
Vol.:(0123456789)

Wireless Personal Communications
https://doi.org/10.1007/s11277-024-11093-4

1 3

Adaptive Methods for Revenue Model Learning of a Slice
Broker in the Presence of Adversaries

Muhidul Islam Khan1 · Gianfranco Nencioni1

Accepted: 8 April 2024
© The Author(s) 2024

Abstract
In the fifth-generation (5G) of mobile networks, Multi-Access Edge Computing (MEC)
refers to the deployment of computing resources closer to the end-users for improved ser-
vice delivery. In the context of 5G MEC, the slice broker plays a crucial role in managing
the allocation of resources among the different network slices, which are logical networks
on top of a shared infrastructure. The slice broker is a business entity that acts as an inter-
mediary between the slice tenants and the infrastructure provider and is responsible for
allocating resources (such as CPU, memory, and network bandwidth) required to set up the
network. The slice broker must ensure that resources are allocated in a way that the revenue
is maximized. In a dynamic environment, the slice broker must learn the revenue model
adaptively and online. Adversaries can significantly reduce the revenue by misleading the
system about the resources pretending to be selfish nodes, or creating noise. The slice bro-
ker should learn the revenue model in the presence of adversaries. We apply cooperative
deep reinforcement learning with consensus mechanism and consensus deep learning to
learn the revenue model adaptively. We also compare our proposed methods with the refer-
ence solution. Simulation results show that our proposed methods, especially the coopera-
tive version, outperform the reference solution.

Keywords 5G MEC · Slice broker · Reinforcement learning · Consensus algorithm

1 Introduction

In the fifth-generation (5G) of mobile networks, Multi-Access Edge Computing (MEC) is
a technology that enables the deployment of computing resources closer to the end-users,
thereby improving the quality of service and user experience [1]. In the supply chain of
5G MEC, the three main components are the slice tenants, Infrastructure Providers (InPs),
and the slice broker. InPs provide the physical infrastructure needed to support the MEC

 * Muhidul Islam Khan
 md.m.khan@uis.no

 Gianfranco Nencioni
 gianfrano.nencioni@uis.no

1 Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger,
Norway

http://orcid.org/0000-0002-9035-9046
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-024-11093-4&domain=pdf

 M. I. Khan, G. Nencioni

1 3

services, such as servers, network equipment, and storage devices. The slice tenants are
users or organizations requesting different MEC services. The slice broker is instead a new
business entity that buys the resources from InPs and creates and manages the slices, which
are bought by the slice tenants. Slice brokers need to consider the economic aspects for
dynamic resource allocation. One crucial aspect of this resource allocation is considering
the economic aspects [2]. To learn the proper revenue model, it is necessary to dynamically
allocate computing, storage, and network resources to different network slices to ensure
efficient utilization of available resources and high-quality service delivery. However, in
the learning process, adversaries such as selfish nodes and malicious users can threaten
the system’s security and efficiency [3]. Selfish nodes may try to exploit the system by
consuming more resources than necessary, leading to inefficient resource utilization and
degradation of the system’s overall performance. On the other hand, malicious users may
add noise to the system, causing interference and affecting the quality of service. So, we
need a dynamic method that can adaptively learn about the revenue model in the presence
of adversaries and noises.

In [4], the authors propose a heuristic approach to minimize the cost of the slice bro-
kers in 5G MEC. They address the slice allocation problem. However, their method is not
adaptive. There is no dynamic demand/request and no revenue model learning. In [5], the
authors propose a novel framework for profit-driven network slicing and resource alloca-
tion in MEC systems. The proposed framework enables service providers to slice the net-
work and allocate resources based on the profit generated by different services. However,
their method is not adaptive, they do not have dynamic requests, and they do not learn the
revenue model adaptively.

Security is a significant concern to consider for resource allocation. In recent years,
some works have been based on resource allocation, considering security concerns. In
[6], the authors propose a secure slice allocation in 5G. They consider device authentica-
tion using a password-based essential derivation function. In addition, they consider the
massive traffic in their scenario. They propose a distributed Reinforcement Learning (RL)
based method for Distributed Denial-of-Service (DDoS) attackers. However, their pro-
posed method do not consider the revenue model learning adaptively. In [7], the authors
propose a cooperative reinforcement learning method for revenue model learning for a
slice broker in the 5G-MEC system in the presence of adversaries. This paper extends the
work [7] by proposing another adaptive method and perform evaluation with the existing
one and also with the reference solution.

In summary, the contributions of our paper are as follows:

• We consider a dynamic demand model based on the set prices by the agents. Demand
varies based on the price. With the increment of the price, the demand decreases and
vice versa.

• We consider two types of security issues: selfish nodes and added noises for resource
allocation for slices. We also learn the revenue model considering these adversaries.

• We consider the consensus mechanism for adaptively learning the security threats for
revenue model learning. We apply two variants of deep learning mechanisms with con-
sensus. One with the cooperation among agents and another one to send information to
the server and the server collaborates with the agents.

• We compare our proposed methods with the reference solution.

The paper is structured as follows. Section 2 provides some related works. Section 3
describes the problem of maximizing revenue in the presence of adversaries. Section 4

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

introduces the proposed method to solve the presented problem. Section 5 presents the
results of comparing the proposed method with reference methods. Finally, Sect. 6 con-
cludes the paper.

2 Related Works

Some current research works focus on resource allocation for slice brokers in 5G consider-
ing the profit level of the broker. Some works also consider adaptive methods, e.g., RL,
Deep RL, and Artificial Intelligence (AI) based methods. In [8], the authors propose a
distributed slice allocation using the adaptive machine learning method. Their proposed
method helps to achieve the requirements for multiple information flows. However, they
do not consider learning the revenue model for the broker, and also, there is no consid-
eration of security issues for resource allocation. In [9], the slice allocation mechanism is
proposed where dynamic slice admission is gained, and at the same time, the operator’s
profit is investigated. They apply Lyapunov optimization for the optimization. However,
there is no revenue model learning and no consideration of security issues in this work.
In [10], the authors propose an auction-based method for radio resource allocation in 5G.
However, their proposed method is not adaptive, and also they do not consider the secu-
rity threats to resource allocation. In [11], the authors propose a method named RL-NSB
(RL-based Network Slice Broker), where the slice broker’s profit is maximized adaptively
by charging customers for the allocated resources while minimizing the cost of provid-
ing those resources. However, their proposed method is not learning any revenue model.
They also do not consider the security issues for resource allocation. In [12], the authors
propose RL and Deep RL for learning the admission policy that optimizes the profit of the
slice broker. In [13], the authors propose an innovative approach to optimizing revenue
in 5G Cloud Radio Access Networks (C-RANs). Using multi-agent deep reinforcement
learning, the authors propose a dynamic system for network slicing and admission con-
trol. This method enables efficient resource allocation and service provisioning, ultimately
maximizing profit-making opportunities for network operators. By applying advanced AI
techniques, the paper demonstrates how 5G C-RANs can adapt and thrive in a competi-
tive, revenue-driven environment, making it a valuable contribution to the telecommu-
nications industry. In [14], the authors introduce a novel resource allocation strategy for
5G networks, focusing on maximizing profit for slice brokers. Leveraging reinforcement
learning, the paper presents a bi-level optimization framework that dynamically allocates
resources across multiple network slices. This approach ensures efficient resource utiliza-
tion and adapts to changing network conditions, enhancing revenue generation potential for
slice brokers. By optimizing both short-term gains and long-term profitability, this research
offers a valuable strategy to support profit-making endeavors in the competitive 5G market,
making it essential reading for slice brokers and network operators. In [15], the authors
present a groundbreaking approach to profit optimization for slice brokers in 5G networks.
By employing multi-agent deep reinforcement learning, the research introduces a coordi-
nated system for dynamic resource slicing and admission control. This strategy maximizes
the broker’s profit potential by intelligently allocating resources, ensuring efficient service
delivery, and adapting to evolving network conditions. With a focus on revenue generation
and cost management, this paper offers a pivotal framework for slice brokers aiming to
thrive in the competitive 5G landscape, making it essential reading for profit-making strat-
egies in this domain.

 M. I. Khan, G. Nencioni

1 3

In contrast to all these approaches, our proposed methods adaptively learn the revenue
model considering some selfish nodes and noisy nodes in the system. To our best knowl-
edge, this is the first work which considers to learn the revenue model adaptively with
security attacks.

3 Problem Description

We consider three business entities, e.g., InPs, a slice broker, and a slice tenant, in the
5G-MEC system.

The assumption is that each InP has one MEC host (MEH). The problem can be gener-
alized to multiple MEHs belonging to the same InP. We keep the system simple with one
MEH as multiple MEHs need orchestration by a Multi-access Edge Orchestrator (MEO).

A MEH is a computing platform with computational resources in the system, e.g., pro-
cessing power in vCPU.

The business entity slice broker buys the computational resources from the InPs, which
resells the resources to multiple slice tenants. For the sake of simplicity, we assume only
one tenant but the problem and the solution can be generalized to having multiple tenants.

We also assume that the slice broker has already bought an amount of computational
resources from each InP. Therefore, in each MEH, the broker has one chunk of computa-
tional resources. The set of chunks is denoted as M . For each chunk m ∈ M , the amount
of bought computational resources is denoted as �m . The tenant dynamically requests to the
broker an amount of computational resources that we call slice demand and indicate as dt ,
where t identifies the time interval.

At each time interval t, the broker decides the amount of resources from each chunk,
which will be allocated to fill the slice demand. The portion of chunk allocated to the
tenant is denoted as subchunk. The subchunk’s computational resources from the chunk
m ∈ M at the time interval t is denoted as �t

m
 . The broker also decides the subchunk price

(in €/vCPU), denoted as ct
m
.

In our system, we consider that the broker has one software agent for each chunk
m ∈ M helping to decide the amount of computational resources, �t

m
 , and price, ct

m
 , for the

related subchunk at each time interval t. Figure 1 represents the investigated 5G-MEC sys-
tem. The adversary and noise injections will be explained in the second part of this section.

We use a practical demand model to get the slice demand of the slice tenant, dt . In the
real world, demand changes over time and depends not only on the current price but can
also be impacted by the magnitude of recent price changes. A price decrease can create a
temporary demand increment, wherever a price increase can cause a fall in demand. The
impact of price changes can also be asymmetric, so price increases have a much more sig-
nificant or smaller impact than decreases.

In our case, at every time interval, the slice demand depends on the weighted average
price, which is computed from the prices of each subchunk as follows.

Based on the price-demand function in [16], we compute the slice demand for the next
time interval t + 1 as follows.

(1)pt =
1

dt

∑

m∈M

�t
m
⋅ ct

m

(2)dt+1 = d0 − k ⋅ pt − a ⋅ s((pt − pt−1)+) + b ⋅ s((pt − pt−1)−),

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

where

and where pt is the price for the current time interval t and pt−1 is the price for the previ-
ous time interval. The first two terms of Eq. (2) correspond to a linear demand model with
intercepting d0 and slope k. The second two terms model the response to a price change
between two intervals. Coefficients a and b define the sensitivity to positive and negative
price changes, respectively, and s is a shock function that can be used to specify a non-lin-
ear dependency between the price change and demand. We assume s(⋅) =

√
⋅ . The reason

for choosing this type of demand function is to make it more realistic based on prices. The
problem of maximizing the revenue of the slice brokers to serve the slice demand at the
time interval t can be formulated by basing on Bertnard model [17]:

subject to

(pt − pt−1)+ =

{
pt − pt−1, if pt > pt−1

0, otherwise
,

(pt − pt−1)− =

{
pt − pt−1, if pt < pt−1

0, otherwise
,

(3)P ∶ maxΦt = max
∑

m∈M

ct
m
⋅ �t

m
,

(4)
C1 ∶ �t

m
≤ �m ∀m ∈ M,

C2 ∶
∑

m∈M

�t
m
≤ dt,

Fig. 1 5G-MEC system under consideration for deep learning with consensus mechanism

 M. I. Khan, G. Nencioni

1 3

Where Φt is the defined revenue function and the objective function of the problem, C1 is
the constraint that limits the size of the subchunk to the size of the related chunk, and C2 is
the constraint that limits the cumulative size of all subchunks to the slice demand.

3.1 Environment

Our proposed method is based on RL. In RL, the agents learn over time intervals by per-
forming a particular action, and it shifts from one state to another. After performing an
action, the agents receive a reward for the performed action. RL does not need any knowl-
edge about the environment before. The agent learns over the previous experiences and
perform the action in future which provided better perfromance at a particular state. The
environment of the RL determines the states, actions, and reward function [18]. In our
case, the states are the slice demand at time t, dt , the size of the subchunks at time interval
t − 1 , �t−1

m
 and all the previous prices of the subchunk m, c�

m
 ∀� ∈ [1, t − 1] . The actions are

the size and the price of the subchunks m at t, �t
m
 , and ct

m
 , respectively. The reward function

denotes the revenue for allocating the subchunk m at the time interval t.

3.2 Presence of Adversarial Agents

According to the European Network and Information Security Agency (ENISA) 5G threat
landscape [19], one of the potential threats related to 5G MEC is the compromised supply
chain (i.e., vendor and service providers). Since the tampering of network products (creat-
ing adversaries and added noises) can result in service unavailability, information destruc-
tion, or misinformation generation. For example, in Fig. 2, the attacker compromises the
software agents SA1 and SA2, making them selfish or uncooperative. In this case, SA1 and
SA2 will try to maximize their reward without cooperation, eventually causing less revenue
for the broker.

Let M+ and M− denote the set of cooperative agents and adversaries, respectively,
where M = M

+ ∪M
− . Since we have assumed that there is one agent per chunk (and

subchunk), we use M to interchangeably indicate the set of agents or the set of chunks.
The objective of agents m ∈ M

+ is to maximize a team-average objective function
given as follows.

where � is the time under investigation, �m is a discounted factor, has a value between 0 and
1, and indicates how much the RL agents care about rewards in the distant future concern-
ing those in the immediate future.

The cooperative agents are unaware of the presence of an adversarial agent that seeks to
maximize a different objective function. We define the objective function for m ∈ M

− as
follows.

(5)rt
m
= ct

m
⋅ �t

m

(6)max
ct
m
,�t
m

J+ = max
ct
m
,�t
m

�

[
∞∑

�=0

1

M

∑

m∈M

�m ⋅ r�
m

]

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

It is important to note that the adversarial agent can compromise the rewards r�
m
,m ∈ M

− ,
to incentivize its malicious behavior [20]. Furthermore, once the agents establish com-
munication, the adversary can spread false information about the entire network’s perfor-
mance embedded in the compromised rewards r�

m
 . This may eventually lead to incentiviz-

ing bad behavior in the cooperative agents.

3.3 Presence of Noisy Agents

An attacker may try injecting noise into any component, e.g., a software agent, to com-
promise the system. For example, in Fig. 3, the attacker compromises the software agent
SA1 and SA2. Noise may hamper the cooperation among agents in a way that the broker
may have an idea that it has enough resources to allocate or sometimes get the knowl-
edge of not allocating the resources, which is harmful to the revenue-making of a bro-
ker. We consider a few agents with noise. Here, we consider Additive White Gaussian
Noise (AWGN). The noise can be normally distributed as follows:

(7)max
ct
m
,�t
m

J− = max
ct
m
,�t
m

�

[
∞∑

�=0

�m ⋅ r�
m

]

Fig. 2 5G-MEC system with the adversaries

 M. I. Khan, G. Nencioni

1 3

where Am is the magnitude of the noise.

4 Proposed Methods

4.1 Deep Learning with Consensus Mechanism

We propose a resource allocation method based on a generic Deep Q Network (DQN) algo-
rithm [21] to learn the revenue model. We use the original DQN as it is simple considering
other variants of the learning mechanism. We could not apply classical RL, e.g., Q-learn-
ing, State-Action-Reward-State-Action (SARSA) learning, as our states are continuous. A
learning mechanism like Actor-Critic learning is not applied for its complexities.

RL considers the setup where an agent interacts with the environment in discrete time
intervals to learn a reward-maximizing behavior policy. At each time interval t, with a
given state s, the agent takes action a according to its policy �(s) → a and receives the
reward r moving to the next state s′ . We define our environment considering the RL terms
as follows.

The goal of the algorithm is to learn an action policy � that maximizes the total dis-
counted cumulative reward/return earned during the episode of T time intervals:

(8)Nm ∼ N

(
0,

(
Am

3

)2
)

Fig. 3 5G-MEC system with the noises

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

Such a policy can be defined if we know a function that estimates the expected return based
on the current state and next action, under the assumption that all subsequent actions will
also be taken according to the policy:

Assuming that this function (known as the Q-function) is known, the policy can be straight-
forwardly defined as follows to maximize the return:

We can combine the above definitions based on the Bellman equation as follows:

where s′ and a′ are the next state and the action taken in that state, respectively. If we esti-
mate the Q-function using an approximator, then the quality of the approximation can be
measured using the difference as follows:

This value is called the temporal difference error, the loss function.

(9)R =

T∑

t=0

1

|M|
∑

m∈M

�m ⋅ rt
m

(10)Q�(s, a) = �s,a[R]

(11)�(s) = argmax
a

Q(s, a)

(12)Q�(s, a) = r + �m max
a
�
Q(s�, a�)

(13)L(�) =
1

|M|
∑

m∈M

(ym − Q�(sm, am))
2

 M. I. Khan, G. Nencioni

1 3

Algorithm 1 Proposed method based on deep Q learning

Algorithm 1 shows the step-by-step procedure about how the system works and training
has been done.

Consensus Procedure: An agent i communicates the Q-value to all its neighbors j ∈ M
G
m
 .

M
G
m
 denotes the set of neighbors of agent m. All agents update their Q-values through a linear

combination of their own values and the information of neighbors received in the previous
step. The procedure can be written as:

So, in other words, each agent updates its state by using the disagreement of states with all
its neighbors, scaled by a factor of Γ . Thus the convergence rate of this algorithm depends

(14)Qm(t + 1) = Qm(t) + Γ
∑

j∈MG
m

(Qj(t) − Qm(t))

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

on the scaling factor used. Convergence is guaranteed as long as the following constraint is
met [22]:

where dmax denotes the maximum degree among all nodes in the network. The constraint
can be fulfilled by realizing an upper bound on the maximum possible neighbors for any
node.

4.2 Consensus Deep Learning

We apply another variant of consensus deep learning. Our variant is based on Deep Q
learning. Consensus deep learning is one kind of RL where Q values of multiple agents are
combined to reach an optimal action in a given state [23]. This method is helpful in case of
requirements where each agent will work independently and collaborate to reach a particu-
lar decision. In traditional Q learning, the agents learn about the action by calculating the
Q values of the state-action pair by trial and error. However, to reach any sub-optimal solu-
tion, the agents need to collaborate, and at this point, a consensus is needed. For reaching
a consensus, cooperation among the agents is important. For this cooperation, one possible
option is cooperation among the neighboring agents, which needs lots of communication
efforts and proper synchronization. The other option is to collaborate with a server in the
learning mechanism. The server plays a critical role in deep consensus learning by ena-
bling the networks to share their weights, and aggregate their updates, ultimately leading to
improved performance and better generalization. Overall, the use of a server is important
for achieving consensus and is a powerful tool for training complex and highly accurate
models [24].

(15)0 < Γ <
1

dmax

 M. I. Khan, G. Nencioni

1 3

Algorithm 2 Proposed method based on deep consensus Q learning

Here, in this proposed method, all software agents send the Q-values to another soft-
ware agent/server in the broker to calculate the consensus of the mechanism. There is no
neighboring factor and cooperation among agents for this algorithm.

Figure 4 shows the considered 5G-MEC system for deep consensus learning. The
agents send the gradients of loss to the server. Server sends the updated weights to the

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

agents. Instead of having cooperation among themselves like the other method, here
agents send information to the server and server also update the agents with weights.

Algorithm 2 defines the proposed method step-by-step.
Here action selection is done based on the epsilon-greedy policy.
The epsilon-greedy policy is one kind of mechanism to balance exploration and

exploitation. Exploration means to try an action randomly, whereas exploitation means
to exploit based on the learning algorithm. Here, epsilon, � means to try an action
randomly.

We need to sample a minibatch from the Replay buffer. For each transition, if it is in mini-
batch, set the Q values as

We set the Q target as Q(st, at) . Then the loss function is calculated as the Eq. 13.
Consensus Steps: The server in slice broker collects all the Q values of the agents at

each time interval and calculates the consensus Q value. The consensus Q values can be
calculated as follows:

Agents are informed about the Qconsensus(t + 1) . After that, the gradients of loss is calcu-
lated. Agents send the gradients to the server and then the server calculates the weights
using the learning rate and the gradients are as follows:

Action at time t =

{
max Qt(a) with probability 1 − �

Any action a(t) with probability �

(16)Q(st, at) = r + �m ⋅max
a
�
Q(s

�

, a
�

)

(17)Qconsensus(t + 1) = (1∕|M|) ⋅
∑

i∈M

(Qi(st, at))

Fig. 4 5G-MEC system for consensus deep learning with adversaries and noises

 M. I. Khan, G. Nencioni

1 3

Where � is the learning rate. gt is the gradients calculated at time interval t.
Back propagation is used to train the neural network in the learning algorithm for mak-

ing it more efficient. So, the selection of amount of resources, the calculated revenues, gra-
dients will be in a way that the proper weight will be adjusted and the loss will be mini-
mized [25].

5 Results and Discussion

We consider four software agents. The software agents are connected in cooperative deep
learning with consensus mechanism. In consensus deep learning, these software agents
communicate with another software agent/server. First, we consider revenue model learn-
ing without any adversaries. After that, we consider two software nodes as adversary nodes
among the four agents, trying to maximize their revenue. Then we consider two noisy
nodes that put noises to provide misinformation about the resources that hampers the learn-
ing mechanism. The prices are set by the RL for calculating revenues and the demand. We
compare our proposed methods with independent distributed learning as well, which uses
classical Q-learning [26].

Table 1 shows the simulation parameters that we consider. Here, the values are consid-
ered based on the empirical study.

We apply a deep learning mechanism where we consider 150 hidden nodes with three
layers where 50 nodes are considered per layer. We consider Adaptive Moment Estimation

(18)wt+1 = wt − � +

T∑

t=1

gt

Table 1 Simulation parameters
and their values

Parameter Symbol Value

Available chunks |M| 4
Number of agents |M| 4
Magnitude of the noise A

m
5

Learning rate � 0.5
Probability � 0.5
Number of episodes T 5000
Batch size B 512
Period of target updates T

u
20

Discount factor �
m

0.5
Degree of a node d

max
3

Size of the chunks �
m

5000 vCPU
Neighboring factor Γ 0.3
Intercept d

0
5000 vCPU

Slope k 20 vCPU/€
Response coefficient for price increase a 300 vCPU/€1∕2

Response coefficient for price decrease b 100 vCPU/€1∕2

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

(Adam) algorithm to optimize the Neural Network (NN) weights. We use the Rectified
Linear Unit (ReLU) as an activation function to activate a particular input.

Figure 5 refers to the revenue over time intervals. We can observe that the coopera-
tive deep learning with a consensus mechanism outperforms the other methods. Here we
can see that initially, there is a rise, and then saturation comes over the time intervals. We
can see there are some variations here for exploration and exploitation. We can observe
that in consensus deep learning, where there is no cooperation and huge fluctuations over
time intervals. This is for the exploration, exploitation variations, and training time require-
ments. We can find saturation here, but this method does not outperform cooperative deep
learning with a consensus mechanism. For the independent Q learning, we can see the rev-
enue is quite low compared with our proposed methods. This can happen for independent
learning as some selfish nodes can maximize their own revenue and get a lower overall
revenue.

Figure 6 shows the revenue over time intervals comparing with our learning meth-
ods and without learning adversaries. Here, there are selfish nodes in the simulation. We
can observe that in our cooperative deep learning method, there is an increment at first,
then decrements, and finally, it goes for saturation after 4000 intervals. The massive dec-
rement happens due to the selfish nodes. When our consensus steps help us learn about
the adversaries, we can see that learning converges to a level. We can see that the coop-
erative method outperforms the other method and obviously without learning adversaries.
Learning adversaries with cooperative deep learning provides increment at first and then
goes down, provides lower performances compared with the cooperative one, and finally

Fig. 5 Revenue over time interval with and without learning adversaries

 M. I. Khan, G. Nencioni

1 3

reaches the cooperative one after having an increment. This increment collects the Q val-
ues to a particular agent and then collaboration for learning. On the other hand, without
learning adversaries, the revenue goes very low over time intervals.

Figure 7 refers to the revenue over time intervals after adding noisy nodes. The coopera-
tive one for dealing with the noises outperforms the consensus deep learning and the refer-
ence solution. We can observe that for noises, the revenue goes up and then massive decre-
ment at the 3000-time interval and again increment after the consensus has been reached
then, and adequate convergence happens. Whereas, the consensus deep learning starts with
the higher revenue and then again goes down after the 3000 time intervals. So, dealing

Fig. 6 Revenue over time interval with and without learning adversaries

Fig. 7 Revenue over time interval with and without learning noises

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

with the noises cooperation is helping rather than the consensus deep learning. The overall
fluctuations at every time interval are due to the exploration and exploitation and also for
training periods. The decrement in the consensus deep learning at the later time intervals is
because, in server-based consensus, there may be the presence of some gradients that fur-
ther mislead the system, and the revenue may go down. Without learning the noises means,
without the consensus steps, the learning algorithm provides the lowest performance in
terms of revenue.

We can observe that for both types of adversaries, our proposed cooperative deep learn-
ing with consensus outperforms consensus deep learning and deep Q learning. We can find
that without adversaries, the revenue is more compared with the revenue with adversaries.
Furthermore, the revenue with selfish nodes is higher than with noisy nodes.

6 Conclusion

The slice broker plays a vital role as a business entity for the supply chain of 5G MEC. We
propose two methods based on a consensus mechanism to adaptively learn a slice broker’s
revenue model. One method is cooperative, whereas the other sends information to another
agent for consensus. The cooperative one outperforms the other variant and the reference
solution. Our proposed method can track the adversaries through revenue model learning
and get suitable results.

In the future, we plan to consider the faults in the system for learning the revenue model.

Acknowledgements This work was funded by Norwegian Research Council through the 5G-MODaNeI
Project (No. 308909).

Funding Open access funding provided by University of Stavanger & Stavanger University Hospital. This
work is funded by Norwegian Research Council.

Data Availability There is no dataset available for this project.

Code Availability Custom code implemented by Python.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Liyanage, M., Porambage, P., Ding, A. Y., & Kalla, A. (2021). Driving forces for multi-access edge
computing (MEC) IoT integration in 5G. ICT Express, 7(2), 127–137.

http://creativecommons.org/licenses/by/4.0/

 M. I. Khan, G. Nencioni

1 3

 2. Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and
NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984.

 3. Eziama, E., Ahmed, S., Ahmed, S., Awin, F., & Tepe, K. (2019). Detection of adversary nodes in
machine-to-machine communication using machine learning based trust model. In 2019 IEEE interna-
tional symposium on signal processing and information technology (ISSPIT) (pp. 1–6). IEEE.

 4. Gohar, A., & Nencioni, G. (2021). Minimizing the cost of 5G network slice broker. In IEEE INFO-
COM 2021-IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp.
1–6). IEEE.

 5. Zanzi, L. (2022). Machine learning-based orchestration solutions for future slicing-enabled mobile net-
works. PhD thesis, Technische Universität Kaiserslautern.

 6. Liu, X. (2020). Spectrum resource allocation in cognitive radio networks. In Encyclopedia of wireless
networks (pp. 1353–1357). Springer.

 7. Khan, M. I., & Nencioni, G. (2023). Revenue-model learning for a slice broker in the presence of
adversaries. In IEEE international conference on advanced networks and telecommunications systems.
IEEE.

 8. Venturini, F., Mason, F., Pase, F., Chiariotti, F., Testolin, A., Zanella, A., & Zorzi, M. (2021). Dis-
tributed reinforcement learning for flexible and efficient UAV swarm control. IEEE Transactions on
Cognitive Communications and Networking, 7(3), 955–969.

 9. Perveen, A., Patwary, M., & Aneiba, A. (2019). Dynamically reconfigurable slice allocation and
admission control within 5G wireless networks. In 2019 IEEE 89th vehicular technology conference
(VTC2019-Spring) (pp. 1–7). IEEE.

 10. Benedetto, F., Mastroeni, L., & Quaresima, G. (2021). Auction-based theory for dynamic spectrum
access: A review. In 2021 44th international conference on telecommunications and signal processing
(TSP) (pp. 146–151). IEEE.

 11. Sciancalepore, V., Costa-Perez, X., & Banchs, A. (2019). RL-NSB: Reinforcement learning-based 5G
network slice broker. IEEE/ACM Transactions on Networking, 27(4), 1543–1557.

 12. Villota-Jacome, W. F., Rendon, O. M. C., & da Fonseca, N. L. (2022). Admission control for 5G core
network slicing based on deep reinforcement learning. IEEE Systems Journal, 16(3), 4686–4697.

 13. Sulaiman, M., Moayyedi, A., Salahuddin, M. A., Boutaba, R., & Saleh, A. (2022). Multi-agent deep
reinforcement learning for slicing and admission control in 5G C-RAN. In NOMS 2022-2022 IEEE/
IFIP network operations and management symposium (pp. 1–9). IEEE.

 14. Yu, Z., Gu, F., Liu, H., & Lai, Y. (2023). 5G multi-slices bi-level resource allocation by reinforcement
learning. Mathematics, 11(3), 760.

 15. Sulaiman, M., Moayyedi, A., Ahmadi, M., Salahuddin, M. A., Boutaba, R., & Saleh, A. (2022). Coor-
dinated slicing and admission control using multi-agent deep reinforcement learning. IEEE Transac-
tions on Network and Service Management. https:// doi. org/ 10. 1109/ TNSM. 2022. 32225 89

 16. Vishnoi, S. K., Bagga, T., Sharma, A., & Wani, S. N. (2018). Artificial intelligence enabled marketing
solutions: A review. Indian Journal of Economics & Business, 17(4), 167–177.

 17. Sharkey, W. W., & Sibley, D. S. (1993). A Bertrand model of pricing and entry. Economics Letters,
41(2), 199–206.

 18. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
 19. Sabella, D., Reznik, A., Nayak, K. R., Lopez, D., Li, F., Kleber, U., Leadbeater, A., Maloor, K.,

Baskaran, S. B. M., Cominardi, L., et al. (2021). MEC security: Status of standards support and future
evolutions. ETSI White Paper, 46, 1–26.

 20. Figura, M., Kosaraju, K. C., & Gupta, V. (2021). Adversarial attacks in consensus-based multi-agent
reinforcement learning. In 2021 American control conference (ACC) (pp. 3050–3055). IEEE.

 21. Fan, J., Wang, Z., Xie, Y., & Yang, Z. (2020). A theoretical analysis of deep Q-learning. In Learning
for dynamics and control (pp. 486–489). PMLR.

 22. Siami, M., Bolouki, S., Bamieh, B., & Motee, N. (2017). Centrality measures in linear consensus net-
works with structured network uncertainties. IEEE Transactions on Control of Network Systems, 5(3),
924–934.

 23. Sun, W., & Wu, T. (2021). Deep consensus learning. arXiv preprint arXiv: 2103. 08475
 24. Savazzi, S., Nicoli, M., & Rampa, V. (2020). Federated learning with cooperating devices: A consen-

sus approach for massive IoT networks. IEEE Internet of Things Journal, 7(5), 4641–4654.
 25. Feng, H., Pang, T., Du, C., Chen, W., Yan, S., & Lin, M. (2023). Does federated learning really need

backpropagation? arXiv preprint arXiv: 2301. 12195
 26. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/TNSM.2022.3222589
http://arxiv.org/abs/2103.08475
http://arxiv.org/abs/2301.12195

Adaptive Methods for Revenue Model Learning of a Slice Broker…

1 3

Md Muhidul Islam Khan is a researcher with the University of
Stavanger, Norway, from 2021. In 2009 he received his Masters degree
from Bangladesh University of Engineering and Technology (BUET).
He has participated in the “eLINK”-project at Corvinus University of
Budapest, Hungary, from September 2009 until July 2010 (funded by
the European Union). His specialization lies in the fields of Wireless
Sensor Networks, Networked Embedded Systems, and Pervasive
Computing. He completed his PhD studies in Interactive and Cognitive
Environment under the Erasmus Mundus Grant from European
Commission working at Klagenfurt University, Austria and University
of Genova, Italy from January 2011 to September 2014. He obtained his
joint doctorate degree in September 2014. He joined as an Assistant
Professor in BRAC University, Bangladesh and served there for one
year. After that, he completed his one-year postdoc from the Hebei
University of Technology, Tianjin, China. He worked as a Research
Scientist in the Electronics Department at Tallinn University of
Technology, Estonia. He worked as a senior lecturer in School of

Information Technologies, Tallinn University of Technology, Tallinn, Estonia.

Gianfranco Nencioni is Associate Professor with the University of Sta-
vanger, Norway, from 2018. He is received the M.Sc. degree in tele-
communication engineering and the Ph.D. degree in information engi-
neering from the University of Pisa, Italy, in 2008 and 2012,
respectively. In 2011, he was a visiting Ph.D. student with the Com-
puter Laboratory, University of Cambridge, U.K. He was a Post-Doc-
toral Fellow with the University of Pisa from 2012 to 2015 and the
Norwegian University of Science and Technology, Norway, from 2015
to 2018. He is currently the head of the Computer Networks (ComNet)
research group and leader of the project 5G-MODaNeI funded by the
Norwegian Research Council. His research activity regards modelling
and optimization in emerging networking technologies (e.g., SDN,
NFV, 5G, Network Slicing, Multi-access Edge Computing). His past
research activity has been focused on energy-aware routing and design
in both wired and wireless networks and on dependability of SDN and
NFV.

	Adaptive Methods for Revenue Model Learning of a Slice Broker in the Presence of Adversaries
	Abstract
	1 Introduction
	2 Related Works
	3 Problem Description
	3.1 Environment
	3.2 Presence of Adversarial Agents
	3.3 Presence of Noisy Agents

	4 Proposed Methods
	4.1 Deep Learning with Consensus Mechanism
	4.2 Consensus Deep Learning

	5 Results and Discussion
	6 Conclusion
	Acknowledgements
	References

