of “duta”, “duta type” and “lang” with respect to the Louvain’s 
clusters.

3.3  Topological features for content‑based classification

To measure the information gain provided by topological vertex properties with respect to 
content-based classification, we proceed as follows:

– For each DUTA category C, we consider the dummy variable XC that indicates whether 
a randomly picked service belongs to the considered category.

– We let each metrics m induce a probability distribution Pm over the set of all services, 
in such a way that the probability of selecting a HS is proportional to the value of that 
metrics for that service.

– To measure the importance of knowing a metrics m with respect to a specific category 
C, we compare the distribution of XC under two different assumptions: that the HSs are 
drawn based on PC and that they are drawn uniformly at random – the latter meaning 
that Pr[XC = 1] is the overall prevalence of C in the graph.

– As a measure of information gain, we use the Kullback-Leibler divergence. The KL 
divergence lies in [0,+∞] , and it is 0 if the two distributions coincide.

4  Results and discussion

Hereafter, we summarize and discuss our main findings; additional explanations, sta-
tistics and figures are available in the Appendices. Since we monitored Tor over a suf-
ficient time span, our analysis is robust under fluctuations of the results obtained for 
different snapshots. The union and intersection graphs, in particular, capture most of 
the features of the snapshots, reflecting in different ways some of their specific charac-
teristics. We will therefore often focus on such graphs to provide a clear and synthetic 
overview of the results.

The bow-tie decomposition of the DSGs is reported and compared with previous work 
in Table 6. In general agreement with [20], we found that the Tor Web has a radically dif-
ferent structure with respect to the WWW, except, in part, for the DSGI graph where all 
components are non-empty. The Tor Web consists of just a very small LSCC and a much 
larger OUT component, albeit the share of the LSCC in the total size of the graph may be 
heavily influenced by the volatility of the network.

At a first sight, the Tor Web, seen as a directed graph, seems to show the key features of 
a small world network: the transitivity T is one order of magnitude greater than ⟨deg⟩∕N , 
which is the expected transitivity in a comparable random graph; the distance between any 
two connected nodes is approximately logarithmic in N, as in most social and web graphs 
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(see Appendix 1). A typical small world network, however, should be efficient, while the 
Tor Web has a very low global efficiency ( Eglo ), which is computed assigning infinite dis-
tance to non-connected vertex pairs.

The emerging structure entails that most resources of potential interest for Tor users 
are not easy to reach. The only way to effectively browse this network is to find a HS that 
belongs to the LSCC (possibly, through a link from the surface Web) and, from there, 
look for a path to the resource of interest. Navigation in the network is thus mostly tied to 
paths that connect the tiny LSCC to the many peripheral nodes, whereas the inverse route 
is precluded. This shows that the user experience in Tor is quite different from that of the 
WWW, and supports the general perception that most Tor users do not actually browse the 
Tor Web, but already know the onion url they want to visit.

The small-world effect that we observe in the DSGs is not visible in the undirected 
version of the Tor Web graphs, which have far fewer vertices but a comparable, or even 
greater, average distance and diameter than their directed counterparts. Most of the paths in 
the USGs, however, have length close to ⟨dist⟩ , so that Eglo ≈ 1∕⟨dist⟩ and the graphs are 
thus much more efficient than the DSGs. The clustering coefficient C is large in the USGI, 
but drops to ≈ ⟨deg⟩∕N in the USGU due to the presence of a huge hub in USG3.

Table 6  Bow-Tie structure

LSCC is the largest strongly connected component
IN is the set of nodes v ∈ V ⧵ LSCC such that there is a path from v to LSCC
OUT is the set of nodes v ∈ V ⧵ LSCC such that there is a path from LSCC to v
TUBES is the set of nodes v ∈ V ⧵ (LSCC ∪ IN ∪ OUT) such that there is a path from IN to v as well as a 
path from v to OUT
TENDRILS is the set of nodes v ∈ V ⧵ (LSCC ∪ IN ∪ OUT) such that there is either a path from IN to v or 
a path from v to OUT, but not both
DISCONNECTED is the set of all other nodes v ∈ V ⧵ (LSCC ∪ IN ∪ OUT ∪ TUBES ∪ TENDRILS)

Graph Component

LSCC IN OUT TUBES TENDRILS DISCONNECTED

22.3M 3.3M 13.3M 17K 514K 3.5M
WWW from [26] 51.94% 7.65% 30.98% 0.04% 1.2% 8.2%
Tor from [20] 297 0 6881 0 0 0

4.14% 0.0% 95.86% 0.0% 0.0% 0.0%
466 0 12363 0 0 0

DSG1 3.63% 0.0% 96.37% 0.0% 0.0% 0.0%
DSG2 820 0 24488 0 0 0

3.24% 0.0% 96.76% 0.0% 0.0% 0.0%
2371 0 15089 0 0 0

DSG3 13.58% 0.0% 86.42% 0.0% 0.0% 0.0%
DSGI 169 9 7415 1 74 1

2.2% 0.12% 96.69% 0.01% 0.97% 0.01%
3062 0 26411 0 0 0

DSGU 10.39% 0.0% 89.61% 0.0% 0.0% 0.0%
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To gain insights into the local properties of the network, we performed a correlation 
analysis of several centrality metrics (see Appendix 2 for additional details). In Figure 3 
we see that in the DSGs the central vertices can be broadly categorized in two groups. On 
the one hand, HSs having large in-degree, authscore, pagerank and closeness are those that 
provide the most valuable content: they attract connections from all other HSs, including 
“important” ones and are, on average, easier to reach. On the other hand, HSs having large 
out-degree, hubscore, betweenness and efficiency provide significant contribution to infor-
mation flows and are at the center of highly clustered regions. The fact that the LCRatio 
correlates with the latter set of metrics suggests that these hubs are mostly link directories 
or similar Web services.

Supported by the correlation analysis, we then focused on the degree sequences (in- 
and out-degree for the DSGs) to gain information on the hierarchical organization of the 
network. The tails of the distributions, in particular, describe the central part of the graph 
having a meaningful structure, whereas the bulk of the distribution mostly depicts periph-
eral HSs with very low degree. We performed both a log-normal and a power-law fit of the 
degree distributions (see Appendix 3 for details). While the former is slightly more accu-
rate, power-law fits are widely used in the literature and looking at the � exponent of the 
power-law is a straightforward way to classify the Tor Web graph with respect to the vast 
body of work on complex networks.

The in- and out-degree distribution of the DSGI and DSGU are shown in Figure  4. 
The value of � obtained for the out-degree distribution lies consistently around 1.5 for all 
directed graphs. This may be interpreted as the emergence of some level of self-organi-
zation: the choice of how many links to include in its web pages, arguably taken in full 
autonomy by each HS, makes the network resilient and facilitates its navigability. While 
the low value of � obtained for the out-degree distribution shows that hubs are quite com-
mon in Tor, the strong out-degree centralization �out signifies that some of these hubs are 
especially large if compared with the others. In the DSGU, more than 90% of the graph is 
in fact at distance 1 from (at least) one of the top 6 hubs; in the DSGI, which is much less 
centralized, more than 90% of the graph is still at distance 1 from (at least) one of the top 
23 hubs (see Appendix 3).

Fig. 3  Spearman’s rank correlation coefficient between the considered local metrics for the DSGI and 
DSGU
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All DSGs are disassortative, meaning that most of the HSs linked by a hub have a 
low in-degree. This means that the neighborhoods of different hubs are, at least, partially 
disjoint. As we have seen, the in-degree correlates with a set of metrics that express the 
authority and measure the ease of reach of a service. For the in-degree, � lies around the 
threshold 3 that is known to control the variance of the distribution, with � ≈ 2.7 in the 
DSGI and � ≈ 3.3 in the DSGU. This indicates that even authorities have a moderate in-
degree and that, to match up with the out-degree, there are many HSs with a very low 
in-degree that may become almost impossible to reach due to minimal changes in the Tor 
link connectivity. Combined with the disassortativity, and contrary to what the out-degree 
distribution may suggest, this means that access to valuable information is barely granted 
in Tor.

The degree distribution of the USGs mostly follows a power-law with � exponent ≈ 2.5 , 
closer to the value typically found in social networks, as visible in Figure 5. Mutual con-
nections seem to represent the backbone of the social structure of the Tor Web graph, as 
also confirmed by a comparison of the distribution of DUTA topics in the DSGs and USGs 
(see Figure 6). While the DSGI and the DSGU follow the original DUTA distribution quite 

Fig. 5  The degree distribution for the USGI and USGU

Fig. 4  The in- and out-degree distribution for the DSGI and DSGU
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closely, the thematic tag distributions in the USGs show an increased prevalence of classes 
of HSs related to sociality in a broad sense, such as “Social Network” or “Forum”. This 
type of HSs are keener to link to other similar HSs, thus favoring the emergence of mutual 
links. More generally, depending on the tag, HSs could instead compete and, hence, not 
connect with one another. This could explain why common classes such as “Cryptocur-
rency” or “Drugs” are entirely missing or barely present in the USGI and in the USGU.

A few outliers in the degree sequence of the USGU show that the inferred scale-free 
distribution cannot fully explain the organization of mutual links in Tor. The combined 
neighborhoods of the two most central HSs, in particular, cover almost 90% of the USGU. 
The USGI, instead, is much less centralized. As all networks are again disassortative, we 
know that also in USGs hubs are more likely connected with peripheral nodes.

We inferred the community structure of our graphs through modularity-based cluster-
ing and measured the similarity of the clusters obtained for different graphs computing 
the Adjusted Mutual Information (AMI) on the clusters projected on the set of common 
vertices. The community structure of the DSGs is very similar, in terms of number and 
size of the clusters, and reasonably consistent, taking into consideration the volatility of the 
network, with AMI ≈ 0.5 for all combinations (see Appendix 4). In any case, the apparent 
significance of the obtained clusters does not respond to a thematic homogeneity: for the 
set of HSs that our graphs share with the DUTA dataset, the coherence of topic-based and 
modularity-based clustering resulted in an AMI score ≈ 0.

While USGs have a more heterogeneous community structure, common vertices are 
clustered in an extremely stable way in the USGs, meaning that the existence of a mutual 
link is – as expected – a stronger indicator of the similarity between two services. We also 
see that the union graphs DSGU and USGU, i.e., the graphs based on all collected data, are 
those whose community structure is less influenced by switching from the directed to the 
undirected graph. In some sense, this means that the clustering obtained for DSGU can be 
reasonably considered as an extension of the very meaningful partition obtained for USGU.

To assess whether computing graph-based centrality metrics provides any advantage 
to the purpose of inferring the thematic tag of a HS, we proceeded as described in Sec-
tion 3.3. In Figure 7 we show the measured information gain for the DSGI and DSGU, 
separately considering “Normal” classes, “Suspicious” classes and their aggregate. The 
scenario for the other DSGs is almost identical and thus omitted, whereas the USGs were 

Fig. 6  Distribution of tags from Table 2 in the DUTA dataset and in the four considered Tor Web graphs
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not considered because their limited size affects the statistical relevance of this method. 
Generally speaking, most of the metrics appear to be uninformative with respect to con-
tent-based categories, i.e., the probability of finding a service of a specific class does not 
increase or decrease significantly when we select the service with probability proportional 
to most of its topological properties. However, there are a few remarkable exceptions: (i) 
the out-degree and the hubscore are especially informative about hosting services and 
illegal forums; (ii) services discussing religion topics are highlighted by their efficiency 
and transitivity, arguably because they tend to strongly cluster together; (iii) in the DSGU, 
the transitivity is also somewhat informative of services that focus on drugs, whereas the 
LCRatio is associated with hosting services, even though not as much as one could expect. 

Fig. 7  The information gain provided by different metrics with respect to DUTA classes and macro catego-
ries
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These class-level information gains are only partially able to explain the notable improve-
ment that many metrics instead seem to provide to the goal of telling apart, more in gen-
eral, “Suspicious” and “Normal” services. This opens new perspectives towards the design 
of classifiers that make use of topological features instead of text analysis.

5  Conclusion

In this paper, we presented an in depth investigation of the key features of the Tor Web 
graph, providing a clear view on its topology and on how the topology is affected by the 
volatility of the network, inferring on the latent patterns of interactions among Tor users, 
and assessing whether graph metrics can be used to expose the thematic organization of the 
network. The Tor Web is composed of a large percentage of volatile hidden services and of 
mostly persistent hubs that are critical for the graph connectivity. The volatility of periph-
eral nodes does not heavily influence the global structure of the Tor Web graph, which 
consists of a small strongly connected component from which the remainder of the network 
can be reached in just a few steps. Albeit a small world effect can be observed, the Tor Web 
has a very low global efficiency and most resources of potential interest for Tor users are 
not easy to reach. The graph seems to possess a meaningful and stable community struc-
ture, not related to the thematic organization of the network, which is especially visible 
when only mutual connections are considered. The subgraph induced by mutual connec-
tions comprises just a tiny fraction of the nodes and includes a major presence of topics 
related to sociality in a broad sense. Considering a class-level categorization, most of the 
applied topological metrics appear to be scarcely informative with respect to the hidden 
services’ content. Nevertheless, some metrics seem to provide a notable improvement in 
the goal of telling apart “Suspicious” from “Normal” services.

We are used to consider the Web and online social networks as systems in which we 
can find or disseminate information. The Tor Web does not seem to be based on these two 
cornerstones: it is inefficient in spreading information and difficult to navigate. If compared 
with most real world complex networks, it has a fairly simple and asymmetric structure 
that is reflected in its navigation being facilitated only in one direction: users select a start-
ing out-hub and then they move looking for the website of interest. Peripheral nodes, once 
reached, usually do not provide any possibility to go back and navigate in other directions. 
The number of hops required to reach a node, when possible, remains limited, but the over-
all structure is quite different compared to a typical small world network. As a consequence 
of these topological features, Tor provides a very different user experience from that of the 
WWW and online social media.

Future efforts will be devoted to widen the scope and the depth of the analysis. Any 
study of the dynamics on and of Tor would benefit from monitoring the Tor Web con-
sistently over a long time range and possibly measuring the influence of exogenous fac-
tors (e.g. changes in the legislation or breaking news from the real-world) on the Tor Web 
organization. More generally, crawling specific areas of the surface Web (e.g., forums on 
Reddit or public groups on Whatsapp or Telegram) may lead to onion urls that could not be 
found scraping Tor itself. This could either confirm that the majority of Tor’s HSs are iso-
lated from the subset of the Tor Web having a network structure, or, to the contrary, reveal 
a more complex system composed of multiple portions of the Tor Web connected through 
a layer of surface websites.
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Appendix A: Data collection

To collect data from the Tor Web we used a customized crawler fed with a list of seeds. 
Specifically, we assembled a large root set by merging onion urls advertised on well-known 
Tor wikis and link directories (e.g., “The Hidden Wiki”4), or obtained from standard 
(e.g., Google) and Tor-specific (e.g., Ahmia) search engines. Then, in the 5-month time 
frame between January 2017 and May 2017, we launched our customized crawler three 
times and let each execution run for about six weeks. As result, we obtained three differ-
ent “snapshots” of the Tor Web, denoted SNP1, SNP2, and SNP3, respectively. Table 7 
describes our datasets the composition of which is comparable to similar studies in the 
Literature [36]. Yet, if we refer to the statistics provided by the Tor Project for the corre-
sponding time window5, our crawls only reached 25% to 35% of the total number of daily 
published hidden services. It is not clear to which extent those estimates are inflated by the 
existence of Tor-specific messaging services in which each user is identified by a unique 
onion domain [20] and by hidden services that do not host websites.

To access the Tor network and to collect data from hidden services we evaluated differ-
ent crawlers. In particular, we evaluated the following alternatives: Apache Nutch6  [23], 
Heritrix7  [29] and BUbiNG [10]. By considering criteria such as performance, configur-
ability and extensibility, we found BUbiNG to be the most appropriate choice for our goals. 
BUbiNG is a high-performance, scalable, distributed, open-source crawler, written in Java, 
and developed by the Laboratory for Web Algorithmics (LAW) part of the Computer Sci-
ence Department of the University of Milan. To allow BUbiNG to operate in the Tor net-
work (instead of the surface Web), we used a HTTP Proxy configured with the SOCKS 
Proxy provided by Tor. During the crawling phase we observed that some hidden services 
check the user-agent of the requester and, if it does not match the last version of the Tor 
Web browser, they reply with an error. This behavior had to be taken into account when 
collecting data, to allow the crawler to reach the largest possible portion of hidden ser-
vices. Another issue that raised during the crawling is the load of the Tor client, i.e., the 
software used to access Tor. We noticed that under stress (i.e., when too many requests are 
performed in parallel), the Tor client, quite often, does not respond correctly, i.e., it may 
mistakenly report that a hidden service is not available, even if the service is actually up 

Table 7  Outcomes of the three 
crawling processes

a A status code 3xx is related to Web redirection (https:// www. w3. org/ 
Proto cols/ rfc26 16/ rfc26 16- sec10. html).
b Status codes 4xx and 5xx are error codes.

Crawl End Date # records per response type

2xx 3xxa 4xxb 5xxb Total

SNP1 22/02/17 1821842 277813 197128 141205 2437989
SNP2 10/04/17 2339718 471519 262403 324552 3398192
SNP3 22/05/17 765876 393018 105406 67115 1331415

6 https:// metri cs. torpr oject. org/ hidse rv- dir- onions- seen. html? start= 2017- 01- 01& end= 2017- 05- 01
7 http:// nutch. apache. org

4 Here, the meaning of “random” depends on the choice of a distribution over the set of all possible parti-
tions [38]
5 wikitjerrta4qgz4.onion
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and running. The maximum load depends on the specifications of the machine where the 
software runs, and we assessed it for our configuration during the experimental phase.

Appendix B: Extended results

B. 1 Global metrics

The global metrics for our DSGs are reported in Table 8. The variance in the sizes N and M 
of the three snapshots is consistent with publicly available aggregated statistics8, as already 
discussed in [6]. The values of �out∕N and �in∕N say that the main out-hubs reach 35% to 
61% of the network, whereas no equivalently prominent in-hubs exist. The values of Cenout 
show that these main out-hubs have a prominent role in the graphs’ connectivity. However, 
the greatest of such hubs emerges in the largest graphs, and �in∕N and �out∕N are com-
parably smaller in DSGI with respect to the snapshots, suggesting that the degree of such 
stable hubs is heavily influenced by the non-persistent nodes. All networks are disassorta-
tive, meaning that links are more likely to connect high-out-degree nodes to low-in-degree 
nodes, or low-out-degree nodes to high-in-degree nodes. By comparing the transitivity T 
with ⟨deg⟩∕N , we see that in our graphs two vertices that are adjacent to the same vertex 
are connected (in, at least, one direction) significantly more often than in a random graph. 
The diameter d and the average path length ⟨dist⟩ are approximately logarithmic in N. The 
emergence of these two properties is usually denoted small world effect. Another quan-
tity often used to quantify small world behavior in networks is the global efficiency Eglo , 
defined as the average of inverse pairwise distances, where disconnected pairs of vertices 
have infinite distance. Since Eglo ≪ 1∕⟨dist⟩ , we realize that our Tor graphs are inefficient 
because many pairs of nodes are disconnected and thus cannot be really considered small 
world networks.

Table  9 reports analogous metrics for the giant connected components of the USGs. 
The sizes N and M of the three snapshots are again variable, but the USGs are generally 

Table 8  Global metrics for the 
directed service graphs

DSG1 DSG2 DSG3 DSGI DSGU

N 12829 25308 17460 7669 29473
M 72556 113014 103402 28913 187415
⟨dist⟩ 3.793 4.96 3.665 3.983 3.821
d 10 12 10 10 9
Eglo 0.011 0.008 0.041 0.007 0.029
⟨deg⟩ 5.656 4.466 5.922 3.77 6.359
�in

N
0.016 0.01 0.084 0.007 0.05

�out

N
0.437 0.508 0.611 0.348 0.566

� −0.319 −0.327 −0.162 −0.374 −0.168
Cenout 0.436 0.508 0.61 0.348 0.566
T 0.004 0.002 0.002 0.004 0.002

8 https:// webar chive. jira. com/ wiki/ displ ay/ Herit rix
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much smaller than the DSGs. USG3 is now the biggest, probably thanks to the existence 
of a huge hub that is absent in the other two snapshots, as visible from the values of �∕N 
and Cen . The presence of this hub also explains why the clustering coefficient C is signifi-
cantly greater than ⟨deg⟩∕N in USG1, USG2 and USGI, but not in USG3 and USGU. d and 
⟨dist⟩ are comparable to or even greater than in the DSGs and Eglo ≈ 1∕⟨dist⟩ , meaning 
that most pairs are indeed at distance ≈ ⟨dist⟩ . Mutual connections thus induce a subgraph 
that is quite efficient but not really a small world. Here the assortativity � measures the 
tendency of a node to connect with others having similar degree. All networks are again 
disassortative.

B. 2 Correlation analysis of centrality metrics

Figure 8 visually shows, for the USGI and USGU, the pairwise correlation of the metrics 
defined in Table  5. We consider only the intersection and union graphs for the sake of 
clarity. In the DSGs (Figures  8a and b) the in-degree, authscore, closeness and pagerank 
correlate with each other, and the same happens for the out-degree, hubscore, between-
ness, efficiency, transitivity and LCRatio. In other words, vertices that are authoritative are, 
on average, easier to reach and may not be hubs. Hubs, on the other hand, are not neces-
sarily authoritative, they facilitate information flows and are at the center of highly clus-
tered regions. Having a high LCRatio, the hubs are much likely link directories or simi-
lar Web services. The eccentricity is instead uncorrelated or negatively correlated with all 
other metrics. In the USGs almost all metrics are in general agreement, meaning that only 
considering mutual connections leads to a network with a well defined vertex hierarchy. 
There are, however, a few exceptions: in the USGI there is a lack of correlation between 
closeness and pagerank; in the USGU the closeness and the eccentricity “agree” with each 
other while they negatively correlate with all other measures; in both cases, the LCRatio is 
uncorrelated with all other metrics.

B. 3 Degree distribution

Figure 9 shows the distributions of the in- and out-degree for all five DSGs on a log-log 
scale. For DSG2, DSG3 and DSGU the fitted power-law distribution has finite vari-
ance ( 𝛼 > 3 ), contrary to DSG1 ( � ≈ 2.9 ) and DSGI ( � ≈ 2.7 ). This divergent behavior 

Table 9  Global metrics for the 
undirected service graphs

USG1 USG2 USG3 USGI USGU

N 208 225 2084 87 2244
M 398 467 2289 143 2685
⟨dist⟩ 4.301 3.941 2.707 3.939 2.881
d 15 9 10 9 11
Eglo 0.285 0.295 0.408 0.308 0.389
⟨deg⟩ 3.827 4.151 2.197 3.287 2.393
�

N
0.188 0.213 0.7 0.23 0.65

� −0.077 −0.121 −0.602 −0.023 −0.489
Cen 0.171 0.197 0.699 0.197 0.649
C 0.203 0.208 0.001 0.259 0.002
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advises caution in the interpretation of this fit and suggests to mostly focus on the dif-
ferences between the DSGI and the DSGU. All out-degree distributions have instead 
� ≈ 1.5 , a very low value that reflects the existence of many large out-hubs – i.e., link 
directories or similar web services.

In Figure 10, we report the fitted degree distribution for the USGs. We focus in par-
ticular on the USGU, which stores all available information about mutual connections 
between Tor’s hidden services. Most of the degree sequence follows a power-law with 
� exponent ≈ 2.42 , lower than all DSGs and typical of social networks, but huge hubs 
are significantly more likely to exist than in a scale-free network with such � . The plot 
broadly confirms the insights provided by the DSGs and shows that mutual connections 
are indeed the backbone of the social structure of the Tor Web graph.

Motivated by the long tail of the degree distributions and with the purpose of gain-
ing a better understanding of how the whole graph can be explored from just a few start-
ing points, in Figure 11 we show how many hidden services can be reached in just one 
step from the top hubs. The top-6 out-degree services reach out to almost 70% of the 
nodes in DSGI, 80% in DSG1, and 90% in DSG2, DSG3 and DSGU, and, in all cases, the 

Fig. 8  Spearman’s rank correlation coefficient between the considered local metrics
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Fig. 9  The degree distribution for the DSGs
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percentage quickly gets over 90% or even 95%. Among the USGs, the USG1, USG2 and 
USGI are much less centralized. In the USG3 – and, hence, in the USGU – the top hub 
alone is at distance one from more than 65% of the graph, and with just two hubs we get to 

Fig. 10  The degree distribution for the USGs

Fig. 11  Cumulative percentage of the graph linked by the top hubs
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more than 85%. Again, the DSGI and DSGU are representative of two opposite behavior 
that may emerge from scraping the same network.

B. 4 Community structure

Figure 12 shows the distribution of cluster sizes for the DSGs (a) and the USGs (b). In Fig-
ure 13 we use the well-known Adjusted Mutual Information (AMI) to compare the clusters 
emerged across different graphs based on how common vertices are grouped in each graph. 
We recall that the AMI of two partitions is 1 if the two partitions are identical, it is 0 if the 
mutual information of the two partitions is the expected mutual information of two random 
partitions9, and it is negative if the mutual information of the two partitions is worse than 
the expected one. All DSGs have a very similar structure, in terms of number and size of 
the clusters, and the pairwise AMI of the obtained clusters lies around 0.5. While USGs 
have a more heterogeneous structure, their communities are more similar, in line with the 
intuition that the existence of a mutual link is a stronger indicator of the similarity between 
two services. The only case in which a directed graph and the corresponding undirected 
graph have a AMI> 0.5 are the union graphs DSGU and USGU, i.e., the graphs based on 
all collected data.

Fig. 12  The community size distribution for our Tor Web graphs

Fig. 13  The comparison of the partitions obtained for our Tor Web graphs

9 https:// metri cs. torpr oject. org/ hidse rv- dir- onions- seen. html? start= 2017- 01- 01& end= 2017- 05- 01
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To assess the coherence of topic-based and modularity-based clustering, we focused 
on the set of hidden services that our graphs share with the DUTA dataset and we meas-
ured the AMI of the partitions induced by the “duta”, “duta type” and “lang” classes with 
respect to the Louvain’s clusters. From Figure 14 it emerges very clearly that modularity-
based clusters are not thematically uniform, since the mutual information of the two parti-
tions is always barely greater than the mutual information of two random partitions. Thus, 
the apparent significance of the obtained Louvain’s clusters cannot be explained by a the-
matic homogeneity of the clusters.

Availability of data and material The dataset used for the analysis is available at the following address 
https:// www. cranic. it/ data/ suppo rting_ mater ial. tar. gz. Readers interested in additional information about the 
dataset are welcome to contact the authors.

Code availability To explore Tor we used a set of open source tools, namely tor, tinyproxy and bubing. To 
extract metrics and analyze data we used a set of software libraries, mainly python libraries such as igraph, 
numpy and scipy. To build the graphs we developed custom software in C language. Readers interested in 
getting our tools are welcome to contact the authors.
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Fig. 14  The comparison of the topic-based partition induced by the DUTA dataset and the modularity-
based partitions obtained through Louvain’s algorithm on our graphs

1311World Wide Web (2022) 25:1287–1313

https://www.cranic.it/data/supporting_material.tar.gz
http://creativecommons.org/licenses/by/4.0/


1 3

References

 1. Al-Nabki, M.W., Fidalgo, E., Alegre, E., Fernández-Robles, L.: Torank: Identifying the most influen-
tial suspicious domains in the tor network. Expert Systems with Applications 123, 212–226 (2019)

 2. Al Nabki, M.W., Fidalgo, E., Alegre, E., de Paz, I.: Classifying illegal activities on tor network based 
on web textual contents. In: Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 1, Long Papers, pp. 35–43 (2017)

 3. Alstott, J., Bullmore, E., Plenz, D.: Powerlaw: a Python package for analysis of heavy-tailed distribu-
tions. PloS One 9(1), e85777 (2014)

 4. Annessi, R., Schmiedecker, M.: Navigator: Finding faster paths to anonymity. In: IEEE European Sym-
posium on Security and Privacy (Euro S&P). IEEE (2016)

 5. Bernaschi, M., Celestini, A., Guarino, S., Lombardi, F.: Exploring and analyzing the tor hidden ser-
vices graph. ACM Trans. Web 11(4), 24:1-24:26 (2017). https:// doi. org/ 10. 1145/ 30086 62

 6. Bernaschi, M., Celestini, A., Guarino, S., Lombardi, F., Mastrostefano, E.: Spiders like onions: On the 
network of tor hidden services. In: The World Wide Web Conference, WWW ’19, pp. 105–115. ACM, 
New York, NY, USA (2019). https:// doi. org/ 10. 1145/ 33085 58. 33136 87

 7. Biryukov, A., Pustogarov, I., Thill, F., Weinmann, R.P.: Content and popularity analysis of tor hidden 
services. In: Distributed Computing Systems Workshops (ICDCSW), 2014 IEEE 34th International 
Conference on, pp. 188–193 (2014). https:// doi. org/ 10. 1109/ ICDCSW. 2014. 20

 8. Biryukov, A., Pustogarov, I., Weinmann, R.P.: Trawling for tor hidden services: Detection, measure-
ment, deanonymization. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP 
’13, pp. 80–94. IEEE Computer Society, Washington, DC, USA (2013). https:// doi. org/ 10. 1109/ SP. 
2013. 15

 9. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large 
networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008 (2008)

 10. Boldi, P., Marino, A., Santini, M., Vigna, S.: Bubing: Massive crawling for the masses. In: Proceedings 
of the Companion Publication of the 23rd International Conference on World Wide Web Companion, 
pp. 227–228 (2014)

 11. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, 
J.: Graph structure in the web. Computer Networks 33(1–6), 309–320 (2000). https:// doi. org/ 10. 1016/ 
S1389- 1286(00) 00083-9

 12. Celestini, A., Guarino, S.: Design, implementation and test of a flexible tor-oriented web mining 
toolkit. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Seman-
tics, WIMS ’17, pp. 19:1–19:10. ACM, New York, NY, USA (2017). https:// doi. org/ 10. 1145/ 31022 54. 
31022 66

 13. Christin, N.: Traveling the silk road: A measurement analysis of a large anonymous online market-
place. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, pp. 
213–224. ACM, New York, NY, USA (2013). https:// doi. org/ 10. 1145/ 24883 88. 24884 08

 14. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Review 
51(4), 661–703 (2009)

 15. De Domenico, M., Arenas, A.: Modeling structure and resilience of the dark network. Phys. Rev. E 95, 
022313 (2017). https:// doi. org/ 10. 1103/ PhysR evE. 95. 022313

 16. Duxbury, S.W., Haynie, D.L.: The network structure of opioid distribution on a darknet cryptomarket. 
Journal of Quantitative Criminology 34(4), 921–941 (2018)

 17. Franceschet, M.: Pagerank: Standing on the shoulders of giants. Commun. ACM 54(6), 92–101 (2011). 
https:// doi. org/ 10. 1145/ 19531 22. 19531 46

 18. Ghosh, S., Das, A., Porras, P., Yegneswaran, V., Gehani, A.: Automated categorization of onion sites 
for analyzing the darkweb ecosystem. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’17, pp. 1793–1802. ACM, New York, NY, 
USA (2017). https:// doi. org/ 10. 1145/ 30979 83. 30981 93

 19. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proceedings of 
the National Academy of Sciences 99(12), 7821–7826 (2002)

 20. Griffith, V., Xu, Y., Ratti, C.: Graph theoretic properties of the darkweb. arXiv: 1704. 07525 (2017)
 21. Guarino, S., Trino, N., Celestini, A., Chessa, A., Riotta, G.: Characterizing networks of propa-

ganda on twitter: a case study. Applied Network Science 5(1) (2020). https:// doi. org/ 10. 1007/ 
s41109- 020- 00286-y

 22. Jansen, R., Bauer, K., Hopper, N., Dingledine, R.: Methodically modeling the tor network. In: Pro-
ceedings of the 5th USENIX Conference on Cyber Security Experimentation and Test, CSET’12, pp. 
8–8. USENIX Association, Berkeley, CA, USA (2012). http:// dl. acm. org/ citat ion. cfm? id= 23723 36. 
23723 47

1312 World Wide Web (2022) 25:1287–1313

https://doi.org/10.1145/3008662
https://doi.org/10.1145/3308558.3313687
https://doi.org/10.1109/ICDCSW.2014.20
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1145/3102254.3102266
https://doi.org/10.1145/3102254.3102266
https://doi.org/10.1145/2488388.2488408
https://doi.org/10.1103/PhysRevE.95.022313
https://doi.org/10.1145/1953122.1953146
https://doi.org/10.1145/3097983.3098193
http://arxiv.org/abs/1704.07525
https://doi.org/10.1007/s41109-020-00286-y
https://doi.org/10.1007/s41109-020-00286-y
http://dl.acm.org/citation.cfm?id=2372336.2372347
http://dl.acm.org/citation.cfm?id=2372336.2372347


1 3

 23. Khare, R., Cutting, D., Sitaker, K., Rifkin, A.: Nutch: A flexible and scalable open-source web search 
engine. Oregon State University 1, 32–32 (2004)

 24. Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: Measure-
ments, models, and methods. In: Asano, T., Imai, H., Lee, D., Nakano, S.i., Tokuyama, T. (eds.) Com-
puting and Combinatorics, Lecture Notes in Computer Science, vol. 1627, pp. 1–17. Springer Berlin 
Heidelberg (1999). https:// doi. org/ 10. 1007/3- 540- 48686-0_1

 25. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 
46(5), 604–632 (1999)

 26. Lehmberg, O., Meusel, R., Bizer, C.: Graph structure in the web: Aggregated by pay-level domain. In: 
Proceedings of the 2014 ACM Conference on Web Science, WebSci ’14, pp. 119–128. ACM, New 
York, NY, USA (2014). https:// doi. org/ 10. 1145/ 26155 69. 26156 74

 27. Litvak, N., Van Der Hofstad, R.: Uncovering disassortativity in large scale-free networks. Physical 
Review E 87(2), 022801 (2013)

 28. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. 
Internet mathematics 1(2), 226–251 (2004)

 29. Mohr, G., Stack, M., Ranitovic, I., Avery, D., Kimpton, M.: An introduction to heritrix an open source 
archival quality web crawler. In: In IWAW’4, 4th International Web Archiving Workshop. Citeseer 
(2004)

 30. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003). https:// doi. org/ 10. 
1103/ PhysR evE. 67. 026126

 31. Norbutas, L.: Offline constraints in online drug marketplaces: An exploratory analysis of a cryptomar-
ket trade network. International Journal of Drug Policy 56, 92–100 (2018)

 32. Owen, G., Savage, N.: Empirical analysis of tor hidden services. IET Information Security 10(3), 113–
118 (2016)

 33. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the 
web. Tech. rep, Stanford InfoLab (1999)

 34. Sanchez-Rola, I., Balzarotti, D., Santos, I.: The onions have eyes: A comprehensive structure and pri-
vacy analysis of tor hidden services. In: Proceedings of the 26th International Conference on World 
Wide Web, WWW ’17, pp. 1251–1260. International World Wide Web Conferences Steering Commit-
tee, Republic and Canton of Geneva, Switzerland (2017). https:// doi. org/ 10. 1145/ 30389 12. 30526 57

 35. Sheridan, P., Onodera, T.: A preferential attachment paradox: How preferential attachment combines 
with growth to produce networks with log-normal in-degree distributions. Scientific Reports 8(1), 
2811 (2018)

 36. Spitters, M., Verbruggen, S., van Staalduinen, M.: Towards a comprehensive insight into the thematic 
organization of the tor hidden services. In: Intelligence and Security Informatics Conference (JISIC), 
2014 IEEE Joint, pp. 220–223 (2014). https:// doi. org/ 10. 1109/ JISIC. 2014. 40

 37. Takaaki, S., Atsuo, I.: Dark web content analysis and visualization. In: Proceedings of the ACM Inter-
national Workshop on Security and Privacy Analytics, pp. 53–59. ACM (2019)

 38. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a cor-
rection for chance necessary? In: Proceedings of the 26th annual international conference on machine 
learning, pp. 1073–1080 (2009)

 39. Zabihimayvan, M., Sadeghi, R., Doran, D., Allahyari, M.: A broad evaluation of the tor english content 
ecosystem. arXiv: 1902. 06680 (2019)

1313World Wide Web (2022) 25:1287–1313

https://doi.org/10.1007/3-540-48686-0_1
https://doi.org/10.1145/2615569.2615674
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1145/3038912.3052657
https://doi.org/10.1109/JISIC.2014.40
http://arxiv.org/abs/1902.06680

	Onion under Microscope: An in-depth analysis of the Tor Web
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Roadmap

	2 Data
	3 Methods
	3.1 Graph construction
	3.2 Graph Analysis
	3.3 Topological features for content-based classification

	4 Results and discussion
	5 Conclusion
	References


