
Vol.:(0123456789)

Wireless Personal Communications (2023) 132:1975–1998
https://doi.org/10.1007/s11277-023-10694-9

1 3

Automatic Software Bug Prediction Using Adaptive Artificial
Jelly Optimization With Long Short‑Term Memory

R. Siva1 · Kaliraj S2 · B. Hariharan1 · N. Premkumar3

Accepted: 22 July 2023 / Published online: 23 August 2023
© The Author(s) 2023

Abstract
In the software maintenance and development process, software bug detection is an essen-
tial problem because it is related to complete software success. It is recommended to begin
anticipating defects at the early stages of creation rather than during the assessment process
due to the high expense of fixing the found bugs. The early stage software bug detection is
used to enhance software efficiency, reliability, and software quality. Nevertheless, creating
a reliable bug-forecasting system is a difficult challenge. Therefore, in this paper, an effi-
cient, software bug forecast is developed. The presented technique consists of three stages
namely, pre-processing, feature selection, and bug prediction. At first, the input datasets
are pre-processed to eliminate the identical data from the dataset. After the pre-processing,
the important features are selected using an adaptive artificial jelly optimization algorithm
 (A2JO) to eliminate the possibility of overfitting and reduce the complexity. Finally, the
selected features are given to the long short-term memory (LSTM) classifier to predict
whether the given data is defective or non-defective. In this paper, investigations are shown
on visibly obtainable bug prediction datasets namely, promise and NASA which is a repos-
itory for most open-source software. The efficiency of the presented approach is discussed
based on various metrics namely, accuracy, F- measure, G-measure, and Matthews Cor-
relation Coefficient (MCC). The experimental result shows our proposed method achieved
the extreme accuracy of 93.41% for the Promise dataset and 92.8% for the NASA dataset.

Keywords Artificial jelly optimization algorithm · Long Short-Term Memory · Software
bug detection · Reliability · Software quality · And feature selection

 * Kaliraj S
 kaliraj.s@manipal.edu

1 Department of Computational Intelligence, School of Computing, SRM Institute of Science
and Technology, Kattankulathur, Tamilnadu, India

2 Department of Information and Communication Technology, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

3 Department of Information Technology, Kongunadu College of Engineering and Technology,
Thottiam, Tamilnadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-023-10694-9&domain=pdf

1976 R. Siva et al.

1 3

1 Introduction

The effect of software applications is expanding day by day. Reliability labor assessment
is becoming increasingly important in both academia and business. A crucial test for
every researcher and software professional is to boost software quality with limited testing
resources while the length and overall cost of software testing keep rising. The primary
goal of software bug prediction (SBP) techniques is to prioritize defective and non-faulty
software modules. The engineer will then provide practical test resources and offer testing
choices for various software modules to improve software quality.

The prevalence of software bugs has a significant impression on the dependability, per-
formance, and operating costs of software. It takes a lot of effort to create bug-free soft-
ware, even when software is used carefully since hidden defects are frequently present [1].
A significant difficulty in software engineering is creating a model for software bug predic-
tion that can identify broken modules early on [2]. Predicting software bugs is a crucial
step in the creation of software [3]. This is due to the reality that identifying problem-
atic modules before the software is deployed enhances user happiness and overall soft-
ware effectiveness [4]. Additionally, early software problem prediction enhances software
adaption to various settings and boosts resource usage. In the initial phases of the software
development life cycle, several software measures, such as class level, method level, file
level, and process level, are utilized to identify software flaws without testing the software
[5, 6]. Finding software bugs can be done using a variety of techniques, including statisti-
cal analysis, machine learning, expert systems, etc.

The software involves numerous flaws that are transmitted to the user, and this causes
issues with system efficiency [2]. Therefore, a faster-computerized approach that can fore-
cast approximations of system problems is required. Here, a neural network-based machine
learning technique has been applied [7]. This gave an approximation of the outcome that
was close to the real outcome already presented. By examining software measurements,
it employs machine learning techniques to make predictions about when the software
includes flaws, assisting software engineers in raising the caliber of their products [5, 8].
In general, classifier quality can be enhanced by using data preparation [9]. Software detec-
tion is typically a classification challenge and the effectiveness of the estimate is dependent
on the information from the software metrics and the classifier’s use [10]. There is cur-
rently research being done on different classifiers and data pre-processing techniques to
increase the accuracy of identification models.

The technique of attempting to estimate bugs based on past data is known as bug pre-
diction. Software flaws can have an impact on the product’s dependability, quality, and
maintenance costs [11, 12]. Countless undetected defects can lead to software failure in the
future when designing software. Software maintenance costs between 40 and 60 percent of
the total cost, hence it is very important to anticipate errors in the early phases of software
development [13]. By foreseeing bugs, it is simple to lower the failure rate of software
[50]. By examining software measurements, it employs machine learning techniques to
make predictions about whether the software includes flaws, assisting software engineers
in raising the quality of their products [15]. In recent years, many techniques have been
analyzed including Support Vector Machine (SVM), Neural Network (NN), Naïve Bayes
(NB), and k-nearest neighbor (K-NN).

Unfortunately, software defect prediction generally remains a confusing issue. Imper-
fect expectation selections and benchmarking results using AI classifiers have shown that
no major presentation anomalies can be recognized [46] and that there are no specific

1977Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

classifiers that perform best on every dataset. Large-scale software architecture requires an
accurate defect prediction model. Two well-known areas of information excellence that can
influence the organization process are class inequity and noise characteristics of informa-
tion collections [47]. It has an imbalance with many faulty blocks that do not conflict with
non-defective ones. Inconsistency can induce a non-practical model in software defect pre-
diction, as most examples are expected to be defect-free [18]. Deriving from unbalanced
datasets is problematic. Impaired data related to minority groups prevents a clear under-
standing of the inherent design of the dataset [19]. Because the dataset has noisy qualities
[20] the implementation of software defect prediction is completely reduced [21].

When a machine learning task involves learning from high-dimensional and noisy
attribute datasets, attribute selection is frequently used. Near-optimal configurations are
challenging to obtain because the majority of feature selection computations perform a
neighborhood search during the whole interaction. Metaheuristic optimization finds an
answer in the entire search space and exploits the global search capability, fundamentally
expanding the capability to find high-quality solutions within a reasonable time [22]. Some
of the optimization algorithms used for feature selection are particle swarm optimization
(PSO), genetic algorithm (GA), cuckoo search algorithm, ant colony optimization (ACO),
etc.

In the current work, we suggest the A2JO algorithm to increase the predictability of
software defects. To create efficient defect prediction models, it is essential to choose the
best features that may expose the intrinsic structures of the defect data. The suggested
model’s primary contribution is given below,

• To detect the software bugs, the adaptive artificial jelly optimization (A2JO) algorithm
and LSTM is used.

• The proposed A2JO is a combination of the traditional AJO algorithm and chaotic
opposition-based learning (COBL). This COBL strategy is used to increase the search-
ing ability and convergence speed.

• To select the optimal features, the suggested method utilizes the artificial jelly optimi-
zation algorithm.

• LSTM is proposed here to detect the bug in the software.
• The experiment was performed on 15 different Promise repository datasets. To calcu-

late the proposed performance, different metrics are evaluated.

The construction of the paper is prepared as tracks. In the next section, we will discuss
the literature survey, architectural design, and algorithm of AJO and LSTM-based predic-
tion is discussed in Sect. 3, the result and discussion are explained in Sect. 4, and the con-
clusion part is presented in Sect. 5.

2 Literature Review

Many of the researchers had software bug detection using artificial intelligence techniques.
Among them few of the works are listed below; Lopes et al. [23] analyzed more than 4000
fault complaints gathered across three open-source database systems that were mechani-
cally categorized using the Orthogonal Defect Classification (ODC) system. They were
achieved under-sampling to evade unbalanced datasets. Experimental results reveal dif-
ficulties in automatically classifying some ODC attributes using only reports. Similarly,

1978 R. Siva et al.

1 3

Thung et al. [24] performed semi-supervised learning-based automated ODC defect-type
classification. Here, they classified 500 bug reports collected from three software systems.
The classification accuracy will affect if large datasets are used. Tan et al. [25] developed
bug classification based on three components namely, impact, dimensions root cause, and
affected component. For the classification process, they used machine learning techniques.
Using machine learning techniques they automatically detect 109,014 bugs. Li et al. [26]
introduced a machine-learning algorithm to analyze bug features in open-source software.
Similar to Tan et al., they introduced to classification of a bug based on concurrency Mem-
ory, and Semantic bugs. In [27], Ray et al. analyzed the programming study and cipher
excellence of open-source projects. To achieve this objective, they introduced machine
learning classifiers. Ni et al. [28] predicted root cause categories from coding based on
abstract syntax trees (ASTs) and tree-based (TBCNN). They illustrious six major origin
reason classes and 21 subcategories.

Goseva et al. [29] analyzed security and non-security-based errors using supervised
and unsupervised learning algorithms. Wu et al. [30] predicted high-impact errors based
on active learning with machine learning techniques. Xia et al. [31] presented a machine
learning algorithm and Fecher selection technique for predicting Mandelbucks and Bor-
bucks. Later, Du et al. [32] developed a system for cross-project domain adaptation serving
the same function. Also, [33] clearly explains error detection and offers a good impression
of papers on classifying and prioritizing errors.

In 2018, Hammouri et al., [34] presented a software bug prediction approach depending
on machine learning (ML) algorithms. Three monitored ML techniques were used to pre-
dict possible software issues depending on historical information. The evaluation approach
showed that ML algorithms can be used correctly and effectively. Empirical outcomes
demonstrated that the ML technique outperforms other techniques, such as linear AR and
POWM models, in terms of effectiveness for the estimation method. Wang, et al. [35] ana-
lyzed software bug prediction in terms of creating, modifying, and assessing bug forecast-
ing models in real-world continuous software evolution settings. ConBuild rethinks the
selection of training data for models by employing the differential properties of bug predic-
tion data. ConEA redefines effort-aware assessment in continual software development by
leveraging the growth of file-bug probability. Investigations of six large-scale open-source
software systems’ 120 regularly released versions demonstrate the usefulness of methods.

Khan et al. [36] analyzed Artificial Immune Networks (AIN) and machine learning clas-
sifiers based on software bug detection. To increase the reliability of the bug prediction
process, the hyperparameters were optimally selected. Gupta and Saxena [37] analyzed a
model for an object-oriented software bug prediction system (SBPS). Through the Promise
Software Engineering Repository, a few open-source projects with problem datasets of a
comparable nature were gathered for this investigation. Among all classifiers, the Logistic
Regression Classifier has the best accuracy.

In [38], Moustafa et al. analyzed software bug fault identification techniques that use
the collective sorting method. The methods were evaluated on datasets of various sizes
and applied to utilize various groups of software measurements as features of the sorting
algorithms. According to the findings, update measurements performed better than static
code measurements and a technique that combines equal parts of data. Qu and Yin, [39]
developed by using and expanding node2defect, a bug detection framework that concat-
enates integrated vectors using conventional software engineering measurements, and
assesses network embedding techniques in bug detection. Seven connectivity embedding
techniques, two effort-aware models, and 13 open-source Java systems were used in the
experiments.

1979Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

The use of deep learning techniques in software development studies, such as the fore-
casting of defects and vulnerabilities and the localization of faults, is well-explained in a
recent survey [40]. More than 5,400 sentences from publishing articles were manually cat-
egorized by Huang et al. [41] into seven categories, such as "Information Delivery" and
"Problem Discovery." To forecast these objectives, they subsequently developed a deep
neural network. Mahajan and Chaudhary [42] developed software bug localization. To
achieve this objective, a hybrid optimization-based CNN was developed. They introduced
hybridized cuckoo search-based sea lion optimization algorithm for feature selection. The
method attained good results compared to other methods. Rani et al. [43] introduced deep
reinforcement learning technique-based bug detection in video games. Wang et al. [44]
developed a graph CNN-based software version-to-version bug prediction system. Choetk-
iertikul et al. [45] had analysed deep learnig algorithm based bug prediction. Cynthia, et al.
[46] developed software bug detection based on Feature transformation. Here, they mainly
focused on feature selection-based prediction. Moreover, Giray, et al. [47] developed a deep
learning algorithm-based bug prediction. Here, they analyzed different machine learning
algorithms and deep learning algorithm performance.

When analyzing the literature survey, many of the researchers focused on machine
learning algorithm-based prediction and deep learning techniques. In this, most of the
researchers were not focused on optimal features; they directly process all the features.
This will increase the computation complexity and time consumption. To avoid the issues,
in this paper, feature selection-based software bug prediction is proposed.

3 Proposed System Model

The primary aim of the presented approach is to predict the bug in the software. To achieve
this objective, an LSTM classifier and adaptive artificial jelly optimization algorithm are
used. In this paper, firstly, the software coding is composed through the dataset, and col-
lected datasets are pre-processed. After the pre-processing, the important features are
selected using the AJO algorithm. Then, the selected variables are specified to the LSTM
classifier to categorize whether the software has a bug or not. The overall structure of the
presented methodology is shown in Fig. 1.

3.1 Preprocessing

The software elements in the real-world dataset have identical class labels and software
measurements. Machine learning suffers as a result of these recurrent occurrences. Addi-
tionally, they hinder the effectiveness of the simulation and lengthen the learning algo-
rithm. To overcome those problems, the duplicate data instances are removed from the
software model in preprocessing steps. Once the duplicate data is removed, the subsequent
output is served to the feature selection development.

3.2 Feature Selection Using Adaptive Artificial Jelly Optimization

After the pre-processing, the important features are selected from the dataset. For feature
selection, in this paper A2JO algorithm is utilized. The behavior of jellyfish in the ocean
served as the inspiration for the probabilistic algorithms known as AJO [48]. The initial
spark for examining jellyfish behavior is whether they are traveling as a swarm or into the

1980 R. Siva et al.

1 3

ocean current (performing either active or passive movement). The behavior of AJO is
given in Fig. 2. Three rules are at the basis of optimization:

• System for controlling the time that determines when jellyfish are in the swarm or
within the swarm in the sea current.

• Increased jellyfish migration in the direction of the nutrition source.
• The amount of material used to select the location and its ultimate purpose.

In this paper, we add a quasi opposition-based learning strategy with artificial jelly opti-
mization to increase the searching ability and convergence speed. The step-by-step process
of feature selection is explained below;

Step 1: Initialization: The optimization algorithm works based on the initial solution.
At first, the initial solutions are generated randomly. The solution consists of only features.
The random population of AJO is formulated as follows;

A representation of the solution (w1) is given in Fig. 3.
In this initialization process, the 0 value can be formulated as the feature not selected

and 1 can be represented as the corresponding feature is selected. The main aim of the vari-
able collection process is to reduce the number of variables by improving the efficiency in
the sorting algorithm like accuracy and reducing complexity.

Step 2: Create quasi-oppositional solution: To improve the searchability, a quasi-oppo-
site solution is constructed after the solution initialization. This approach is utilized to
speed up AJO convergence while also decreasing computing time.

(1)Wi =
{
w1, w2,,wU

}

Fig. 1 Semantic diagram of the overall proposed model

1981Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

For any arbitrary solution W ∈ [u, v] , its opposite solution W0 can be written as;

The following can be expressed as the multi-dimensional search space
(d-dimensions);

For any arbitrary solution W ∈ [u, v] , its quasi-opposite solution Sq0 can be written as;

It is possible to write the following for the multi-dimensional search space
(d-dimensions):

(2)W0 = u + v −W

(3)Wi
0

= ui + vi −Wi
; i = 1, 2, ..., d

(4)Wq0 = rand
(
u + v

2
,W0

)

Fig. 2 Behaviors of artificial jelly in Ocean

Fig. 3 Representation of solution initialization

1982 R. Siva et al.

1 3

Step 3: Fitness calculation: Fitness is determined for each initialized solution to dis-
cover the best result. The fitness role is characterized as the maximum value of accu-
racy, and it is given below,

where TP represents the true positive value, TN denotes the true negative value, FP repre-
sents the false positive value and FN denotes the false negative value.

Step 4: Sea current: Because the sea is so rich in resources, jellyfish are attracted to
it. A regular of entirely the paths connecting each jellyfish in marine to the jellyfish that
is now in the best location is used to determine the sea current’s path (P), which is given
in Eq. (8).

where n represents the population, W∗ denotes the finest site, ec represents the desirability,
and � denotes the mean of all jellyfish. df denotes alteration and the mean location of all
jellyfish.

In a region of everything, the average position comprises a specified chance of every
jellyfish based on the assumption since jellyfish have a regular geographical extent in all
perspectives, where β is the distribution’s standard deviation.

Consequently,

Hence,

Here, ec = � × rand (0, 1)

The new location is as follows,

Is given by,

(5)W1

q0
= rand

(
ui + vi

2
,Wi

0

)

(6)F = max(accuracy)

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)P =
1

n

�
Pi =

1

n

��
W∗ − ecWi

�
= X∗ − ec

∑
Wi

n
= W∗ − ec�

(9)Setdf = ec�

(10)P = W∗ − df

(11)df = � × � × rand (0, 1)

(12)Set� = rand �(0, 1) × �

(13)df = � × rand f (0, 1)�

(14)P = X∗ − � × rand (0, 1) × �

(15)Wi(t + 1) = Wi(t) + rand (0, 1) × P

1983Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

𝛽 > 0 is relative to the distance connecting two locations’ distribution coefficient (P).
according to the outcomes of quantitative experiments utilizing a sensitivity examina-
tion: � = 3 is attained.

Step 5: Jellyfish swarm: Either passive (type A) or aggressive (type B) motions are
used by jellyfish to move in swarms. The swarm takes shape at first, and almost all jel-
lyfish transfer in a type A signal. They eventually start to exhibit type B motions. The
positions are refunded by Type A motion, as well as the subsequently updated locations,
are provided by Type B motion:

where UbandLb are the upper duty-bound and lower duty-bound. 𝛾 > 0 is a motion param-
eter, which is used to quantify movement around jellyfish location. The results of quantita-
tive analyses research are � = 0.1

A jellyfish (j) is chosen at arbitrary, and a vector of jellyfish of interest (i) is chosen,
simulating type B movement. When there are more foods accessible in the chosen jelly-
fish’s position (j) than there are in the jellyfish of interest’s location (i) the latter moves
closer to the former; if there are fewer foods obtainable in the chosen jellyfish’s position
(j) than there are in the interest’s location I the latter swims away immediately (i).

Since both (20) and (21) imitate a route of circulating, each jellyfish in a cluster fol-
lows the best route to find food and updates its location. This modification is perceived
as financial misuse of the local search region.:

where,

where, f is an objective function of site W.
Hence,

Period administration is utilized to coordinate elaborate movements throughout time.
It controls the distribution in the sea present in addition to the motions of type A and
type B in the swarm. The next sections go into further information about the time man-
agement strategy.

Step 6: Time control mechanism: The type of motion across time is examined using
the time control technique. If jellyfish are pointed in the direction of an ocean current,
it is useful to control active and passive motion and look at how they move. The defini-
tion of the period regulator function is an arbitrary value that oscillates between 0 and
1. Constant C0, the mean value between 0 and 1, is present and has a value of 0.5. The
given equation is used to calculate the random value of the time control function, which
ranges from 0 to 1,

(16)Wi(t + 1) = Wi(t) + rand(0, 1) × (W∗ − � × rand(0, 1)) × �

(17)Wi(t + 1) = Wi(t) + � × rand(0, 1) × (Ub − Lb)

(18)S = Wi(t + 1) −Wi(t)

(19)S = rand(0, 1) × D

(20)D =

{
Wj(t) −Wi(t)iff (Wi) ≥ f (Wi)

Wi(t) −Wj(t)iff (Wi) ≤ f (Wi)

(21)Wi(t + 1) = Wi(t) + S

1984 R. Siva et al.

1 3

where t represents time, Maxiter represents the maximum iterations.
Step 7: Termination Criteria: The solution will be updated using the two operators until

the optimal solution or weight parameters are found. If the desired result is obtained, the algo-
rithm will be terminated.

3.3 Bug Detection Using LSTM

Here, the proposed approach uses the RNN based on LSTM [49] for error prediction. RNNs
are a class of artificial neural networks that may interact with the organization of contributions
to in-depth learning and maintain their status when dealing with the following information
sources. The LSTM network is a type of intermediate neural system. LSTM contains four
neural systems that interface in an optimal method. LSTM can enhance or erase data to the
recollection cell state, using an exceptionally planned architecture labeled "Gateway". This
is the area where the gateway function information is selected, ie elements of information.
It consists of the layering and multiplication work of the sigmoid neural structure. The sig-
moid layer reverses the information of the features by the sigmoid capability and evaluates the
results somewhere between 0 and 1, depicting information elements that can be experienced in
section A of the system. "0" designates that no information is allowed to be sent. "1" indicates
that all information is allowed to be sent. At each successor list level, the gate structure in the
LSTM is associated with an information gateway, a forgetting gate, and an output gate. The
structure of LSTM is given in Fig. 4.

3.4 Forget Gate

The forget gate would decide which details about recent recollection to retain or reject:

where, FG can be described as the forget gate. C and w indicate the control and weight
boundaries. Ft addresses input at the existing timestamp; Yt-1 indicates the result got at the
timestamp t-1 since the past square of LSTM. � indicates the calculated sigmoid capacity

(22)c(t) =
|||||

(

1 −
t

Maxiter

)

W(2xrand(0, 1) − 1)

|||||

(23)FG = �
[
wF

(
Ft, Yt−1

)
+ cF

]

Fig. 4 Structure of LSTM

1985Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

and they give the resulting esteem between 0 and 1. On the off chance that the result is
’0’ then it implies obstructing entryways. In case the result is ’1’ entryways let everything
pass.

3.5 Input Gate

The input gate IG chooses the information that should be stored:

3.6 Output Gate

Last but not least, the output gate chooses which portion of the storage will eventually provide
results:

Another candidate memory call Mt is made by a tanH layer and is denoted as,

where, tanH allows LSTM to add or eliminate data from the last input. The information
gateway selects the age of the incoming memory cell, and the forget gate chooses whether
to hold or delete data to generate the last memory.

where Mt represents the memory cell state at the time (t) and *denotes the element-wise
multiplication. Lastly, the output is assessed by,

where,* denotes the element-wise multiplication, Yt points to the output from the current
block. Mt represents the memory cell state. Finally, by using the MSE as the mistake com-
putation, the loss function of the system is assessed,

where Tt denotes the desired output. N is the sample of n data points. If the rated score is 0,
at that point, the component is considered a bug and if the rated score is 1, at that point, the
included information is considered a bug. In its light, the proposed technique distinguishes
the bug in the software.

(24)IG = �
[
wI
(
Ft, Yt−1

)
+ CI

]

(25)OG = �
[
wO

(
Ft, Yt−1

)
+ CO

]

(26)Mt = tanH
[
wM

(
Ft, Yt−1

)
+ cM

]

(27)Mt = FG ∗ Mt−1 + IG ∗ Mt

(28)Yt = OG ∗ tanH
(
Mt

)

(29)Loss =

N∑

t=1

(
Yt − Tt

)2

1986 R. Siva et al.

1 3

4 Experimentation and Analysis

An experimental result obtained from the proposed software bug predictions is analyzed
in this section. For analysis two types of datasets are used namely, NASA and promise
datasets.

4.1 Experimental Setup

The execution is done in the python. The execution used system has a 2 GHz dual-core
computer with 4 GB RAM running a 64-bit version of Windows 2007.

4.2 Experimental Evaluation Metrics

For experimental analysis, we used the six evaluation metrics namely, Accuracy, F-meas-
ure, G-measure, and Matthews Correlation Coefficient (MCC).

Measures Formula

Accuracy (TN+TP)

(TN+TP+FN+FP)

F-Measure 2 ∗
Recall∗precision

Recall+precision

Recall TP

(FN+TP)

Precision TP

(FP+TP)

MCC TP∗TN−FP∗FN
√
(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

G-Measure 2 ∗
Recall∗pf

Recall+(1−pf)

4.3 Dataset Description

For experimental analysis, two sets of datasets are used namely, the PROMISE and
NASA datasets. In this paper, we analyze 10 real software responsibility schemes since
the PROMISE public software engineering repository, which are extremely suggested by
numerous investigators in software engineering. Here, 2775 instances are used for experi-
mental analysis. The attribute present in the PROMISE dataset is given in Table 1. Moreo-
ver, in this paper, we examine five projects from the NASA dataset. For the NASA dataset,
11,262 instances are utilized for experimental analysis. The attributes present in the NASA
dataset are given in Table 2.

4.4 Performance Analysis of Proposed Bug Detection Model

In this section, the suggested technique performance is analyzed. For that, the method con-
sidered the ten datasets through the Promise dataset and five datasets from the NASA data-
set. The performance result of the proposed model is tabulated in Tables 3 and 4.

Table 3 shows the performance analysis of the suggested model using the promise
dataset. Here the proposed method is considered the ten projects for evaluation. From the

1987Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

Table 1 PROMISE dataset
features and selected features

Attributes/features Description of features Selected

Wmc Weighted methods for class Not selected
Dit Depth of inheritance tree Not selected
Noc Number of children Selected
Cbo Coupling between objects Selected
Rfc Response for classes Selected
Lcom Lack of cohesion of methods Not selected
Ca After coupling Not selected
Ce Efferent coupling Not selected
Npm Number of public methods Selected
lcom3 Lack of cohesion in methods Not selected
Loc Lines of code Selected
Dam Data access metric Selected
Moa Measure of aggregation Not selected
Mfa Measure of functional Anstraction Not selected
Cam Cohesion among methods of class Selected
Ic Inheritance coupling Not selected
Cbm Coupling between methods Not selected
Amc Average method complexity Selected
Max_cc Cyclomatic complexity (Max) Selected
Avg_cc Cyclomatic complexity (Avg) Not selected

Table 2 NASA dataset features
and selected features

Attributes/features Selected

Line count of code Selected
Count of blank lines Not selected
Count of code and comments Not selected
Count of comments Selected
Line count of executable code Not selected
Number of operators Not selected
. Number of operands Selected
Number of unique operators Not selected
Number of unique operands Not selected
Halstead_Length Selected
Halstead_Volume Not selected
Halstead_Level Not selected
Halstead_Difficulty Selected
Halstead_Content Selected
Halstead_Effort Not selected
Halstead_Error_Estimate Selected
Halstead_Programming_Time Not selected
Cyclomatic_Complexity Not selected
Design_Complexity Not selected
Essential_Complexity Selected

1988 R. Siva et al.

1 3

proposed performance analysis result, project prop 4 achieves the maximum accuracy,
f-measure, and MCC value is 93.41%, 0.883, and 0.68. Project camel 1.4 achieves the max-
imum G-measure value is 0.878.

Table 4 shows the performance examination of the suggested technique using the NASA
dataset. Here the five projects are considered for proposed evaluation, such as CM1, JM1,
KC1, KC2, and PC1. From the proposed performance analysis result, project PC1 achieves
the maximum accuracy, f-measure, and G-measure value is 92.8%, 0.962, and 0.957. The
project CM1 achieves the maximum MCC value is 0.58. The following section discusses
the comparative study of the suggested mechanism and the results are contrasted with other
research papers.

Table 3 The proposed
performance of the Promise
dataset

The [Bold] values indicate the highest value for each metric among
the corresponding projects. Specifically, for each metric (Accuracy,
F-measure, G-measure, MCC), the[Bold] value represents the project
with the best performance in that metric. This emphasis aims to facili-
tate the identification of the most outstanding performance in each
metric across the listed projects

Projects Accuracy F-measure G-measure MCC

Ant 1.6 84.68 0.864 0.795 0.63
Ant 1.7 88.82 0.836 0.89 0.56
Camel 1.4 66.78 0.842 0.878 0.517
Camel 1.6 87.66 0.71 0.62 0.482
Jedit 4.3 77.92 0.823 0.863 0.52
Log4j 1.0 81.88 0.835 0.792 0.586
Prop 4 93.41 0.883 0.852 0.68
Xalan 2.4 67.84 0.79 0.712 0.412
Xalan 2.5 76.87 0.674 0.72 0.455
Xerces 1.2 75.86 0.559 0.652 0.382

Table 4 The proposed
performance of the NASA
dataset

The [Bold] values indicate the highest value for each metric among
the corresponding projects. Specifically, for each metric (Accuracy,
F-measure, G-measure, MCC), the[Bold] value represents the project
with the best performance in that metric. This emphasis aims to facili-
tate the identification of the most outstanding performance in each
metric across the listed projects

Projects Accuracy F-measure G-measure MCC

CM1 79.84 0.886 0.92 0.58
JM1 80.68 0.823 0.873 0.479
KC1 85.42 0.889 0.895 0.452
KC2 88.95 0.862 0.889 0.447
PC1 92.8 0.962 0.957 0.42

1989Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

4.5 Comparative Study of Different algorIthms

Here, the experimental results are compared with other software bug prediction models.
For comparison, the method considered in the existing bug detection algorithm is ANN,
KNN, Naive bias (NB), Random forest (RF), and Support vector machine (SVM). The
average results are plotted below,

In Fig. 5 comparison result of bug detection for the promise dataset is analyzed. Here
the suggested technique attains an accuracy value is 80.01% but the current technique
attains the minimum accuracy rate. The F-measure and G-measure assessment of the
suggested approach is 0.7816 and 0.77, which is an extreme assessment when associ-
ated with the ANN, KNN, NB, RF, and SVM. The proposed MCC value of the pro-
posed promise bug detection dataset is 0.52, but the existing ANN, KNN, NB, RF, and
SVM achieve the MCC value is 0.463, 0.3, 0.244, 0.34, and 0.42. After the results, the
suggested technique accomplishes the maximum accuracy, F-measure, G-measure, and
MCC value compared to the existing method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Proposed ANN KNN NB RF SVM

V
al
ue
s

Method

Accuracy

F-Measure

G-Measure

MCC

Fig. 5 Average results of bug detection for promise dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed ANN KNN NB RF SVM

V
al
ue
s

Methods

Accuracy

F-measure

G-measure

MCC

Fig. 6 Average results of bug detection for the NASA dataset

1990 R. Siva et al.

1 3

The comparison result of bug detection for the NASA dataset is shown in Fig. 6.
Here the suggested technique achieves an accuracy value is 85.5% nevertheless the
existing ANN, KNN, NB, RF, and SVM achieve accuracy value is 81.5%, 72%, 64%,
52.1%, and 71% which is the lowest assessment when compared to the suggested value.
The F-measure and G-measure value of the suggested technique is 0.884 and 0.906,
which is an extreme assessment when associated with the ANN, KNN, NB, RF, and
SVM. The proposed MCC value of the proposed NASA bug detection dataset is 0.47.
After the results, the technique achieves the maximum accuracy, F-measure, G-measure,
and MCC value associated with the existing method.

0 20 40 60 80 100

Ant 1.6
Ant 1.7

Camel 1.4
Camel 1.6

Jedit 4.3
Log4j 1.0

Prop 4
Xalan 2.4
Xalan 2.5

Xerces 1.2

Accuracy (%)

Pr
om

ise
 d

at
as

et

Hamza Turabieh et al
[18]
Kapil Juneja [16]

Proposed

Fig. 7 Accuracy comparison of promise dataset

0 0.2 0.4 0.6 0.8 1

Ant 1.6
Ant 1.7

Camel 1.4
Camel 1.6

Jedit 4.3
Log4j 1.0

Prop 4
Xalan 2.4
Xalan 2.5

Xerces 1.2

F-Measure

Pr
om

ise
 d

at
as

et

Hamza Turabieh et al
[18]
Kapil Juneja [16]

Proposed

Fig. 8 F-Measure comparison of promise dataset

1991Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

4.6 Comparison with Existing Works

To achieve the assessment, the suggested technique considers various existing research
papers by Kapil Juneja [14], Hamza Turabieh [16], Zhou Xu [17], and Sushant Kumar Pan-
dey [18]. The existing research paper [14] uses the software bug prediction technique of
is a fuzzy-filtered neuro-fuzzy framework. In [16], software bug detection is done by iter-
ated feature collection algorithms with layered RNN, and in [17] kernel PCA and weighted
extreme learning machines are used for software bug detection. In [18], bug detection is
done by Deep Representation and Ensemble Learning Techniques. The comparison results
are box plotted below,

From the above Figs. 7, 8, 9, 10, it shows the comparison result of the promise data-
set. The experimental result shows that the technique attains better consequences for
altogether ten projects of the promise dataset. The proposed accuracy value of Ant 1.6

0 0.2 0.4 0.6 0.8 1

Ant 1.6

Ant 1.7

Camel 1.4

Camel 1.6

Jedit 4.3

Log4j 1.0

Prop 4

Xalan 2.4

Xalan 2.5

Xerces 1.2

G-Measure

Pr
om

ise
 d

at
as

et

Hamza Turabieh et al [18]

Kapil Juneja [16]

Proposed

Fig. 9 G-Measure comparison of promise dataset

0 0.2 0.4 0.6 0.8

Ant 1.6
Ant 1.7

Camel 1.4
Camel 1.6

Jedit 4.3
Log4j 1.0

Prop 4
Xalan 2.4
Xalan 2.5

Xerces 1.2

MCC

Pr
om

ise
 d

at
as

et

Hamza Turabieh et al [18]

Kapil Juneja [16]

Proposed

Fig. 10 MCC comparison of promise dataset

1992 R. Siva et al.

1 3

is 84.68%, Ant 1.7 is 88.82%, Camel 1.4 is 66.78%, Camel 1.6 is 87.66%, Jedit 4.3
is 77.92%, Log4j 1.0 is 81.88%, Prop 4 is 93.41%, Xalan 2.4 is 67.84%, Xalan 2.5 is
76.87% and Xerces 1.2 is 75.86%. Among these, the Prop 4 project achieves the supreme
correctness value compared to all the other projects. From the results, the accuracy of
the technique is the supreme value when associated with the existing method [14] and
the existing method [16]. The f-measure and g-measure value of the proposed method is
the maximum value for all ten projects compared to the existing methods. The proposed
MCC value of Ant 1.6 is 0.795, Ant 1.7 is 0.89, Camel 1.4 is 0.878, Camel 1.6 is 0.62,
Jedit 4.3 is 0.863, Log4j 1.0 is 0.792, Prop 4 is 0.852, Xalan 2.4 is 0.712, Xalan 2.5 is
0.72 and Xerces 1.2 is 0.652. Among these, the Ant 1.7 project achieves the extreme
MCC value associated with all the other projects. When compared, the suggested tech-
nique attains improved consequences associated with the methods.

The assessment result of the NASA dataset is exposed in the above Figs. 11, 12, 13, 14.
The experimental result shows that the technique attains better consequences for all five

0 20 40 60 80 100

CM1

JM1

KC1

KC2

PC1

Accuracy (%)

NA
SA

 d
at

as
et Sushant Kumar Pandey et

al [20]

Zhou Xu et al [19]

Proposed

Fig. 11 Accuracy comparison of NASA dataset

0 0.2 0.4 0.6 0.8 1

CM1

JM1

KC1

KC2

PC1

F-Measure

NA
SA

 d
at

as
et Sushant Kumar Pandey et

al [20]

Zhou Xu et al [19]

Proposed

Fig. 12 F-Measure comparison of NASA dataset

1993Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

projects of the NASA dataset associated with the algorithm. The proposed accuracy value
of CM1 is 79.84%, JM1 is 80.68%, KC1 is 85.42%, KC2 is 88.95%, and PC1 is 92.8%.
Among these, the PC1 project reaches the extreme accuracy worth associated with all the
other projects. From the results, the accuracy of the method is of extreme value when asso-
ciated with the current technique [17] and the existing method [18]. The f-measure and
g-measure value of the technique is the maximum value for all five projects. The proposed
MCC value of CM1 is 0.58, JM1 is 0.479, KC1 is 0.452, KC2 is 0.447, and PC1 is 0.42.
Among these, the CM1 project attains the maximum MCC value compared to all the other
projects. When compared, the suggested approach attains healthier consequences associ-
ated with the methods.

In Fig. 15, we analyze the performance of the proposed approach based on accuracy
measures. For comparison, we used recently published works namely, [18, 26, 27, 44], and
[17]. The detailed description of each research is explained in Sect. 2. When analyzing

0 0.2 0.4 0.6 0.8 1

CM1

JM1

KC1

KC2

PC1

G-Measure

NA
SA

 d
at

as
et Sushant Kumar

Pandey et al [20]

Zhou Xu et al [19]

Proposed

Fig. 13 G-Measure comparison of NASA dataset

0 0.1 0.2 0.3 0.4 0.5 0.6

CM1

JM1

KC1

KC2

PC1

MCC

NA
SA

 d
at

as
et Sushant Kumar Pandey et

al [20]

Zhou Xu et al [19]

Proposed

Fig. 14 MCC comparison of the NASA dataset

1994 R. Siva et al.

1 3

Fig. 15, we obtained the maximum accuracy of 93.41% which is high compared to other
research works. This is due to the optimal feature section using the A2JO algorithm.

5 Conclusion

A novel technique that integrates the metaheuristic optimization method (A2JO) and deep
learning algorithm for software bug prediction has been presented in this paper. For select-
ing the optimal features A2JO algorithm has been used and for prediction LSTM-depend,
an RNN has been used. The optimal features process leads to enhancing the performance
of bug detection. The proposed A2JO algorithm effectively increases the searching ability
and convergence speed. We have chosen five NASA public datasets and ten promise data-
sets for our experiment. We analyze the suggested method utilizing accuracy, F-measure,
G-Measure, and MCC and associated it with state-of-the-art approaches and different clas-
sifiers. Subsequently investigation, we create that the evaluation metrics of the approach
are higher than the existing state-of-the-art techniques. The proposed method attains the
maximum bug detection accuracy for the promise dataset is 93.41% and the detection accu-
racy for the NASA dataset is 92.8%. The experiment shows that our model is effective for
prediction. In the future, we strategy to use a hybrid deep learning technique, which will
lead to better results and also solve the problem of the class imbalance problem. We can
instrument optimization methods, vectorization, and broadcast approaches for improved
and faster consequences. Other deep learning frameworks can also be tried for error predic-
tion. The suggested technique can be practical for many faults, which as software reliability.

Funding Open access funding provided by Manipal Academy of Higher Education, Manipal. The authors
declare that we don’t have competing interests and funding.

Declarations

Conflict of interest The corresponding author states that there is no conflict of interest.

0

10

20

30

40

50

60

70

80

90

100

[46] [28] [29] [20] [19] proposed

A
cc

ur
ac

y
(%

)

Fig. 15 Comparison with recently published articles

1995Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020). BPDET: An effective software bug prediction
model using deep representation and ensemble learning techniques. Expert Systems with Applications,
144, 113085.

 2. Abozeed, S.M., ElNainay, M.Y., Fouad, S.A. & Abougabal, M.S. (2020). Software bug prediction
employing feature selection and deep learning. In 2019 International Conference on Advances in the
Emerging Computing Technologies (AECT) (pp. 1–6). IEEE.

 3. Panda, M. & Azar, A.T. (2021). Hybrid multi-objective grey wolf search optimizer and machine learn-
ing approach for software bug prediction. In Handbook of research on modeling, analysis, and control
of complex systems (pp. 314–337). IGI Global.

 4. Kumar, R., & Gupta, D. L. (2016). Software bug prediction system using neural network. European
Journal of Advances in Engineering and Technology, 3(7), 78–84.

 5. Chaubey, P.K., & Arora, T.K. (2020). Software bug prediction and classification by global pooling of
different activation of convolution layers. Materials Today: Proceedings.

 6. Ferenc, R., Gyimesi, P., Gyimesi, G., Tóth, Z., & Gyimóthy, T. (2020). An automatically created novel
bug dataset and its validation in bug prediction. Journal of Systems and Software, 169, 110691.

 7. Aggarwal, A., Dhindsa, K.S., & Suri, P.K. (2021). Enhancing software quality assurance by using
knowledge discovery and bug prediction techniques. In Soft computing for intelligent systems (pp.
97–118). Springer, Singapore.

 8. Kaen, E. & Algarni, A. (2019). Feature selection approach for improving the accuracy of software bug
prediction. In Journal of King Abdulaziz University: Computing and Information Technology Sciences,
8(1), (pp. 35–44). https:// www. kau. edu. sa/ Files/ 320/ Resea rches/ 72531_ 45679. pdf

 9. Thaher, T. & Khamayseh, F. (2020). A classification model for software bug prediction based on
ensemble deep learning approach boosted with SMOTE technique. In Congress on intelligent sys-
tems (pp. 99–113). Springer, Singapore.

 10. Ateya, H. A. B., & Baneamoon, S. M. (2020). Software bug prediction using static analysis with
abstract syntax trees. International Journal of Engineering and Artificial Intelligence, 1(4), 57–64.

 11. Tamanna, O. P. S. (2022). Random permutation-based hybrid feature selection for software bug predic-
tion using bayesian statistical validation. International Journal of Engineering Trends and Technology,
70(4), 188–202. https:// doi. org/ 10. 14445/ 22315 381/ IJETT- V70I4 P216.

 12. Sangeetha, Y., & Jaya Lakshmi, G. (2021). Prediction of software bugs using machine learning algo-
rithm. In Advances in Automation, Signal Processing, Instrumentation, and Control (pp. 2683–2692).
Springer, Singapore.

 13. Kaur, A., Kaur, K., & Chopra, D. (2017). An empirical study of software entropy based bug prediction
using machine learning. International Journal of System Assurance Engineering and Management,
8(2), 599–616.

 14. Juneja, K. (2019). A fuzzy-filtered neuro-fuzzy framework for software fault prediction for inter-ver-
sion and inter-project evaluation. Applied Soft Computing, 77, 696–713.

 15. Sharma, D., & Chandra, P. (2018). Software fault prediction using machine-learning techniques.
In Smart computing and informatics (pp. 541–549). Springer, Singapore.

 16. Hammouri, A., Hammad, M., Alnabhan, M., & Alsarayrah, F. (2018). Software bug prediction using
machine learning approach. International Journal of Advanced Computer Science and Applications,
9(2), 78–83.

 17. Zhou, Xu., Liu, J., Luo, X., Yang, Z., Zhang, Y., Yuan, P., Tang, Y., & Zhang, T. (2019). Software
defect prediction based on kernel PCA and weighted extreme learning machine. Information and Soft-
ware Technology, 106, 182–200.

http://creativecommons.org/licenses/by/4.0/
https://www.kau.edu.sa/Files/320/Researches/72531_45679.pdf
https://doi.org/10.14445/22315381/IJETT-V70I4P216

1996 R. Siva et al.

1 3

 18. Sushant, K. P., Ravi, B. M., & Anil, K. T. (2020). BPDET: An effective software bug prediction model
using deep representation and ensemble learning techniques. Expert Systems with Applications, 144,
113085.

 19. Wang, T., Li, W., Shi, H., & Liu, Z. (2011). Software defect prediction based on classifiers ensemble.
Journal of Information & Computational Science., 16(8), 4241–4254.

 20. Kim, S., Zhang, H., Wu, R., & Gong, L. (2011). Dealing with noise in defect prediction. Proceeding of
the 33rd International Conference on Software Engineering, pp 481–490.

 21. Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012). Reflections on the NASA MDP
data sets. IET Software, 6(6), 549–558.

 22. Kabir, M. M., Shahjahan, M., & Murase, K. (2012). A new hybrid ant colony optimization algorithm
for feature selection. Expert Systems with Applications, 39(3), 3747–3763.

 23. Lopes, F., Agnelo, J., Teixeira, C. A., Laranjeiro, N., & Bernardino, J. (2020). Automating orthogonal
defect classification using machine learning algorithms. Future Generation Computer Systems, 102,
932–947.

 24. Thung, F., Le, X.B.D., Lo, D. (2015). Active semi-supervised defect categorization. In: 23rd Int. con-
ference on program comprehension, pp 60–70.

 25. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2014). Bug characteristics in open source soft-
ware. Empirical Software Engineering, 19(6), 1665–1705.

 26. Zhang, N., Ying, S., Ding, W., Zhu, K., & Zhu, D. (2021). WGNCS: A robust hybrid cross-version
defect model via multi-objective optimization and deep enhanced feature representation. Information
Sciences, 570, 545–576.

 27. Ray, B., Posnett, D. Filkov, V., Devanbu, P. (2014). A large scale study of programming languages and
code quality in GitHub. In: ACM SIGSOFT symposium on the foundations of software engineering, pp
155–65

 28. Ni, Z., Li, B., Sun, X., Chen, T., Tang, B., & Shi, X. (2020). Analyzing bug fix for automatic bug cause
classification. Journal of Systems and Software, 163, 110538.

 29. Goseva-Popstojanova, K., Tyo, J. (2018). Identification of security related bug reports via text min-
ing using supervised and unsupervised classification. In: Int. conf. on software quality, reliability
and security, pp. 344–355.

 30. Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T., & Mu, D. (2021). Improving high-impact bug
report prediction with combination of interactive machine learning and active learning. Information
and Software Technology, 133, 106530.

 31. Xia, X., Lo, D., Wang, X., Zhou, B. (2014). Automatic defect categorization based on fault trigger-
ing conditions. In: Int. conference on engineering of complex computer systems, pp. 39–48.

 32. Du, X., Zhou, Z., Yin, B., & Xiao, G. (2020). Cross-project bug type prediction based on transfer
learning. Software Quality Journal, 28(1), 39–57.

 33. Ahmed, H. A., Bawany, N. Z., & Shamsi, J. A. (2021). Capbug-A framework for automatic bug
categorization and prioritization using NLP and machine learning algorithms. IEEE Access, 9,
50496–50512.

 34. Hammouri, A., Hammad, M., Alnabhan, M., & Alsarayrah, F. (2018). Software bug prediction
using machine learning approach. International Journal of Advanced Computer Science and Appli-
cations, 9(2), 78–83.

 35. Wang, S., Wang, J., Nam, J. & Nagappan, N. (2021). Continuous software bug prediction. In Pro-
ceedings of the 15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM) (pp. 1–12).

 36. Khan, F., Kanwal, S., Alamri, S., & Mumtaz, B. (2020). Hyper-parameter optimization of classifi-
ers, using an artificial immune network and its application to software bug prediction. IEEE Access,
8, 20954–20964.

 37. Gupta, D. L., & Saxena, K. (2017). Software bug prediction using object-oriented metrics.
Sādhanā, 42(5), 655–669.

 38. Moustafa, S., ElNainay, M. Y., El Makky, N., & Abougabal, M. S. (2018). Software bug prediction
using weighted majority voting techniques. Alexandria engineering journal, 57(4), 2763–2774.

 39. Qu, Y., & Yin, H. (2021). Evaluating network embedding techniques’ performances in software bug
prediction. Empirical Software Engineering, 26(4), 1–44.

 40. Yang, Y., Xia, X., Lo, D., Grundy, J. (2022). A survey on deep learning for software engineering.
ACM Computing Surveys (CSUR), 54(10), 1–73.

 41. Huang, Q., Xia, X., Lo, D., & Murphy, G. C. (2020). Automating intention mining. IEEE Transac-
tions on Software Engineering, 46(10), 1098–1119.

 42. Mahajan, G., & Chaudhary, N. (2022). Design and development of novel hybrid optimization-based
convolutional neural network for software bug localization. Soft Computing, 26(24), 13651–13672.

1997Automatic Software Bug Prediction Using Adaptive Artificial…

1 3

 43. Rani, G., Pandey, U., Wagde, A. A., & Dhaka, V. S. (2022). A deep reinforcement learning tech-
nique for bug detection in video games. International Journal of Information Technology, 15(1),
355–367.

 44. Wang, Z., Tong, W., Li, P., Ye, G., Chen, H., Gong, X., & Tang, Z. (2023). BugPre: an intelli-
gent software version-to-version bug prediction system using graph convolutional neural networks.
Complex & Intelligent Systems, 9(4), 3835–3855.

 45. Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T., Ragkhitwetsagul, C., & Ghose, A. (2021).
Automatically recommending components for issue reports using deep learning. Empirical Soft-
ware Engineering, 26(2), 1–39.

 46. Cynthia, S.T., Banani, R., & Debajyoti, M. (2022). Feature transformation for improved software
bug detection models. In 15th Innovations in Software Engineering Conference, pp. 1–10

 47. Giray, G., Kwabena, E. B., Ömer, K., Önder, B., & Bedir, T. (2023). On the use of deep learning in
software defect prediction. Journal of Systems and Software, 195, 111537.

 48. Xuewu, Z. H. A. O., Hongmei, W. A. N. G., Chaohui, L. I. U., Lingling, L. I., Shukui, B. O., &
Junzhong, J. I. (2022). Artificial jellyfish search optimization algorithm for human brain functional
parcellation. Journal of Frontiers of Computer Science & Technology, 16(8), 1829–1841.

 49. Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.

 50. Immaculate, S. D., Begam, M. F., & Floramary, M. (2019). Software bug prediction using super-
vised machine learning algorithms. In Proc. Int. Conf. Data Sci. Commun. (IconDSC), pp. 1–7.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

DR. R. Siva obtained his Bachelor’s degree in Computer science and
Engineering from Bharathidasan University ,Trichy, Jayaram College
of Engineering & Technology, Trichy, in 2000. Then he obtained his
Master’s degree in Computer Science and Engineering from Manon-
maniam Sundaranar University, Tirunelveli, in 2004 .He obtained
Ph.D degree in Computer Science and Engineering from Anna Univer-
sity, Chennai, in 2019. Currently, He is an Assistant Professor in the
Department of School of Computing at SRM Institute of Science and
Technology. He has around 18 years of teaching experience in various
technical institutions. He published more journals in national and
International Level. His research interests are in Machine Learning,
Cloud Computing, Network Security, Image Processing and Data Min-
ing.. He is a member of the ISTE and a member of the CSI.

DR. Kaliraj S is a Senior Assistant Professor in the Department of
Information and Communication Technology, MIT Manipal, Manipal
Academy of Higher Education (Institution of Eminence), India. He
received his B.E, M.E (Distinction) and PhD from Anna University,
Chennai, Tamil Nadu, India. He has completed two industry certifica-
tions, MCTS (Microsoft Certified Technology Specialist) and the
EMC Academic Associate, Data Science and Big Data Analytics. His
area of research is Verification of Machine Learning Systems, Fault

1998 R. Siva et al.

1 3

Prediction and Localization, Data Science, Machine Learning Applications in Society, NLP and Software
Testing. He has published 5 Patents and more than 25 research papers covering all major areas of Software
Engineering, Machine Learning, and Data Science in top journals and conferences. He has guided more
than 35 students in their master’s and undergraduate research. He has served as a Session Chair and member
of the Advisory Committee and Technical Committee of Various International Conferences. He has acted as
a resource person for the faculty development programs, workshops, Guest Lectures, and conferences organ-
ized by various institutions and universities. He is the reviewer of Scopus and WOS-indexed international
Journals in his area of research.

DR. B. Hariharan obtained his Bachelor’s degree in Information Tech-
nology from Anna University Chennai, C.S.I Institute of technology,
Thovalai, in 2008. Then he obtained his Master’s degree in Computer
Science and Engineering from Anna University Chennai, University
College of Engineering, Nagercoil, in 2012. He obtained Ph.D degree
in Computer Science and Engineering from Anna University, Chennai,
in 2020. Currently, He is an Assistant Professor in the Department
Computational Intelligence, School of Computing at SRM Institute of
Science and Technology. He has around 14 years of teaching experi-
ence in various technical institutions. He published more journals in
national and International Level. His research interests are in Machine
Learning, Cloud Computing, Network Security, Image Processing, IoT
and Data Mining. He is a member of the ACM, ISTE and a member of
the CSI.

N. Premkumar is an Associate Professor in the Department of Infor-
mation Technology at Kongunadu College of Engineering and Tech-
nology in Tiruchirappalli, Tamilnadu, India. His research interest
includes Fog Computing, Cloud Computing, Software Engineering
and Wireless Communication.

	Automatic Software Bug Prediction Using Adaptive Artificial Jelly Optimization With Long Short-Term Memory
	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed System Model
	3.1 Preprocessing
	3.2 Feature Selection Using Adaptive Artificial Jelly Optimization
	3.3 Bug Detection Using LSTM
	3.4 Forget Gate
	3.5 Input Gate
	3.6 Output Gate

	4 Experimentation and Analysis
	4.1 Experimental Setup
	4.2 Experimental Evaluation Metrics
	4.3 Dataset Description
	4.4 Performance Analysis of Proposed Bug Detection Model
	4.5 Comparative Study of Different algorIthms
	4.6 Comparison with Existing Works

	5 Conclusion
	References

