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Abstract
In the fifth-generation (5G) of mobile networks, Multi-Access Edge Computing (MEC) 
refers to the deployment of computing resources closer to the end-users for improved ser-
vice delivery. In the context of 5G MEC, the slice broker plays a crucial role in managing 
the allocation of resources among the different network slices, which are logical networks 
on top of a shared infrastructure. The slice broker is a business entity that acts as an inter-
mediary between the slice tenants and the infrastructure provider and is responsible for 
allocating resources (such as CPU, memory, and network bandwidth) required to set up the 
network. The slice broker must ensure that resources are allocated in a way that the revenue 
is maximized. In a dynamic environment, the slice broker must learn the revenue model 
adaptively and online. Adversaries can significantly reduce the revenue by misleading the 
system about the resources pretending to be selfish nodes, or creating noise. The slice bro-
ker should learn the revenue model in the presence of adversaries. We apply cooperative 
deep reinforcement learning with consensus mechanism and consensus deep learning to 
learn the revenue model adaptively. We also compare our proposed methods with the refer-
ence solution. Simulation results show that our proposed methods, especially the coopera-
tive version, outperform the reference solution.

Keywords 5G MEC · Slice broker · Reinforcement learning · Consensus algorithm

1 Introduction

In the fifth-generation (5G) of mobile networks, Multi-Access Edge Computing (MEC) is 
a technology that enables the deployment of computing resources closer to the end-users, 
thereby improving the quality of service and user experience [1]. In the supply chain of 
5G MEC, the three main components are the slice tenants, Infrastructure Providers (InPs), 
and the slice broker. InPs provide the physical infrastructure needed to support the MEC 
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services, such as servers, network equipment, and storage devices. The slice tenants are 
users or organizations requesting different MEC services. The slice broker is instead a new 
business entity that buys the resources from InPs and creates and manages the slices, which 
are bought by the slice tenants. Slice brokers need to consider the economic aspects for 
dynamic resource allocation. One crucial aspect of this resource allocation is considering 
the economic aspects [2]. To learn the proper revenue model, it is necessary to dynamically 
allocate computing, storage, and network resources to different network slices to ensure 
efficient utilization of available resources and high-quality service delivery. However, in 
the learning process, adversaries such as selfish nodes and malicious users can threaten 
the system’s security and efficiency [3]. Selfish nodes may try to exploit the system by 
consuming more resources than necessary, leading to inefficient resource utilization and 
degradation of the system’s overall performance. On the other hand, malicious users may 
add noise to the system, causing interference and affecting the quality of service. So, we 
need a dynamic method that can adaptively learn about the revenue model in the presence 
of adversaries and noises.

In [4], the authors propose a heuristic approach to minimize the cost of the slice bro-
kers in 5G MEC. They address the slice allocation problem. However, their method is not 
adaptive. There is no dynamic demand/request and no revenue model learning. In [5], the 
authors propose a novel framework for profit-driven network slicing and resource alloca-
tion in MEC systems. The proposed framework enables service providers to slice the net-
work and allocate resources based on the profit generated by different services. However, 
their method is not adaptive, they do not have dynamic requests, and they do not learn the 
revenue model adaptively.

Security is a significant concern to consider for resource allocation. In recent years, 
some works have been based on resource allocation, considering security concerns. In 
[6], the authors propose a secure slice allocation in 5G. They consider device authentica-
tion using a password-based essential derivation function. In addition, they consider the 
massive traffic in their scenario. They propose a distributed Reinforcement Learning (RL) 
based method for Distributed Denial-of-Service (DDoS) attackers. However, their pro-
posed method do not consider the revenue model learning adaptively. In [7], the authors 
propose a cooperative reinforcement learning method for revenue model learning for a 
slice broker in the 5G-MEC system in the presence of adversaries. This paper extends the 
work [7] by proposing another adaptive method and perform evaluation with the existing 
one and also with the reference solution.

In summary, the contributions of our paper are as follows:

• We consider a dynamic demand model based on the set prices by the agents. Demand 
varies based on the price. With the increment of the price, the demand decreases and 
vice versa.

• We consider two types of security issues: selfish nodes and added noises for resource 
allocation for slices. We also learn the revenue model considering these adversaries.

• We consider the consensus mechanism for adaptively learning the security threats for 
revenue model learning. We apply two variants of deep learning mechanisms with con-
sensus. One with the cooperation among agents and another one to send information to 
the server and the server collaborates with the agents.

• We compare our proposed methods with the reference solution.

The paper is structured as follows. Section  2 provides some related works. Section  3 
describes the problem of maximizing revenue in the presence of adversaries. Section  4 
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introduces the proposed method to solve the presented problem. Section  5 presents the 
results of comparing the proposed method with reference methods. Finally, Sect.  6 con-
cludes the paper.

2  Related Works

Some current research works focus on resource allocation for slice brokers in 5G consider-
ing the profit level of the broker. Some works also consider adaptive methods, e.g., RL, 
Deep RL, and Artificial Intelligence (AI) based methods. In [8], the authors propose a 
distributed slice allocation using the adaptive machine learning method. Their proposed 
method helps to achieve the requirements for multiple information flows. However, they 
do not consider learning the revenue model for the broker, and also, there is no consid-
eration of security issues for resource allocation. In [9], the slice allocation mechanism is 
proposed where dynamic slice admission is gained, and at the same time, the operator’s 
profit is investigated. They apply Lyapunov optimization for the optimization. However, 
there is no revenue model learning and no consideration of security issues in this work. 
In [10], the authors propose an auction-based method for radio resource allocation in 5G. 
However, their proposed method is not adaptive, and also they do not consider the secu-
rity threats to resource allocation. In [11], the authors propose a method named RL-NSB 
(RL-based Network Slice Broker), where the slice broker’s profit is maximized adaptively 
by charging customers for the allocated resources while minimizing the cost of provid-
ing those resources. However, their proposed method is not learning any revenue model. 
They also do not consider the security issues for resource allocation. In [12], the authors 
propose RL and Deep RL for learning the admission policy that optimizes the profit of the 
slice broker. In [13], the authors propose an innovative approach to optimizing revenue 
in 5G Cloud Radio Access Networks (C-RANs). Using multi-agent deep reinforcement 
learning, the authors propose a dynamic system for network slicing and admission con-
trol. This method enables efficient resource allocation and service provisioning, ultimately 
maximizing profit-making opportunities for network operators. By applying advanced AI 
techniques, the paper demonstrates how 5G C-RANs can adapt and thrive in a competi-
tive, revenue-driven environment, making it a valuable contribution to the telecommu-
nications industry. In [14], the authors introduce a novel resource allocation strategy for 
5G networks, focusing on maximizing profit for slice brokers. Leveraging reinforcement 
learning, the paper presents a bi-level optimization framework that dynamically allocates 
resources across multiple network slices. This approach ensures efficient resource utiliza-
tion and adapts to changing network conditions, enhancing revenue generation potential for 
slice brokers. By optimizing both short-term gains and long-term profitability, this research 
offers a valuable strategy to support profit-making endeavors in the competitive 5G market, 
making it essential reading for slice brokers and network operators. In [15], the authors 
present a groundbreaking approach to profit optimization for slice brokers in 5G networks. 
By employing multi-agent deep reinforcement learning, the research introduces a coordi-
nated system for dynamic resource slicing and admission control. This strategy maximizes 
the broker’s profit potential by intelligently allocating resources, ensuring efficient service 
delivery, and adapting to evolving network conditions. With a focus on revenue generation 
and cost management, this paper offers a pivotal framework for slice brokers aiming to 
thrive in the competitive 5G landscape, making it essential reading for profit-making strat-
egies in this domain.
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In contrast to all these approaches, our proposed methods adaptively learn the revenue 
model considering some selfish nodes and noisy nodes in the system. To our best knowl-
edge, this is the first work which considers to learn the revenue model adaptively with 
security attacks.

3  Problem Description

We consider three business entities, e.g., InPs, a slice broker, and a slice tenant, in the 
5G-MEC system.

The assumption is that each InP has one MEC host (MEH). The problem can be gener-
alized to multiple MEHs belonging to the same InP. We keep the system simple with one 
MEH as multiple MEHs need orchestration by a Multi-access Edge Orchestrator (MEO).

A MEH is a computing platform with computational resources in the system, e.g., pro-
cessing power in vCPU.

The business entity slice broker buys the computational resources from the InPs, which 
resells the resources to multiple slice tenants. For the sake of simplicity, we assume only 
one tenant but the problem and the solution can be generalized to having multiple tenants.

We also assume that the slice broker has already bought an amount of computational 
resources from each InP. Therefore, in each MEH, the broker has one chunk of computa-
tional resources. The set of chunks is denoted as M . For each chunk m ∈ M , the amount 
of bought computational resources is denoted as �m . The tenant dynamically requests to the 
broker an amount of computational resources that we call slice demand and indicate as dt , 
where t identifies the time interval.

At each time interval t, the broker decides the amount of resources from each chunk, 
which will be allocated to fill the slice demand. The portion of chunk allocated to the 
tenant is denoted as subchunk. The subchunk’s computational resources from the chunk 
m ∈ M at the time interval t is denoted as �t

m
 . The broker also decides the subchunk price 

(in €/vCPU), denoted as ct
m
.

In our system, we consider that the broker has one software agent for each chunk 
m ∈ M helping to decide the amount of computational resources, �t

m
 , and price, ct

m
 , for the 

related subchunk at each time interval t. Figure 1 represents the investigated 5G-MEC sys-
tem. The adversary and noise injections will be explained in the second part of this section.

We use a practical demand model to get the slice demand of the slice tenant, dt . In the 
real world, demand changes over time and depends not only on the current price but can 
also be impacted by the magnitude of recent price changes. A price decrease can create a 
temporary demand increment, wherever a price increase can cause a fall in demand. The 
impact of price changes can also be asymmetric, so price increases have a much more sig-
nificant or smaller impact than decreases.

In our case, at every time interval, the slice demand depends on the weighted average 
price, which is computed from the prices of each subchunk as follows.

Based on the price-demand function in [16], we compute the slice demand for the next 
time interval t + 1 as follows.

(1)pt =
1

dt

∑

m∈M

�t
m
⋅ ct

m

(2)dt+1 = d0 − k ⋅ pt − a ⋅ s((pt − pt−1)+) + b ⋅ s((pt − pt−1)−),
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where

and where pt is the price for the current time interval t and pt−1 is the price for the previ-
ous time interval. The first two terms of Eq. (2) correspond to a linear demand model with 
intercepting d0 and slope k. The second two terms model the response to a price change 
between two intervals. Coefficients a and b define the sensitivity to positive and negative 
price changes, respectively, and s is a shock function that can be used to specify a non-lin-
ear dependency between the price change and demand. We assume s(⋅) =

√
⋅ . The reason 

for choosing this type of demand function is to make it more realistic based on prices. The 
problem of maximizing the revenue of the slice brokers to serve the slice demand at the 
time interval t can be formulated by basing on Bertnard model [17]:

subject to

(pt − pt−1)+ =

{
pt − pt−1, if pt > pt−1

0, otherwise
,

(pt − pt−1)− =

{
pt − pt−1, if pt < pt−1

0, otherwise
,

(3)P ∶ maxΦt = max
∑

m∈M

ct
m
⋅ �t

m
,

(4)
C1 ∶ �t

m
≤ �m ∀m ∈ M,

C2 ∶
∑

m∈M

�t
m
≤ dt,

Fig. 1  5G-MEC system under consideration for deep learning with consensus mechanism
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Where Φt is the defined revenue function and the objective function of the problem, C1 is 
the constraint that limits the size of the subchunk to the size of the related chunk, and C2 is 
the constraint that limits the cumulative size of all subchunks to the slice demand.

3.1  Environment

Our proposed method is based on RL. In RL, the agents learn over time intervals by per-
forming a particular action, and it shifts from one state to another. After performing an 
action, the agents receive a reward for the performed action. RL does not need any knowl-
edge about the environment before. The agent learns over the previous experiences and 
perform the action in future which provided better perfromance at a particular state. The 
environment of the RL determines the states, actions, and reward function [18]. In our 
case, the states are the slice demand at time t, dt , the size of the subchunks at time interval 
t − 1 , �t−1

m
 and all the previous prices of the subchunk m, c�

m
 ∀� ∈ [1, t − 1] . The actions are 

the size and the price of the subchunks m at t, �t
m
 , and ct

m
 , respectively. The reward function 

denotes the revenue for allocating the subchunk m at the time interval t.

3.2  Presence of Adversarial Agents

According to the European Network and Information Security Agency (ENISA) 5G threat 
landscape [19], one of the potential threats related to 5G MEC is the compromised supply 
chain (i.e., vendor and service providers). Since the tampering of network products (creat-
ing adversaries and added noises) can result in service unavailability, information destruc-
tion, or misinformation generation. For example, in Fig. 2, the attacker compromises the 
software agents SA1 and SA2, making them selfish or uncooperative. In this case, SA1 and 
SA2 will try to maximize their reward without cooperation, eventually causing less revenue 
for the broker.

Let M+ and M− denote the set of cooperative agents and adversaries, respectively, 
where M = M

+ ∪M
− . Since we have assumed that there is one agent per chunk (and 

subchunk), we use M to interchangeably indicate the set of agents or the set of chunks.
The objective of agents m ∈ M

+ is to maximize a team-average objective function 
given as follows.

where � is the time under investigation, �m is a discounted factor, has a value between 0 and 
1, and indicates how much the RL agents care about rewards in the distant future concern-
ing those in the immediate future.

The cooperative agents are unaware of the presence of an adversarial agent that seeks to 
maximize a different objective function. We define the objective function for m ∈ M

− as 
follows.

(5)rt
m
= ct

m
⋅ �t

m

(6)max
ct
m
,�t
m

J+ = max
ct
m
,�t
m

�

[
∞∑

�=0

1

M

∑

m∈M

�m ⋅ r�
m

]
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It is important to note that the adversarial agent can compromise the rewards r�
m
,m ∈ M

− , 
to incentivize its malicious behavior [20]. Furthermore, once the agents establish com-
munication, the adversary can spread false information about the entire network’s perfor-
mance embedded in the compromised rewards r�

m
 . This may eventually lead to incentiviz-

ing bad behavior in the cooperative agents.

3.3  Presence of Noisy Agents

An attacker may try injecting noise into any component, e.g., a software agent, to com-
promise the system. For example, in Fig. 3, the attacker compromises the software agent 
SA1 and SA2. Noise may hamper the cooperation among agents in a way that the broker 
may have an idea that it has enough resources to allocate or sometimes get the knowl-
edge of not allocating the resources, which is harmful to the revenue-making of a bro-
ker. We consider a few agents with noise. Here, we consider Additive White Gaussian 
Noise (AWGN). The noise can be normally distributed as follows:

(7)max
ct
m
,�t
m

J− = max
ct
m
,�t
m

�

[
∞∑

�=0

�m ⋅ r�
m

]

Fig. 2  5G-MEC system with the adversaries
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where Am is the magnitude of the noise.

4  Proposed Methods

4.1  Deep Learning with Consensus Mechanism

We propose a resource allocation method based on a generic Deep Q Network (DQN) algo-
rithm [21] to learn the revenue model. We use the original DQN as it is simple considering 
other variants of the learning mechanism. We could not apply classical RL, e.g., Q-learn-
ing, State-Action-Reward-State-Action (SARSA) learning, as our states are continuous. A 
learning mechanism like Actor-Critic learning is not applied for its complexities.

RL considers the setup where an agent interacts with the environment in discrete time 
intervals to learn a reward-maximizing behavior policy. At each time interval t, with a 
given state s, the agent takes action a according to its policy �(s) → a and receives the 
reward r moving to the next state s′ . We define our environment considering the RL terms 
as follows.

The goal of the algorithm is to learn an action policy � that maximizes the total dis-
counted cumulative reward/return earned during the episode of T time intervals:

(8)Nm ∼ N

(
0,

(
Am

3

)2
)

Fig. 3  5G-MEC system with the noises
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Such a policy can be defined if we know a function that estimates the expected return based 
on the current state and next action, under the assumption that all subsequent actions will 
also be taken according to the policy:

Assuming that this function (known as the Q-function) is known, the policy can be straight-
forwardly defined as follows to maximize the return:

We can combine the above definitions based on the Bellman equation as follows:

where s′ and a′ are the next state and the action taken in that state, respectively. If we esti-
mate the Q-function using an approximator, then the quality of the approximation can be 
measured using the difference as follows:

This value is called the temporal difference error, the loss function.

(9)R =

T∑

t=0

1

|M|
∑

m∈M

�m ⋅ rt
m

(10)Q�(s, a) = �s,a[R]

(11)�(s) = argmax
a

Q(s, a)

(12)Q�(s, a) = r + �m max
a
�
Q(s�, a�)

(13)L(�) =
1

|M|
∑

m∈M

(ym − Q�(sm, am))
2
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Algorithm 1  Proposed method based on deep Q learning

Algorithm 1 shows the step-by-step procedure about how the system works and training 
has been done.

Consensus Procedure: An agent i communicates the Q-value to all its neighbors j ∈ M
G
m
 . 

M
G
m
 denotes the set of neighbors of agent m. All agents update their Q-values through a linear 

combination of their own values and the information of neighbors received in the previous 
step. The procedure can be written as:

So, in other words, each agent updates its state by using the disagreement of states with all 
its neighbors, scaled by a factor of Γ . Thus the convergence rate of this algorithm depends 

(14)Qm(t + 1) = Qm(t) + Γ
∑

j∈MG
m

(Qj(t) − Qm(t))
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on the scaling factor used. Convergence is guaranteed as long as the following constraint is 
met [22]:

where dmax denotes the maximum degree among all nodes in the network. The constraint 
can be fulfilled by realizing an upper bound on the maximum possible neighbors for any 
node.

4.2  Consensus Deep Learning

We apply another variant of consensus deep learning. Our variant is based on Deep Q 
learning. Consensus deep learning is one kind of RL where Q values of multiple agents are 
combined to reach an optimal action in a given state [23]. This method is helpful in case of 
requirements where each agent will work independently and collaborate to reach a particu-
lar decision. In traditional Q learning, the agents learn about the action by calculating the 
Q values of the state-action pair by trial and error. However, to reach any sub-optimal solu-
tion, the agents need to collaborate, and at this point, a consensus is needed. For reaching 
a consensus, cooperation among the agents is important. For this cooperation, one possible 
option is cooperation among the neighboring agents, which needs lots of communication 
efforts and proper synchronization. The other option is to collaborate with a server in the 
learning mechanism. The server plays a critical role in deep consensus learning by ena-
bling the networks to share their weights, and aggregate their updates, ultimately leading to 
improved performance and better generalization. Overall, the use of a server is important 
for achieving consensus and is a powerful tool for training complex and highly accurate 
models [24].

(15)0 < Γ <
1

dmax
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Algorithm 2  Proposed method based on deep consensus Q learning

Here, in this proposed method, all software agents send the Q-values to another soft-
ware agent/server in the broker to calculate the consensus of the mechanism. There is no 
neighboring factor and cooperation among agents for this algorithm.

Figure  4 shows the considered 5G-MEC system for deep consensus learning. The 
agents send the gradients of loss to the server. Server sends the updated weights to the 
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agents. Instead of having cooperation among themselves like the other method, here 
agents send information to the server and server also update the agents with weights.

Algorithm 2 defines the proposed method step-by-step.
Here action selection is done based on the epsilon-greedy policy.
The epsilon-greedy policy is one kind of mechanism to balance exploration and 

exploitation. Exploration means to try an action randomly, whereas exploitation means 
to exploit based on the learning algorithm. Here, epsilon, � means to try an action 
randomly.

We need to sample a minibatch from the Replay buffer. For each transition, if it is in mini-
batch, set the Q values as

We set the Q target as Q(st, at) . Then the loss function is calculated as the Eq. 13.
Consensus Steps: The server in slice broker collects all the Q values of the agents at 

each time interval and calculates the consensus Q value. The consensus Q values can be 
calculated as follows:

Agents are informed about the Qconsensus(t + 1) . After that, the gradients of loss is calcu-
lated. Agents send the gradients to the server and then the server calculates the weights 
using the learning rate and the gradients are as follows:

Action at time t =

{
max Qt(a) with probability 1 − �

Any action a(t) with probability �

(16)Q(st, at) = r + �m ⋅max
a
�
Q(s

�

, a
�

)

(17)Qconsensus(t + 1) = (1∕|M|) ⋅
∑

i∈M

(Qi(st, at))

Fig. 4  5G-MEC system for consensus deep learning with adversaries and noises
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Where � is the learning rate. gt is the gradients calculated at time interval t.
Back propagation is used to train the neural network in the learning algorithm for mak-

ing it more efficient. So, the selection of amount of resources, the calculated revenues, gra-
dients will be in a way that the proper weight will be adjusted and the loss will be mini-
mized [25].

5  Results and Discussion

We consider four software agents. The software agents are connected in cooperative deep 
learning with consensus mechanism. In consensus deep learning, these software agents 
communicate with another software agent/server. First, we consider revenue model learn-
ing without any adversaries. After that, we consider two software nodes as adversary nodes 
among the four agents, trying to maximize their revenue. Then we consider two noisy 
nodes that put noises to provide misinformation about the resources that hampers the learn-
ing mechanism. The prices are set by the RL for calculating revenues and the demand. We 
compare our proposed methods with independent distributed learning as well, which uses 
classical Q-learning [26].

Table 1 shows the simulation parameters that we consider. Here, the values are consid-
ered based on the empirical study.

We apply a deep learning mechanism where we consider 150 hidden nodes with three 
layers where 50 nodes are considered per layer. We consider Adaptive Moment Estimation 

(18)wt+1 = wt − � +

T∑

t=1

gt

Table 1  Simulation parameters 
and their values

Parameter Symbol Value

Available chunks |M| 4
Number of agents |M| 4
Magnitude of the noise A

m
5

Learning rate � 0.5
Probability � 0.5
Number of episodes T 5000
Batch size B 512
Period of target updates T

u
20

Discount factor �
m

0.5
Degree of a node d

max
3

Size of the chunks �
m

5000 vCPU
Neighboring factor Γ 0.3
Intercept d

0
5000 vCPU

Slope k 20 vCPU/€
Response coefficient for price increase a 300 vCPU/€1∕2

Response coefficient for price decrease b 100 vCPU/€1∕2
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(Adam) algorithm to optimize the Neural Network (NN) weights. We use the Rectified 
Linear Unit (ReLU) as an activation function to activate a particular input.

Figure  5 refers to the revenue over time intervals. We can observe that the coopera-
tive deep learning with a consensus mechanism outperforms the other methods. Here we 
can see that initially, there is a rise, and then saturation comes over the time intervals. We 
can see there are some variations here for exploration and exploitation. We can observe 
that in consensus deep learning, where there is no cooperation and huge fluctuations over 
time intervals. This is for the exploration, exploitation variations, and training time require-
ments. We can find saturation here, but this method does not outperform cooperative deep 
learning with a consensus mechanism. For the independent Q learning, we can see the rev-
enue is quite low compared with our proposed methods. This can happen for independent 
learning as some selfish nodes can maximize their own revenue and get a lower overall 
revenue.

Figure  6 shows the revenue over time intervals comparing with our learning meth-
ods and without learning adversaries. Here, there are selfish nodes in the simulation. We 
can observe that in our cooperative deep learning method, there is an increment at first, 
then decrements, and finally, it goes for saturation after 4000 intervals. The massive dec-
rement happens due to the selfish nodes. When our consensus steps help us learn about 
the adversaries, we can see that learning converges to a level. We can see that the coop-
erative method outperforms the other method and obviously without learning adversaries. 
Learning adversaries with cooperative deep learning provides increment at first and then 
goes down, provides lower performances compared with the cooperative one, and finally 

Fig. 5  Revenue over time interval with and without learning adversaries
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reaches the cooperative one after having an increment. This increment collects the Q val-
ues to a particular agent and then collaboration for learning. On the other hand, without 
learning adversaries, the revenue goes very low over time intervals.

Figure 7 refers to the revenue over time intervals after adding noisy nodes. The coopera-
tive one for dealing with the noises outperforms the consensus deep learning and the refer-
ence solution. We can observe that for noises, the revenue goes up and then massive decre-
ment at the 3000-time interval and again increment after the consensus has been reached 
then, and adequate convergence happens. Whereas, the consensus deep learning starts with 
the higher revenue and then again goes down after the 3000 time intervals. So, dealing 

Fig. 6  Revenue over time interval with and without learning adversaries

Fig. 7  Revenue over time interval with and without learning noises
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with the noises cooperation is helping rather than the consensus deep learning. The overall 
fluctuations at every time interval are due to the exploration and exploitation and also for 
training periods. The decrement in the consensus deep learning at the later time intervals is 
because, in server-based consensus, there may be the presence of some gradients that fur-
ther mislead the system, and the revenue may go down. Without learning the noises means, 
without the consensus steps, the learning algorithm provides the lowest performance in 
terms of revenue.

We can observe that for both types of adversaries, our proposed cooperative deep learn-
ing with consensus outperforms consensus deep learning and deep Q learning. We can find 
that without adversaries, the revenue is more compared with the revenue with adversaries. 
Furthermore, the revenue with selfish nodes is higher than with noisy nodes.

6  Conclusion

The slice broker plays a vital role as a business entity for the supply chain of 5G MEC. We 
propose two methods based on a consensus mechanism to adaptively learn a slice broker’s 
revenue model. One method is cooperative, whereas the other sends information to another 
agent for consensus. The cooperative one outperforms the other variant and the reference 
solution. Our proposed method can track the adversaries through revenue model learning 
and get suitable results.

In the future, we plan to consider the faults in the system for learning the revenue model.
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