
https://doi.org/10.1007/s11280-021-00911-5

To hop or not, that is the question: Towards effective
multi-hop reasoning over knowledge graphs

Jinzhi Liao1,2 ·Xiang Zhao1,2 · Jiuyang Tang1,2 ·Weixin Zeng1,2 ·Zhen Tan1,2

Received: 21 October 2020 / Revised: 22 March 2021 / Accepted: 10 June 2021 /

© The Author(s) 2021

Abstract
With the proliferation of large-scale knowledge graphs (KGs), multi-hop knowledge graph
reasoning has been a capstone that enables machines to be able to handle intelligent tasks,
especially where some explicit reasoning path is appreciated for decision making. To train
a KG reasoner, supervised learning-based methods suffer from false-negative issues, i.e.,
unseen paths during training are not to be found in prediction; in contrast, reinforcement
learning (RL)-based methods do not require labeled paths, and can explore to cover many
appropriate reasoning paths. In this connection, efforts have been dedicated to investigating
several RL formulations for multi-hop KG reasoning. Particularly, current RL-based meth-
ods generate rewards at the very end of the reasoning process, due to which short paths of
hops less than a given threshold are likely to be overlooked, and the overall performance
is impaired. To address the problem, we propose RL-MHR, a revised RL formulation of
multi-hop KG reasoning that is characterized by two novel designs—the stop signal and
the worth-trying signal. The stop signal instructs the agent of RL to stay at the entity after
finding the answer, preventing from hopping further even if the threshold is not reached;
meanwhile, the worth-trying signal encourages the agent to try to learn some partial patterns
from the paths that fail to lead to the answer. To validate the design of our model RL-MHR,
comprehensive experiments are carried out on three benchmark knowledge graphs, and the
results and analysis suggest the superiority of RL-MHR over state-of-the-art methods.

Keywords Knowledge graph reasoning · Reinforcement learning · Reasoning path

1 Introduction

Recently, we have witnessed the rapid proliferation of large-scale knowledge graphs (KGs)
(e.g., DBPedia [2], YAGO [33] and Freebase [20]). They serve as a well-organized store

This article belongs to the Topical Collection: Special Issue on Explainability in the Web
Guest Editors: Guandong Xu, Hongzhi Yin, Irwin King, and Lin Li

� Xiang Zhao
xiangzhao@nudt.edu.cn

Extended author information available on the last page of the article.

Published online: 26 July 2021

World Wide Web (2021) 24:1837–1856

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00911-5&domain=pdf
http://orcid.org/0000-0001-6339-0219
mailto: xiangzhao@nudt.edu.cn

of factual knowledge that can be beneficial to a wide spectrum of downstream applications,
including automatic question answering, knowledge-enhanced recommendation, etc.

There is a primitive task that is indispensable to a number of KG-oriented applications,
which is termed as “multi-hop reasoning” on KGs. It can be abstracted as follows: given
a query triplet (head entity, relation, ?), to retrieve an answer tail entity such that there
is at least one explicit path from head entity to tail entity such that head entity, relation,
tail entity) correctly states a fact.1

In particular, to perform multi-hop reasoning over KGs, one has to traverse the KG by
hopping along with the relations, in order to relate the head entity to the tail entity. We use
the following example to illustrate the task.

Example 1 Consider a partial KG of administrative divisions in Figure 1, and we would like
to figure out the query

(Asheville,Time zone, ?),

where Asheville (resp. Time zone) is referred as query entity (resp. rela-
tion). To reason against the query, we may necessitate a few triplets (e.g,
(Asheville, State, North Carolina), (North Carolina, Time zone,
Eastern Time Zone)) to construct a reasoning path, and reach the answer (i.e.,
Eastern Time Zone).

To handle the task of multi-hop reasoning, an immediate solution is to leverage
supervised learning. Studies in this branch pay more attention to the improvement of per-
formance. They target to return an entity to answer the question, but ignore the reasoning
process in the model. As the result lacks reasonable inference, it is hard for people to judge
whether the selected entity is the golden ticket. The situation will impair the confidence of
the model. On the top of that, supervised-learning based approaches rely on annotated paths
to predict the answer (and path). Nevertheless, this can be prohibitively expensive, since
there exist a large number of relations in KGs, and a reasoner may take an exponential num-
ber of paths before reaching the answer. When the annotated paths are scarce, i.e., only a
small portion of the paths between head and tail entities, the trained models are unlikely to
discover relations (and paths) that are less covered by training data. Subsequently, they tend
to introduce false negative issues such that certain paths between head and tail entities are
not to be found, and the correct answer is missed in prediction.

By approaching the problem from a different angle, the reasoning process recalls a class
of sequence decision problems that can be solved by reinforcement learning (RL), which
can retrieve explicit reasoning paths with answers and does not require supervision for each
decision [40]. In order to teach an agent in RL about how to reason over KGs, current
methods mainly take the head entity as the starting node, then hop successively to some
entities (each as an action in RL), and design some reward mechanism to evaluate every
path reasoned by the agent up to some length T [8, 13, 21]. Particularly, the agent gets a
positive reward if it arrives at the presumed tail entity, or a negative reward (usually zero)
otherwise. Among all the paths traversed by the agent, the highly ranked ones as per reward
are expected to lead to the answer.

1Distinct from tasks like KG completion, this task requires the so-called path-based reasoning for deriving
the answer, where a path is constituted of multiple relations in the KG (i.e., hops). The goal of the task is to
improve the explainability of KG reasoning.

1838 World Wide Web (2021) 24:1837–1856

Figure 1 An incomplete KG for Example 1

Motivation It can be seen that such RL implementations necessitate a fixed number of hops
T for the agent, and only after T hops are satisfied can the agent get some reward. Such
formulation comes with not only the sparse reward issue, but also the implication that the
agent should pursue reasoning paths of length T , in which case some correct but short paths
may be discarded. As a remedy, an additional action of “NO OP” (i.e., no option) is supplied
to make short paths long enough [8, 21]. To some extent, this helps retain paths less than
length T , unluckily, however, it does not teach the agent when to stop, or when to choose
NO OP. In other words, for each decision, NO OP is considered equally as other actions,
and thus, NO OP could appear in any segment of a reasoning path, giving rise to no obvious
pattern (cf. Section 4.6 for the detailed analysis). The situation also makes the inference in
RL back to the supervised learning pursuing high performance, which further impairs the
interpretability of results. In this light, we are motivated to teach the agent when to stop.

Moreover importantly, the aforementioned false negative issue is far from perfectly
resolved. Due to the T -hop limit, paths longer than T will not be seen, paths short than
T may be explored after injecting NO OP’s (or may be abandoned when NO OP’s are not
perfectly incorporated), and only paths equal to length T are definitive to be discovered.
Further, setting T to a practically large number does not help either. Out of expectation,
however, according to our empirical results (cf. Section 4.7 for the detailed analysis),
this alternative would downgrade the reasoning performance. Consequently, we are further
motivated to revisit the formulation of RL for effective multi-hop reasoning.

Our approach In this research, we propose another RL formulation for multi-hop reason-
ing, which is featured by two novel designs to not only address the challenges above, but
also improve the explainability of the model. Firstly, we design a stop signal to remind the
agent of staying at the entity that is considered to be the answer. In this way, the agent may
either traverse up to T hops without reaching an answer, or stop at a certain point and do
not proceed further. To implement the idea, we incorporate a special action “STOP” to let
the agent stay static at the entity where it is now [8], indicating that an answer has been pre-
dicted at the entity. Thus, STOP can only be chosen once for each round. As a result, we
punish the agent if it chooses STOP before it is believed to have reached an answer, and
reward the agent that chooses STOP right after reaching the answer. Note that we assess
whether the answer is correct at the entity if the agent chooses STOP there, or at the last

1839World Wide Web (2021) 24:1837–1856

entity of T hops otherwise. Moreover, to favor short paths when there are multiple paths
leading to the answer, we introduce a punishing reward that discourages the agent to look
for longer reasoning paths when there is already a shorter one (i.e., with a stop signal). Sec-
ondly, in order to mitigate the sparse reward issue, we put forward a worth-trying signal for
those failed reasoning paths that do not lead to the correct answer. As connection patterns
in KGs are rather complex, we argue that giving a negative reward whenever the agent does
not hit the correct answer is brutal; and reasonable endeavors may be encouraged, as part of
the reasoning processes could be appropriate. Nonetheless, such a pattern is too difficult to
capture, and hence we resort to selecting an entity from the failed path, and taking it as the
“fake ending” of the reasoning. Different from the normal reward assessment, we propose
to employ a vector-space similarity as the worth-trying reward between the query and the
“fake” answer, which is expected to capture their semantic relevance.

Contribution This paper makes the following contributions:

– We identify the weakness of current RL formulations for multi-hop KG reasoning, and
to mitigate the issues, we propose a revised model, namely, RL-MHR;

– There are two novel designs—the stop signal that teaches the agent about when to early-
stop after hitting an answer, and the worth-trying signal that exploits partial experiences
from failed reasoning paths to amplify rewards; and

– We conduct comprehensive experiments to verify the designs, and RL-MHR is shown
to outperform state-of-the-art RL based methods on three benchmarks (FB15k-237,
WN18RR, and NELL-995).

Organization Section 2 summarizes related work. RL-MHR and its components are elabo-
rated in Section 3. Section 4 reports experimental evaluation results and detailed analysis,
followed by conclusion in Section 5.

2 Related work

In this section, we discuss related work on model explainability and existing methods for
KG reasoning as well as KG completion.

RL-based methods The most relevant work is the efforts dedicated to RL-based formu-
lations of multi-hop KG reasoning. MINERVA [8] is among the first to introduce RL
framework into KG reasoning. It regards relations in the KG as candidate actions, and
designs a policy network to teach agents how to choose among the actions. After the agent
chooses a relation, it interacts with the environment. The environment returns a reward,
which hence changes the state. These signals are finally used to optimize the policy net-
work, and the agent hops to the next entity following the chosen relation, which initiates
another decision. As the research is seminal but preliminary, it fails to take other features of
KG reasoning into consideration, e.g., the semantic meaning of entities and relations.

Sparse reward issue commonly exists in RL, which also applies to KG reasoning. Lin et
al. proposed a knowledge-based reward shaping [21]. They observed that in the formulation
of [8], some reasoning paths are illogical; that is, although these paths lead to the answer,
they are not relevant to the query relation but reach the target by accident. Hence, they
employed semantic features of entities and relations through representation learning in a
low-dimensional space. If the agent does not arrive at the answer, in the end, they utilized

1840 World Wide Web (2021) 24:1837–1856

the similarity between the last triple with the query relation as the reward, instead of a
negative reward. Besides, to force the agent to focus on the semantic information from KG
and enhance the generalization ability of the model, they randomly dropped actions in each
hop of agents during the training process.

Monte-Carlo tree search is employed to build a RL framework [32]. It assumes that the
decisions made by agents should be relevant, and applies GRUs to encode the decision
history to achieve the information passing. To address the sparse reward problem, a value-
function is designed based on the Monte-Carlo search tree to exploit more features of KGs.

Recent effort finds it impossible for the agent to reach the answer based on many rea-
soning paths in KG [13], because after some hops the current entities become irrelevant
to the query relation. In this connection, they proposed a NO ANSWER node to teach the
model to filter irrelevant paths before reasoning starts. They used depth-first search to iden-
tify which path between the query and answer entities is correct to train a supervised model.
Then, the model is used to select paths from the KG, and these paths are then employed
as the input of RL. With the combination of supervised learning and RL, the model judges
which path is meaningful during the reasoning. The study is not a pure RL-based method,
and the performance highly depends on that of the supervised learning component.

It is noted that most of the studies fix the path length, and reward the agent only if
the correct answer is hit at the last hop. To include paths less than the fixed length into
consideration, NO OP is used to work around. As it can show up during any stage of the
reasoning process, the agent is not advised in essence when to stop reasoning.

Relation-based methods Relation-based methods mainly explore various possible paths
and rank to choose the most appropriate one. Path Ranking Algorithm (PRA) [18] firstly
introduces a random walk with a restart mechanism to search potential reasoning paths in the
KG. All the observed paths are then used as features for a per-target-relation binary classifier
to generate final results. Lao et al. further set the constrain that selected paths must end at
one of the target entities in the training set and are within a maximum length [19]. However,
these methods do not generalize well to a large number of distinct paths in large-scale KGs,
since they regard each unique path as a singleton and fail to capture the commonalities
among paths. To alleviate the problem, Gardner et al. introduced vector-space similarity
heuristics in random work by incorporating textual content [11], which also relieves the
feature sparsity issue in PRA. Chain-of-Reasoning utilizes a neural attention mechanism to
enable multiple reasons to represent logical composition across all relations, entities and
text [9]. The selected reasoning paths in these methods are generated by information from
KG or text. Even though some methods might consider the information from the query
when searching paths, and they still take the path as a basic unit, failing to exploit features
of every single decision.

Rule-based methods This category of methods mainly exploits the symbolic nature of
knowledge. Previous studies focus on inductive Logic Programming (ILP) [23, 24, 27] to
exploit purpose predicate rules from KGs based on some patterns designed by human. Sta-
tistical relational learning methods [17] along with probabilistic logic [38] are trying to
combine machine learning and logic. However, with manual templates and only symbolic
information, these methods can only perform well in specific KGs and do not have the
generalization abilities.

Afterward, there are some methods trying to combine logical rules learning with embed-
dings. Neural Theorem Provers (NTP) [31] employs vectors instead of symbols to learn
logical rules through an end-to-end framework. They construct the framework on Prolog’s

1841World Wide Web (2021) 24:1837–1856

backward chaining inference method, and then rank all paths by calculating a success score
for each path. Different from NTP, Neural LP [44] selects TensorLog [7] as the opera-
tors of the learning system. They design a LSTM based controller with a novel memory
component [34], and the scores are computed through attention. Probabilistic Logic Neu-
ral Networks (pLogicNet) [26] proposes probabilistic logic neural networks to combine
the strengths of first-order logic rules and representation learning. It defines the joint dis-
tribution of a collection of triplets with a Markov Logic Network, which associates each
logic rule with a weight and can be effectively trained with the variational EM algorithm.
Although differentiable memory allows end-to-end training, these methods have to cover
the entire memory during learning, which is computationally expensive. RL-based methods
apply a hard selection of relation edges to hop over the KG [8], which is computationally
attractive and also improves the performance.

KG completion methods KG completion addresses a similar task to KG reasoning, where
an explicit reasoning path is not offered. The basic idea of embedding-based approaches is
that the knowledge in KGs can be represented in low-dimension space, which helps mod-
els to capture the semantic information of entities and relations. TransE [5] assumes that in
the triple (es, r, eo) their embeddings satisfy Ees + Er = Eeo . Thus, Bordes et al. design
an energy function to model this equation and optimize it via calculations on vectors. As
TransE cannot address the “one-to-many” problem, DisMult [43] introduces a diagonal
matrix to store the complex connections among entities. It can decrease the model com-
plexity and avoid overfitting. But only symmetric relations could be represented in the
model.

Lately, ComplEx [37] has proposed to resort to complex vector space. Based on the
features of complex vector space, those asymmetrical relations can also be captured by
the model. With the emerge of neural networks, ConvE [10] utilizes convolutional lay-
ers and full connect layers to achieve the interactions between Ees and Et , and then the
information is applied to compute the similarity with Eeo . RotatE [35] proves that, in the
complex vector space, r can be regarded as a rotation process between es and eo. Thus, Sun
et al. introduce new transition and loss functions to represent triples. Inspired by RotatE,
QuatE [45] expands the two-dimension space to three-dimension space, and tackles the
problems existing in the high-dimension space.

Among others, we are aware of relevant research that investigates reasoning over raw
text document (e.g., that on WikiHop and MedHop [39]). While their input is similar to KG
reasoning, they need to reason raw texts rather then KGs.

Explainability of machine learning models The goal of an explainable model is to make
its behavior more understandable to humans by providing explanations about results.
Generally, there are three categories about the model explainability: deep explanation, inter-
pretable models and model induction [14]. The first branch tries to modify deep learning
techniques to learn explainable features (e.g. axiomatic attribution from network [1]), and
then employ them to perform downstream tasks. The second branch aims to exploit the
model itself. Studies usually design some modules (e.g. expert knowledge [30], attention
mechanism [42]) to leverage the original model to learn more structured, interpretable,
causal models. Works from the last branch admit the difficulty of explaining a black box,
and construct another explainable model (e.g. rules from LSTM [25], stochastic disturbance
[28]) to infer the features from the target model. Our work can be classified into the second
category, since we try to construct a more reasonable structure of RL to make promising
reference in the multi-hop reasoning problem on KGs.

1842 World Wide Web (2021) 24:1837–1856

3 Methodology

In this section, we first formally define the task of multi-hop KG reasoning, and then
introduce the outline of our proposed model.

3.1 Task definition

A KG is a directed graph consisting of an enormous amount of entities and their relations.
We formally represent a KG as G = (E,R), where E denotes the set of entities (nodes in
the KG) and R denotes the set of relations (edges in the KG). Each fact in the KG can be
represented in the form of a triplet (es, r, eo) ∈ G.

Given a query (es, rq, ?), multi-hop KG reasoning aims to output an entity eo from G,
as well as explicit reasoning paths, so as to correctly answer the query. For instance, to
answer (Asheville, time zone, ?), (Asheville, state, North Carolina, time zone, Eastern Time
Zone) can be regarded as a correct path. Since there are usually many reasoning paths with
different lengths for each query, such as (Asheville, capital of, Buncombe County, time zone,
Eastern Time Zone) and (Asheville, state, North Carolina, state, Fayetteville, time zone,
Eastern Time Zone), how to cover all potential reasoning paths without manual annotations
becomes a challenging problem.

3.2 Proposedmodel

In multi-hop KG reasoning, the entity in the query is usually regarded as the initial node
of each reasoning path. The reasoning process can be viewed as a sequential search over
the KG to reach the answer entity based on the relations among entities. Generally in RL,
the agent can interact with the environment, and then take an action to extend the current
reasoning path. Next, the environment will update the state and provide a reward according
to the action. The updated state and reward will then influence the agent in evaluating the
current action and choosing the next action. The overall framework is shown in Figure 2,
and, following previous studies [8], the main components can be illustrated as:

States At each timestep t , St = (et , es, rq) ∈ S is a tuple where et is the current entity
visited by the agent. es is the entity in the query and also the start point of the reasoning

Figure 2 Framework about our method. See Section 3.2 for details about Policy Network and components
in RL, Section 3.3 for details about Stop Signal, Section 3.4 for details about Worth-trying Signal, and
Section 3.5 for details about Optimize

1843World Wide Web (2021) 24:1837–1856

path. rq is the query relation in the question. When the current state is put into the policy
network for the next state, these entities and the relation will be represented in vector space.
In other operations, they are stored as the triplet.

Actions At timestep t , the agent selects an action from the outgoing edges of et in
G. Formally, At ∈ A is made up of all the edges connected with et , i.e. At =
{(rt+1, et+1)|(et , rt+1, et+1) ∈ G}. The At are candidates of hop directions for the agent
when it arrives at the et . When it comes to computing the probability of each action, these
entities and relations are represented as embeddings.

Policy network We parameterize the search policy using deep neural networks. The state
information, query triplet and search history [8] are utilized as input, and the output is the
probability distribution about candidate actions. The policy helps agents to determine which
action is going to be selected at each timestep. In the policy network, all entities and relations
in G are represented in vector embeddings Ee ∈ R

d , Er ∈ R
d , where d is the dimension size

of the embedding. At timestep t , the action at ∈ At comprises of the entity and relation in
the next time since the agent already takes the action. Formally, at = [Ert+1;Eet+1] ∈ R

2d

denotes the concatenation of the relation embedding and the entity embedding. The seach
history ht is applied to record previous paths before t . After that, we employ the LSTM [15]
to encode the ht and update its hidden state each timestep based on the selected action at−1,
as the following:

ht = LST M(ht−1, at−1). (1)

With the history representation ht , the current entity representation Eet and the query
relation representation Erq , the policy π is defined as:

πθ (at |St) = sof tmax(At f (ht ,Eet ,Erq)), (2)

where sof tmax is the activation function, At ∈ R
|At |×2d is the stack of all action

embeddings in t , f is the feed forward network.

Transition The probability values of state transition are deterministic. Once the agent
selects an action, the environment will respond. A transition function δ : S × A → S
is formally defined by δ(St , At) = δ(et , es, rq , At). Different from other tasks, where the
next state is a probability distribution given the current state and action, the transition in KG
reasoning totally relies on G.

Rewards Rewards are the responses generated by the environment. In the traditional for-
mulation, agents will receive a positive reward when they arrive at the answer entity. The
goal of RL is to maximize the cumulative reward of each reasoning path. In conventional
KG reasoning, a reasoning path will be rewarded only when the last hop reaches the eo, and
the agent can receive a positive terminal reward (usually 1). After that, each action in the
path can be considered correct and also receives a positive reward. However, as mentioned
above, this kind of reward mechanism fails to exploit potential paths.

3.3 The stop signal

In the traditional setting of RL-based methods, agents only receive the feedback at the end
of reasoning. If the output is the correct answer, it would receive a positive reward. This,
however, would lead to the fixed path length, where the majority of reasoning paths are
abandoned and there are only a few positive instances for learning the policy network.

1844 World Wide Web (2021) 24:1837–1856

In KG reasoning, apart from the sparsity of reward, instances sometimes might be
wrongly regarded as “negative”. More specifically, since the length of each reasoning path
is always fixed, the agent would have to reach the very end to generate the outcome. How-
ever, this might lead to the overlook of the situation where the answer entity appears in the
middle of the path, e.g., some of the queries are very easy and can be answered in a small
number of hops. Given the aforementioned settings, these short but correct reasoning paths
would be ignored and the agent would receive a negative reward, which guides it to avoid
these paths. We term this as a false-negative problem.

To address this issue, we design a signal vector S = (s1, s2, ..., sn) ∈ R
n, where n

denotes the length of the path, to record whether the agent arrives at the answer entity during
the reasoning process. Concretely, we judge whether the agent reaches the answer entity at
the end of each hop and mark the action with 0/1, as the following:

st =
{

1 et = eo,

0 et ! = eo,
(3)

where t denotes the timestep, et is the selected entity at t , eo is the answer entity. Then,
we regard the reasoning path with at least one value 1 in the signal vector S as the positive
instance and give the agent a positive reward. In the policy learning strategy, there needs to
be a fixed number of hops for each agent in every try. During the training process, agents
may not quickly and accurately reach the answer. When they arrive at the answer earlier
than the prescribed number of hops, unnecessary and wrong actions might be taken by the
agents, resulting in the miss of the answer. In this connection, there should be at least one
value 1 to encourage the agents to select STOP when the answer appears in the hops.

Since there is no labeled data about the length of the reasoning path in RL, we cannot
train a supervised component to predict the path length. Consequently, a viable solution is
to let the agent learn to repeatedly hit the current entity once it reaches the answer. In this
light, we add a self-loop action “STOP” to every entity to encourage the agent to hop at the
same place. Besides, for each correct reasoning path, all actions will receive the positive
reward to encourage agents to follow the reasoning patterns in KG reasoning.

As the STOP action is an external relation and does not interact with other entities in
the KG, it should not show up before the agent arrives at the answer entity. To this end,
we design a vector L = (l1, l2, ..., ln) ∈ R

n to record the appearance of STOP, where 1
represents the agent select STOP and 0 represents it does not (similar to (3)). Besides, we
propose a special path reward for the reasoning paths containing the STOP. Assuming the
last STOP appears at timestep t ′, Rp(St) is initialized with the positive reward rp and then
can be modified as the following:

Rp(St) =
⎧⎨
⎩

re st = 1, lt = 1,

rn st = 0, lt = 1,

rn t > t ′,
(4)

where t denotes the timestep, St is the state of the agent at t , re denotes the encourage
reward, rn denotes the negative reward. The path reward is then passed to the policy network
as a part of the cumulative reward.

Due to the complex connections between entities and relations in KGs, there might be
more than one correct reasoning path for the same query. When the agent does not loop in
the shorter path, the hops after the answer get negative rewards, which makes the longer
path cumulate more positive rewards. This impairs the process of the agent to exploit short
paths. Therefore, we add a punitive reward ru for each hop in the path before the agent finds

1845World Wide Web (2021) 24:1837–1856

the answer, mathematically:

ru(St) =
{

0 U = 1,

−γ U = 0,
(5)

where γ is a hyper-parameter to balance the rewards of paths with different length. U ∈
[0, 1] is a numerical variable, and is initialized with 0. When timestep t ′ makes s′

t = 1, U is
changed to 1.

3.4 The worth-trying signal reward

As mentioned above, the sparse reward problem also makes it hard for the model
to converge. For those questions where the facts are not in G, the agent has to hop
over a large search space and only gets the feedback when it reaches the answer.
This might slow down the learning process. On the top of that, due to the com-
plex connections in KGs, some reasoning paths might be very close to reaching the
answer. Further to Example 1, The agent might first select the correct reasoning path
(Asheville, state, NorthCarolina, state, Fayetteville), but then hops to the wrong
answer entity “Fayetteville State University”. Although the overall reasoning path,
(Asheville, state,NorthCarolina, state, Fayetteville, locate in, FayettevilleState

University), is erroneous, the agent should get some rewards for the correct hops in the
beginning. This in turn would encourage the agent to learn more useful patterns of the
inference, and also alleviate the sparse reward problem.

Therefore, a worth-trying signal is introduced for those reasoning paths without the stop
signal. Specifically, we select an entity et ′′ from the reasoning path and regard it as the
answer. Since the signal is expected to guide the agent when it faces the dilemma, such as
hopping to (time zone, Eastern Time Zone) or (locate in, Fayetteville State University), we
design the reward based on the semantic relevance among entities and relations. Inspired
by [21], we employ the pre-trained model to calculate the relevance score between the query
(es, rq) and et ′′ , formally:

Rf (St) = F(Ees ,Erq ,Eet ′′), (6)

where F is a score function from the pre-trained models, the representations E of entities
and relations are also pre-trained embeddings. The relevance score is applied as the reward
for the current negative reasoning path and then transferred to compute the cumulative
reward for negative paths.

With these proposed rewards, we define the reward function as:

(7)

where denotes whether the current reasoning path contains STOP, and 1 denotes there is.
This is then employed in the objective function to optimize the policy network.

3.5 Training

To teach agents to exploit more correct reasoning paths, we use the REINFORCE algo-
rithm [40] to optimize the policy network π by maximizing the expected reward:

J (θ) = E(es ,rq ,eo)∈GEa1,...,aT ∼πθ [R′(ST |es, rq)], (8)

where T is the target timestep, and θ is the parameters needing to be trained in the policy
network. The first expectation is calculated through empirical average over the data distri-
bution in KGs. For the second expectation, we apply the current policy to roll out multiple

1846 World Wide Web (2021) 24:1837–1856

trajectories for each query to estimate a stochastic gradient, and updates the policy through
stochastic gradient ascent.

4 Experiments

This section reports the experiments with in-depth analysis.

4.1 Experiment setting

To evaluate the performance of RL-MHR, we compare our method with other baselines in
different datasets. We first introduce the benchmarks used in the experiment.

Datasets We employ three popular benchmark datasets2 in multi-hop KG reasoning and
follow the datasets split in [8]. The statistics of datasets are shown in Table 1.

– FB15K-237 is constructed by Toutanova et al. [36]. There are many simply reverse
relations in FB15K [5], which makes the task less challenging and realistic. Thus, they
exclude redundant relations and direct training links for held-out triplets.

– WN18RR is constructed by Dettmers et al. [4]. They find that WN18 [5] also suffers
from the problem of inverse relations, whereby a simple reversal rule-based model can
achieve good performance. Thus, they remove sources appearing in both training data
and testing data to address the test leakage problem.

– NELL-995 is constructed by Xiong et al. [41]. It comes from the 995th iteration of
NELL system [6] with some processing. Xiong et al. separate the KG for each query
relation to build various sub-graphs, where every graph for a relation can have triplets
from the test set of another query relation.

Baselines We compare RL-MHR with all existing RL-based methods. We discuss more
details about these methods in Section 2.

– MINERVA is proposed by Das et al. [8]. They firstly convert KG reasoning into
RL based on the Monte-Carlo algorithm. It judges correct reasoning paths via final
prediction.

– Multi-HopModel is proposed by Lin et al. [21]. They utilize the similarity score within
a triplet to replace the negative reward. Then they equip it with an action drop part to
improve the generalization ability of RL.

– No-Answer Model is proposed by Godin et al. [13]. They add a NO ANSWER node
to help the model filter the paths irrelevant to the answer. To improve the performance,
a supervised component is then designed to label those paths.

4.2 Implementation details

We employ the pre-trained KG embeddings from ConvE [10] and ComplEX [36] to repre-
sent the embeddings of entities and relations and set the embedding size to 200. Inspired
by [8], an entropy regularization is added to the objective and the weight parameter β is
tuned within [0, 0.1]. Regarding the LSTM used to encode the action history, we set the

2https://github.com/shehzaadzd/MINERVA/tree/master/datasets

1847World Wide Web (2021) 24:1837–1856

https://github.com/shehzaadzd/MINERVA/tree/master/datasets

Table 1 Statistics of different KGs used in the experiment

Dataset #Entities #Relations #Triplets #Degree

Average Median

WN18RR 40,945 11 86,835 2.19 2

NELL-995 75,492 200 154,213 4.07 1

FB15K-237 14,505 237 272,115 19.74 14

number of layers to 3, and the hidden size of it is also 200. Xavier [12] is utilized as ini-
tialization for layers in the neural networks. We adopt dropout in the KG embeddings and
feed-forward layers of all models and search the rates within [0, 0.5]. For stop signal, the
encourage reward re is tuned within (1, 2] and the punish reward ru is tuned within (0,
0.5]. For the REINFORCE algorithm, the discount factor η is tuned within [0.9, 1]. We
apply the training strategy used in [21] and tune the dropout rate within [0, 1]. ADAM [16]
optimizer is employed to optimize training parameters and search the learning rate within
[0.001, 0.003]. In the experiment, we set the last entity from each negative reasoning path to
compute the worth-trying reward. We used an identical representation for all STOPs. Specif-
ically, in the action space, every relation connects to a specific (tail) entity. After an action
(i.e., relation) is selected by the agent, the connecting entity is also determined. For STOP,
which can be deemed as a special relation, its connecting entity is the same as the one in the
last hop (i.e., the head entity in this hop). In testing, the entity before the first appearance of
the STOP action is taken as the predicted answer, as now the agents are expected to be able
to determine when to stop after training.3

4.3 Results on RL-basedmethods

As can be observed from Table 2, similar to the distributions of results from ConvE
and ComplEx in Section 4.5, RL-MHR (ConvE) beats RL-MHR (ComplEx) in FB15K-237
and NELL-995, and gets comparable results in WN18RR. This indicates the effects of
pre-trained KG embeddings and also demonstrates that RL-MHR works seamlessly with
embedding-based methods. For clarity, we use the results from RL-MHR (ConvE) for in-
depth analysis in the sequel and omit the “(ConvE)”. Besides, RL-MHR achieves superior
results than other methods on all metrics across all datasets. This can be attributed to the
fact that these baselines do not learn when to stop during the reasoning process. As they set
a fixed length of the reasoning path, the agent tries to meet the path length and ignores those
short but correct paths. Therefore, they have to tune the path length in accordance with the
data distribution in different datasets. In contrast, the agent in RL-MHR understands when
to stop the inference and hits the target repeatedly until reaching the path length. In this
connection, RL-MHR can cover more correct reasoning paths regardless of the length. We
further elaborate on the analysis of path length in Section 4.7.

There are roughly two classes of relations—one-to-many and many-to-one. The former
denotes that the majority of the queries containing the relation rq have multiple answer
entities, while the latter represents that the majority of the queries containing the relation

3Only results in FB15K-237 are available in No-Answer Model. The source codes are not available. We tried
our best to re-implement the model but the results are much worse than those reported in the paper. Hence,
we omit the results for a fair comparison

1848 World Wide Web (2021) 24:1837–1856

Table 2 Overall performance compared with all RL-based methods

Method FB15K-237 WN18RR NELL-995

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MINERVA 21.7 45.6 29.3 41.3 51.3 44.8 66.3 83.1 72.5

Multi-Hop Model 32.2 56.0 40.3 43.7 54.2 47.2 65.6 84.4 72.7

No-Answer Model 27.4 44.1 32.9 − − − − − −
RL-MHR (ComplEx) 32.4 54.6 39.6 43.2 56.7 48.2 66.5 83.8 73.1

RL-MHR (ConvE) 33.3 57.2 41.4 44.2 55.5 48.8 67.9 85.8 74.2

The Hits@1, Hits@10 and MRR are represented in percentages. As Multi-Hop Model performs differently
with different pre-trained embeddings, we show the best results in the table. “-” denotes the results are not
available. The best results in each dataset are represented in bold. See Section 4.3 about details for result
analysis

rq merely have one correct answer. In NELL-995, most of the queries are many-to-one
(87.1%). In contrast, WN18RR is a relatively balanced dataset, where the percentage of
one-to-many queries is slightly higher (5.6%) than that of many-to-one queries [21]. Since
MINERVA considers the entity in the last hop as the output, the agent tends to ignore the
short but correct paths, which leads to the overlook of many useful patterns. Without any
other useful information, it fails to address both one-to-many problem. In Multi-Hop Model,
although the reward shaping component and action dropout strategy provide the agent with
more semantic information, the fixed path length still impairs its ability to handle the many-
to-one problem. Many potential patterns are still ignored. In No-Answer Model, it devises
a supervised component to detect the reasoning path that cannot help the agent to reach
the answer with the fixed path length. This mitigates the issue to an extent, but the results
are largely dependent on the annotated path data. Different from these methods, RL-MHR
overcomes the problems by designing the stop signal and worth-trying signal to help the
agent to learn when to stop by itself and the results verify its effectiveness.

We notice that the gaps among all methods are relatively large on FB15K-237, and RL-
MHR obtains the best results. The reason might be that there are many (76.6%) one-to-many
queries in FB15K-237 [21], which requires the agent to take into account the semantic
information of triplets. Since there are many candidates for each query, it is easy for the
agent to make a false judgment merely based on the structured information. Besides, many
wrong reasoning paths containing correct patterns. If these paths are abandoned directly,
it will increase the difficulty for the agent to locate the final answer in these cases. As
mentioned above, MINERVA does not take any semantic information into account, which
leads to the worst performance on FB15K-237. No-Answer Model also ignores the semantic
information, but the supervised component helps it to filter out some irrelevant paths and
improve the result. Multi-Hop Model and RL-MHR consider the features of relations and
entities in the vector space, which can capture the semantic relevance of triplets in the KG.
Nevertheless, Multi-Hop Model fails to exploit many short but correct reasoning paths.
Adding the stop signal component, our proposal outperforms all other methods.

4.4 Ablation study

In this section, an ablation study is performed to evaluate the significance of different
components. We remove the stop signal component and worth-trying signal component,

1849World Wide Web (2021) 24:1837–1856

respectively, and compare the performance of the rest frameworks with the original one on
the very same datasets. It can be observed from the results in Table 3 that, both two com-
ponents contribute to the performance of RL-MHR, except on WN18RR, where removing
the worth-trying signal slightly improves the result. The detailed clarification is in the next
paragraph.

Notably, the performance drop of removing the signal component differs across different
datasets. This might be ascribed to the different data distributions. The main query class in
FB15K-237 is one-to-many, while in NELL-995, the majority is many-to-one. As discussed
before, one-to-many queries require more semantic information than structure information
to instruct the agent to select the correct answer. Many-to-one queries, on the other hand,
depend more on the structure of KGs, and the relations in queries can already make the
agent accurately find the answer. Therefore, the semantic relevance introduced by the worth-
trying signal can largely improve the performance on FB15K-237, while it merely brings a
minor increase of the result on NELL-995. When it comes to WN18RR, the distribution of
query classes is relatively balanced, which theoretically should rely on both semantic and
structure features. However, there are only 11 relations in the dataset, which increases the
difficulty for the agent to handle the one-to-many problem. As all the relations in queries
are similar, the representation of the same relation might have semantic overlap with a huge
number of entities. This impairs the effectiveness of the worth-trying signal component.

4.5 Results of other methods

In this section, we compare RL-MHR with representative rule-based methods and
embedding-based methods. As the main goal of relation-based methods is to address the
relation classification, we do not list them in the experiment. The results can be found in
Table 4, and RL-MHR performs comparably to methods from other categories.

We observe that embedding-based approaches dominate in FB15K-237 (i.e., the best
performance in terms of all metrics) and NELL-995 (i.e., the best performance in terms of
two out of the three metrics). The reason might be that they represent every link from KG
into the same high dimensional space, which could implicitly encode the connectivity of
the whole graph. However, RL-MHR applies the discrete representations, which leaves out a
significant proportion of the combinatorial path space by selection.

However, as shown in Table 1, there are only 11 relations in WN18RR, which decreases
the importance of relations. Thus, embedding-based methods achieve low performance in
the dataset. Rule-based methods are symbolic, which merely utilize the structure informa-
tion of triplets. For each query, there are many reasoning paths matching the logic rules,
leading to a relatively large number of candidates returned by the models. Therefore, the
Hits@1 score of these methods is low, while the Hits@10 score is the best among all

Table 3 Comparison of results Hits@1 of RL-MHR and models without stop signal (SS) and worth-trying
signal (WT)

Model FB15K-237 WN18RR NELL-995

RL-MHR 33.3 43.6 67.9

w/o SS 29.4 (-11.7%) 41.1 (-5.8%) 63.7 (-6.2%)

w/o WT 29.2 (-12.3%) 44.2 (+1.3%) 66.8 (-1.6%)

% is computed based on the proposed model. See Section 4.4 about details for ablation analysis

Boldface indicates the best results

1850 World Wide Web (2021) 24:1837–1856

Table 4 Performance with other methods in different datasets

Method FB15K-237 WN18RR NELL-995

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MLN [29] 6.7 16 9.8 19.1 36.1 25.9 − − −
NeuralLP [44] 16.6 34.8 22.7 37.6 65.7 46.3 − − −
pLogicNet [26] − − − 39.8 53.7 44.1 − − −
AnyBURL [22] 26.9 52.0 − 42.9 53.7 − − − −
ComplEx [37] 32.8 61.6 42.5 41.8 51.0 43.7 64.3 86.0 72.6

ConvE [10] 34.1 62.2 43.5 40.3 54.0 44.9 67.2 86.4 74.7

HypER [3] − − − 43.6 52.2 46.5 − − −
DistMult [43] 32.4 60.0 41.7 43.1 52.4 46.2 55.2 78.3 64.1

RL-MHR 33.3 57.2 41.4 44.2 55.5 48.8 67.9 85.8 74.2

The Hits@1, Hits@10 and MRR are multiplied by 100. “-” denotes the results are not available. Boldface
indicates the best results, while the second-best performance is underlined. See Section 4.5 about details for
other methods analysis

approaches. Different from rule-based methods, embedding-based methods try to exploit
the semantic features of KG. They take the semantic relevance of triplets into consideration,
and use a low-dimensional vector space to exploit latent patterns of entities and relations.
Therefore, they can answer the queries without providing the reasoning paths. Our RL-based
model guides the agent to take actions based on both structure and semantic information,
which can mitigate the impact of the noise induced by rules and make sequential decisions.

4.6 Case study

In this section, we conduct a case study to compare the reasoning paths selected by different
models. To make the comparison clearer, we employ the complete reasoning paths from
RL-MHR, while the entity appearing before the first STOP is used for evaluation.

As Figure 3 shows, both MINERVA and RL-MHR can correctly answer the “Profes-
sion” of “Guy Ritchie” in different path length. Other methods introduce a self-loop action

Figure 3 Sketch about the query correctly answered in different path length in FB15K-237. Path (a) is from
MINERVA, and path (b) is from RL-MHR. “ ” in the relation denotes reverse direction. Note that the relation
“Profession” between “Guy Ritchie” and “Movie producer” is not in G. See Section 4.6 for details

1851World Wide Web (2021) 24:1837–1856

NO OP. Although the agent reaches the correct answer, in the end, MINERVA only takes
the action to meet the requirement about the number of hops. In path (a), the first selected
action is NO OP, which only helps to expand the length of the path. In this way, MINERVA
can technically convert the long path into a short one. In RL-MHR, the agent firstly performs
similar to the short path and stays at the same entity once it reaches “Movie producer”.
This represents that the agent regards STOP as a signal and only takes it when meeting the
possible answer.

We present several representative negative instances in Figure 4. MINERVA and Multi-
Hop Model treat NO OP as a usual action candidate for the agent, and all actions in the
reasoning path are given a positive reward, once the agent arrives at the answer in the end. As
NO OP can be selected in each hop without any constraints, it might be hard for the agent to
judge whether and when to choose NO OP. This makes the agent randomly select NO OP
and leads to the situation as the path (a). The double hits about “Winston-Salem” contribute
nothing to the reasoning path. In contrast, the increase of the path length leads to the higher
difficulty of the reasoning and makes the agent fail to answer the relatively easy queries.
Besides, without the stop signal, the agent might even miss the answer (path(b)). The target
entity “Eastern Time Zone” appears in the middle of the path, but the agent passes it and
hops to another entity to meet the length of the path. The NO OP action does not work in
the situation, since there is no reason for the agent to determine whether to stay. Therefore,
in other RL-based methods, the agent tends to ignore the short but correct reasoning paths.
In addition, without worth-trying rewards, the reward space comprises a large number of
’0’s and few ’1’s. This leads to the situation where the agent can hardly acquire positive
feedback at each round, and further fails to learn correct patterns of the inference. Thus, it
tends to reach the wrong entity (e.g., “Fayetteville” in the path (d)) and STOP there. The
observation also proves the superiority of worth-trying rewards.

Different from them, in RL-MHR, the agent can detect the answer “Eastern Time Zone
during the reasoning. Then it selects the STOP to repeatedly hit the answer entity to gain

Figure 4 Sketch about the correctness of the output changes with the path length in FB15K-237. Path (a) is
from MINERVA, path (b) from Multi-Hop Model and path (c) is from RL-MHR. “ ” in the relation denotes
reverse direction. Note that the relation “Time zone” between “Asheville” and “Eastern Time Zone” is not in
G. See Section 4.6 for details

1852 World Wide Web (2021) 24:1837–1856

the encourage reward re. In other words, the long length provides the agent with the oppor-
tunity to cumulate more rewards, which helps RL to exploit potential patterns of the correct
reasoning paths.

4.7 Further experiment

In this section, we compare our model with some baselines in different path lengths, and
examine the change of their performance. As shown in Figure 5, with the length increasing,
the performance of other methods decreases while that of RL-MHR rises and then stabilizes.
Since the baseline methods all apply fixed path length to train the model, they can perform
relatively better, especially, when most queries can be answered within a certain number of
hops. With the length increasing, queries that need more hops to be solved can be addressed
by these baselines. Since the path arriving at the answer at the last hop is regarded as the
positive instance, many short but correct paths will be ignored. Consequently, they fail to
answer some queries which can be resolved in a shorter path length, and their performance
also decreases.

The reasons for the slight decrease of the performance of RL-MHR can be attributed to
two parts, and both of them lead to the case where the model is hard to converge. The first
one is the longer path increases the search space of the agent. A large amount of the possible
reasoning path enhances the difficulty to detect the correct paths, and impair the learning
process of the special action STOP. Since the longer path means more possible combina-
tions of decisions, the probability of the positive reasoning path decreases. The agent gets
fewer positive instances about repeatedly hitting the answer, which makes the system fail
to acquire the ability to judge when to stop. The second one is the sparse reward problem.
Although the agent might find the answer based on the stop signal, the requirement of more
hops influences the cumulative reward. During the learning process, after the agent reaches
the answer, it might not select STOP in the rest of the hops. The punish and negative rewards
for the rest are then added to the cumulative reward. When the path length is relatively short,
the final reward of this correct reasoning path is positive. As the length becomes longer, the
times of making wrong decisions of the agent also increase. The final reward might turn to
a negative one. The situation makes it hard for the agent to learn positive patterns.

Figure 5 Performance of different RL-based methods with the growth of path. Blue curve denotes RL-MHR,
green curve denotes Multi-Hop Model, and red curve denotes MINERVA. For the clear clarification, we
apply Hits@1 as metric and select the model with the best performance of Multi-Hop Model. See Section 4.7
for details

1853World Wide Web (2021) 24:1837–1856

5 Conclusion

In this paper, we propose a RL-based multi-hop KG reasoner, namely RL-MHR, which aims
to make up the deficiency of existing methods. To address the false-negative and sparse
reward problems to improve the explainability of the model, we introduce two components:
stop signal and worth-trying signals. For those paths containing the answer, RL-MHR can
judge when to stop and stay at the entity. For those negative paths, worth-trying rewards
are applied to guarantee that RL-MHR can get semantic relevance from them. The outcome
proves the efficiency of our model, and detailed analysis about different parts and the change
of the path length show more advantages of RL-MHR.

In future work, we aim to research the following directions: (1) the semantic meaning
of reasoning paths. In the experiment, we observe that RL-MHR sometimes retrieves a large
number of paths meeting the requirement of the tail entity and target relation. However,
in some cases, paths are not reasonable and readable. The reason might be that recent RL
methods still fail to capture the semantic information containing by reasoning paths. Thus,
we will explore how to model semantic information into RL to alleviate the problem. (2) the
application of fancy frameworks in RL. With the development of RL, there are many new
frameworks trying to handle the weakness of RL (e.g low usage of samples and static input).
These problems also appear in KG reasoning and impair the performance of reasoning. It
might be interesting to transfer these ideas into multi-hop KG reasoning.

Acknowledgments This work was partially supported by NSFC under grants Nos. 61872446, 61902417
and 71971212, NSF of Hunan Province under grant No. 2019JJ20024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arras, L., Montavon, G., Müller, K., Samek, W.: Explaining recurrent neural network predictions in sen-
timent analysis. In: WASSA@EMNLP 2017, September 8 2017, pp. 159–168, Copenhagen, Denmark
(2017)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: A nucleus for a web
of open data. In: ISWC 2007 + ASWC 2007, November 11-15, 2007, pp. 722–735, Busan, Korea (2007)

3. Balazevic, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In: ICANN
2019, September 17-19, 2019, pp. 553–565, Munich, Germany (2019)

4. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning
with multi-relational data - application to word-sense disambiguation. Mach. Learn. 94(2), 233–259
(2014)

5. Bordes, A., Usunier, N., Garcı́a-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for mod-
eling multi-relational data. In: NeurIPS 2013, December 5-8, 2013, pp. 2787–2795, Lake Tahoe, Nevada,
United States (2013)

6. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr.E., Mitchell, T.M.: Toward an architecture
for never-ending language learning. In: AAAI 2010, July 11–15, 2010, Atlanta, Georgia, USA (2010)

7. Cohen, W.W.: Tensorlog: A differentiable deductive database. arXiv:1605.06523 (2016)

1854 World Wide Web (2021) 24:1837–1856

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1605.06523

8. Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar, I., Krishnamurthy, A., Smola, A., McCallum,
A.: Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement
learning. In: ICLR 2018, April 30 - May 3, 2018 Conference Track Proceedings, Vancouver, BC, Canada
(2018)

9. Das, R., Neelakantan, A., Belanger, D., McCallum, A.: Chains of reasoning over entities, relations, and
text using recurrent neural networks. In: EACL 2017, April 3-7, 2017, pp. 132–141, Valencia, Spain
(2017)

10. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In:
AAAI-18, February 2-7, 2018, pp. 1811–1818, New Orleans, Louisiana, USA (2018)

11. Gardner, M., Talukdar, P.P., Krishnamurthy, J., Mitchell, T.M.: Incorporating vector space similarity in
random walk inference over knowledge bases. In: EMNLP 2014, October 25-29, 2014, pp. 397–406,
Doha, Qatar (2014)

12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In:
AISTATS 2010, May, 13-15, 2010, pp. 249–256, Chia Laguna Resort, Sardinia, Italy (2010)

13. Godin, F., Kumar, A., Mittal, A.: Learning when not to answer: a ternary reward structure for rein-
forcement learning based question answering. In: NAACL-HLT 2019, June, 2-7, 2019, pp. 122–129,
Minneapolis, MN, USA (2019)

14. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI - explainable artificial
intelligence. Sci. Robot. vol 4(37) (2019)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR 2015, May 7-9, 2015

Conference Track Proceedings, San Diego, CA, USA (2015)
17. Kok, S., Domingos, P.M.: Statistical predicate invention. In: ICML 2007, June, 20-24, 2007, pp. 433–

440, Corvallis, Oregon, USA (2007)
18. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks.

Mach. Learn. 81(1), 53–67 (2010)
19. Lao, N., Mitchell, T.M., Cohen, W.W.: Random walk inference and learning in A large scale knowledge

base. In: EMNLP 2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, pp. 529–
539 (2011)

20. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey,
M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - A large-scale, multilingual knowledge base extracted
from wikipedia. Semant. Web 6(2), 167–195 (2015)

21. Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward shaping. In: EMNLP
2018, October 31 - November 4, 2018, pp. 3243–3253, Brussels, Belgium (2018)

22. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for
knowledge graph completion. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, August 10-16, 2019, pp. 3137–3143, Macao, China (2019)

23. Muggleton, S.: Developments in inductive logic programming, panel position paper. In: FGCS 1992,
June 1-5, pp. 1071–1073, Tokyo, Japan (1992)

24. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3&4), 245–286 (1995)
25. Murdoch, W.J., Szlam, A.: Automatic rule extraction from long short term memory networks. In: ICLR

2017, Toulon, France, April 24-26, 2017 Conference Track Proceedings (2017)
26. Qu, M., Tang, J.: Probabilistic logic neural networks for reasoning. In: NeurIPS 2019, 8-14 December

2019, pp. 7710–7720, Vancouver, Canada (2019)
27. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266 (1990)
28. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: Explaining the predictions of

any classifier. In: SIGKDD 2016, August, 13-17, 2016, pp. 1135–1144, San Francisco, CA, USA
(2016)

29. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1-2), 107–136 (2006)
30. Rieger, L., Singh, C., Murdoch, W.J., Yu, B.: Interpretations are useful: penalizing explanations to align

neural networks with prior knowledge. arXiv:1909.13584 (2019)
31. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: NeurIPS 2017, 4-9 December 2017,

pp. 3788–3800, Long Beach, CA, USA (2017)
32. Shen, Y., Chen, J., Huang, P., Guo, Y., Gao, J.: M-walk: Learning to walk over graphs using monte carlo

tree search. In: NeurIPS 2018, 3-8 December 2018, pp. 6787–6798, Montréal, Canada (2018)
33. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW 2007, May

8-12, 2007, pp. 697–706, Banff, Alberta, Canada (2007)
34. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks. In: NeurIPS 2015,

December 7-12, 2015, pp. 2440–2448, Montreal, Quebec, Canada (2015)

1855World Wide Web (2021) 24:1837–1856

http://arxiv.org/abs/1909.13584

35. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in
complex space. In: ICLR 2019, May 6–9, 2019, New Orleans, LA, USA (2019)

36. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint
embedding of text and knowledge bases. In: EMNLP 2015, September 17-21, 2015, pp. 1499–1509,
Lisbon, Portugal (2015)

37. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link
prediction. In: ICML 2016, June 19-24, 2016, pp. 2071–2080, New York City, NY, USA (2016)

38. Wang, W.Y., Mazaitis, K., Cohen, W.W.: Programming with personalized pagerank: a locally groundable
first-order probabilistic logic. In: CIKM 2013, October 27 - November 1, 2013, pp. 2129–2138, San
Francisco, CA, USA (2013)

39. Welbl, J., Stenetorp, P., Riedel, S.: Constructing datasets for multi-hop reading comprehension across
documents. Trans. Assoc. Comput. Linguist. 6, 287–302 (2018)

40. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 8, 229–256 (1992)

41. Xiong, W., Hoang, T., Wang, W.Y.: Deeppath: A reinforcement learning method for knowledge graph
reasoning. In: EMNLP 2017, September 9-11, 2017, pp. 564–573, Copenhagen, Denmark (2017)

42. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel, R.S., Bengio, Y.: Show,
attend and tell: Neural image caption generation with visual attention. In: ICML 2015, July 6-11, 2015,
pp. 2048–2057, Lille France (2015)

43. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference
in knowledge bases. In: ICLR 2015, May 7-9, 2015 Conference Track Proceedings, San Diego, CA,
USA (2015)

44. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning.
In: NeurIPS 2017, December 4-9, 2017, pp. 2319–2328, Long Beach, CA, USA (2017)

45. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NeurIPS 2019,
December 8-14, 2019, pp. 2731–2741, Vancouver, BC, Canada (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Jinzhi Liao1,2 ·Xiang Zhao1,2 · Jiuyang Tang1,2 ·Weixin Zeng1,2 ·Zhen Tan1,2

Jinzhi Liao
liaojinzhi12@nudt.edu.cn

Jiuyang Tang
jiuyang tang@nudt.edu.cn

Weixin Zeng
zengweixin13@nudt.edu.cn

Zhen Tan
tanzhen08a@nudt.edu.cn

1 National University of Defense Technology, 109 Deya Road, Changsha, Hunan China
2 Science and Technology on Information Systems Engineering Laboratory, 109 Deya Road,

Changsha, China

1856 World Wide Web (2021) 24:1837–1856

http://orcid.org/0000-0001-6339-0219
mailto: liaojinzhi12@nudt.edu.cn
mailto: jiuyang_tang@nudt.edu.cn
mailto: zengweixin13@nudt.edu.cn
mailto: tanzhen08a@nudt.edu.cn

	To hop or not, that is the question: Towards effective multi-hop reasoning over knowledge graphs
	Abstract
	Introduction
	Motivation
	Our approach
	Contribution
	Organization

	Related work
	RL-based methods
	Relation-based methods
	Rule-based methods
	KG completion methods
	Explainability of machine learning models

	Methodology
	Task definition
	Proposed model
	States
	Actions
	Policy network
	Transition
	Rewards

	The stop signal
	The worth-trying signal reward
	Training

	Experiments
	Experiment setting
	Datasets
	Baselines

	Implementation details
	Results on RL-based methods
	Ablation study
	Results of other methods
	Case study
	Further experiment

	Conclusion
	References
	Affiliations

