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Abstract
Midhauls introduce new characteristics to wireless networks. We study implementation 
performance behaviour to make appropriate network and algorithm design decisions soft–
real-time midhaul-based radio access network implementations. A model is developed 
based on data obtained using a testbed, which can be used to estimate midhaul latency 
as a function of the number of communicating nodes. The testbed comprises one central 
unit (CU) controlling a variable number of distributed units (DU) synchronized over Preci-
sion Time Protocol  (PTP). Average reporting latencies of 266 μs were observed with 16 
DUs. Typical jitter performance was 99.99 % of values below 471.75 μs but maximum val-
ues up to an order of magnitude larger. Variations in performance of up to 16.2 times more 
deadline misses were observed between best and worst performing DUs. A model fitted to 
the obtained data estimates the latency and jitter of CU-DU communication as a function 
of the number DUs. Results indicate suitability for application with moderate synchroniza-
tion requirements, for example positioning, but insufficient for the most stringent uses case 
such ultra-reliable communication.
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1  Introduction

Fifth generation cellular systems (5G) currently being deployed promise to support a 1000-
fold increase in traffic volumes along with support for tens of billions of devices [1]. As the 
commercial deployment of the first 5G networks takes place, research into the evolution of 
cellular communication system beyond 5G starts to take place [2–4]. Next-generation net-
works are currently envisioned to improve on 5G by offering, amongst other things, greater 
computation-communication integration and greater programmability. To cope with 
expected growth in both traffic volumes and device counts, network capacity must also 
increase. Recently, network densification  [5, 6] and cell-free architectures  [7] have been 
studied to provide the requisite increase in network capacity.

Traditional cellular architectures rely on the concept of individual cells to provide 
wide-area network coverage. Each cell is responsible for a geographic area defined by the 
prevailing channel conditions as perceived by user equipment (UE). Downlink cell meas-
urements are reported to the BS on the uplink. A handover is performed when the measure-
ment results indicate a cell other than the serving one has become more suitable. A mobile 
user will thus be handed over from cell to cell along its trajectory according to the meas-
ured channel conditions. During the handover process, the UE experience an interruption 
in its data connectivity [8]. Measurements gaps also lead to data transmission interruptions 
while battery consumption increases. 5G networks aim to enable new application classes, 
some of which impose stringent requirements on the reliability and latency of communica-
tion. The network should effectively become invisible to the user by providing constant 
high-quality service everywhere  [2]. Consequently, network architectures must evolve to 
offer such a capability.

Ultra-dense networks (UDN) increase the re-use factor of spectrum and provide shorter 
links to UEs by greatly increasing the BS density [5, 9]. Network densification also pre-
sents new challenges. UDNs require tighter network-side co-ordination due to the increased 
potential for inter-cell interference [10] and mobility management signalling overhead [11]. 
As networks densify, classical network designs become inefficient. In terms of signalling, 
problems appear since as cell sizes shrink, so do the cell dwelling times. Cells can also be 
idle for significant periods of time due to the small cell size [5], resulting in unnecessary 
energy expenditure. A variety of solutions have been proposed in the literature, such as 
user-centric access point clustering [12], jointly optimizing handover decisions and energy 
efficiency through power control [13], multi-connectivity scheme to reduce radio link fail-
ures [14] and mobility-based user grouping [15]. Many of the presented solutions rely on 
some form of information sharing and co-ordination to enable making better decision than 
a single BS could achieve by itself using only its local data.

Software-defined approaches to wireless communication system architecture evolu-
tion and implementation have been the subject of extensive study [16–20]. In particular, 
centralizing and virtualizing radio access network (RAN) processing has attracted sig-
nificant attention. This concept is known as cloud RAN (C-RAN). In a C-RAN system, 
baseband unit  (BBU) processing is centralized into a shared computing resource pool. 
Connected to this pool are remote radio head  (RRH) units responsible for the trans-
mission and reception of signals. A centralized BBU pool can target resources to those 
cells currently serving users. This is possible due to the centralized view of the C-RAN 
controller. Temporarily shutting down unused cells reduces energy expenditure [21, 22]. 
In addition, the centralized view of network state provides opportunities for load bal-
ancing. For instance, more spectrum can be allocated to an overloaded cell  [17]. As 
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the BBUs of neighbouring BSs execute in a co-located manner, load-balancing of UEs 
can be performed with low overhead. Other benefits of software-based implementation 
include easier integration with computing resources as envisioned for 6G [4] and use of 
machine learning and artificial intelligence technologies [19, 23].

C-RAN platform software must maintain the time-domain frame structure of the cel-
lular air interface, making it a real-time workload. A software-defined approach thus 
poses challenges with regards to timing-critical functions. Real-time tasks have process-
ing deadlines they must meet in order to operate properly  [24]. The consequences of 
missed deadlines are used to classify real-time tasks into two groups: hard–real-time 
and soft–real-time. Hard–real-time task deadline misses engender a system failure. 
Consequently, such systems are built to prevent any deadline misses. Guaranteeing 
hard–real-time performance in typically done through design-time analysis of possible 
execution times and system behaviour  [25]. Soft–real-time tasks suffer degraded per-
formance but can continue to operate or try to recover when a failure to meet timing 
requirements occurs [26].

Soft–real-time approaches present advantages in terms of ease of development and 
lower cost as not all possible inputs must be analyzed to determine whether the system is 
schedulable or not. General-purpose commercial off-the-shelf platforms are often too com-
plex to fully predict and analyse in terms of worst-case performance [24, 25]. In particu-
lar, flexibility and programmability increase the number of possible execution flow paths 
through the code. As the number of cases to analyse grows large, it becomes intractable to 
perform worst-case analysis as in traditional hardware-centric hard-real-time approaches. 
Moreover, hosting multiple tasks on a single platform (e.g.: multiple BBUs in a C-RAN) 
introduces the potential for interference among them, thus complicating worst-case analy-
sis even further. Communication over wireless networks is by definition soft–real-time due 
to the inherent possibility of packet loss due to channel fading. Accordingly, implementing 
C-RANs on a general purpose soft–real-time platform is a real possibility.

The use of soft–real-time on off-the-shelf provides flexibility and ease of integration 
into other systems while raising the question of suitability for time-sensitive tasks due to a 
lack of timing guarantees and domain specific optimizations. Soft–real-time implementa-
tion has been considered from different viewpoints. Virtualization [27] and scheduling [28] 
aim to share the underlying hardware while providing isolation between the various con-
currently executing tasks. In addition to computation, networking performance plays an 
important role  [29–31] as data must be obtained in time to be processed by the relevant 
deadlines. Latency affects the response time of the system while determinism  (i.e.: jit-
ter)  [32] impacts the degree of co-operation and the time granularity of co-ordination 
achievable.

Disaggregated network architectures, such as C-RAN, involve splitting RAN functional-
ity into separate nodes sharing information. This exchange of information takes place over 
a connection called the midhaul. The introduction of the midhaul changes the characteris-
tics of the RAN implementation compared to legacy approaches. These changes must be 
understood in order to properly design implementation to fully extract the benefits of RAN 
disaggregation.

This paper studies the feasibility of implementing a software-defined midhaul-based 
RAN using a general-purpose operating system (GPOS) on commodity hardware. Experi-
ments were conducted using a testbed. This platform was used to accomplish three goals: 
i) demonstrate the feasibility of software-based midhaul-based RAN implementation, ii) 
build a model of scalability of soft–real-time RAN in terms of midhaul communication and 
iii) assess suitability for various potential applications.
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This paper is organized as follows. Section 2 presents the system model studied while 
the methodology used is detailed in Sect.  3. Section  4 discusses the results obtained. 
Finally, Sect. 5 contains concluding remarks.

2 � System Model

We model an ultra-dense urban network with multiple co-operating network nodes serv-
ing UEs. Network nodes work together to provide service to UEs over the air. The RAN 
is responsible for gathering channel state information with no UE-side measurements. In 
this model, proposed in for example [33] and [34], TDD channel reciprocity is exploited to 
obtain the downlink channel from uplink measurements. Network nodes are implemented 
as soft–real-time processes on a GPOS running on commodity hardware (Fig. 1).

2.1 � RAN Architecture

RAN functionality is split among network nodes into two tiers: central units  (CU) and 
distributed units  (DU) under their control. DUs may have one or more radio units  (RU) 
either integrated into the same physical device or as distinct units from DUs. In this study, 
the question of how each DU is implemented in terms of RU design is not considered in 
details. It is assumed that each DU has some suitable and geographically close means of 
sending and receiving radio frequency  (RF) signals to and from UEs. Figure  2 presents 
the aforementioned node types along with their interconnections. CUs control one or more 
DUs over a midhaul link.

The functional split studied in this work is Option 5 as defined in TR38.801 [35]. MAC 
layer processing is divided between the CU and DUs. Figure 1 presents the functional split. 
MAC processing in the CU and DUs communicate over the midhaul to exchange informa-
tion. CUs manage the overall state of the cell but do not operate the air interface used to 

Fig. 1   Functional split considered in this work
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communicate with UEs. Instead, they delegate this task to the DUs. The latter are grouped 
by geographical area under a CU. Functionality handled by CUs operates on a slower time-
scale than that placed in DUs. An Option 5 functional split enables the use of coordinated 
multipoint (CoMP) at the level of coordinated scheduling but not joint transmission. This 
is due to the CU not having channel state information (CSI) available. The sharing of CSI 
would increase the overhead and complexity of the implementation. The choice of Option 5 
is motivated by a balance between centralization gains and midhaul load [36]. It provides 
opportunities for co-operation through the CU without imposing stringent requirements on 
the transport link between CU and DU [37]. The main challenges in Option 5 is the reali-
zation of the CU-DU interface. The ability of the CU to co-ordinate the operation of DUs 
depends on a properly designed midhaul.

The CU serves as a co-ordinator by managing spectrum use between DUs. Co-opera-
tion takes place at the cell-level by means such as inter-DU inteference control, centralized 
precoding decisions and beam direction management. No joint RF processing takes place 
as this would require sharing of CSI. Centralizing such functions requiring short reaction 
times and transfer of large volumens of CSI would impose an excessive load on the mid-
haul. Instead, instructions sent by CUs indicate what type of service each UE should be 
provided with by each DU in a given period of time. Within this period, DUs have flex-
ibility in how to carry out their instructions in terms of fast scheduling and link adaptation. 
At the end of each period, DUs send a report to the CU containing information such as 
the number of retransmissions and UEs detected. The CU uses DU reports to make deci-
sion for the next period. The studied model reduces signalling requirements and interface 
complexity between the CU and DUs compared to joint RF processing requiring sharing of 
CSI.

The CU uses all information it possesses to determine which DU should handle which 
UE. The aim is to enable the CU to optimize overall network performance through co-
ordination using the information it collects and the instructions it sends to DUs. The 
CU distributes its clock to the DUs to enable distributed scheduled functions. A clock 

Fig. 2   RAN node types and their interconnections. The backhaul connects to the mobile core network
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synchronization protocol is necessary as the CU and DU execute on physically separate 
equipment with therefore no common hardware clock.

Figure 3 illustrates network deployment in an urban environment with DUs placed along 
streets. DUs and UEs divide between the two CUs along the vertical dashed line through 
the middle of the figure. All DUs and UEs on either side (left or right) are managed by the 
CU on the same side. Each CU can use any of the DUs under its control to serve any of the 
UEs the CU has responsibility for. In other words, each of the UEs in Figure 3 maintains 
long-term state with the CU but can receive its physical signal from any of the DUs of that 
CU. Each DU operates one logical cell. One such cell comprises, for example, the RUs and 
antennas mounted on one or more adjacent lampposts. As the UE moves, the CU changes 
the serving DU. In order to minimize connection interruptions, the CU handles high-level 
management of dataflows. Doing so avoids the need to transfer connection information, 
for example radio bearer state, during intra-cell mobility. Hence, signalling overhead is 
reduced. Aggregating network state information in the CU also offers it a better network 
view for optimizing network resource use. The CU does not need to exchange messages 
with DUs or other nodes when making radio resource management decisions within its 
service area. From the UE’s perspective state information does not change as it remains 
connected to the same CU. Instead, the CU is responsible for forwarding the necessary 
information in a timely manner to the DUs.

DUs are colocated as virtual instances in the same physical server. Each DU can pro-
vide a different type of service. For example, DUs instances providing eMBB and mMTC 
can by operated using the same physical hardware. The service mix can thus be adapted 
easily by starting and stopping DU instances on demand. Sharing physical infrastructure 
reduces costs as fewer power supply, cooling and other auxilliary systems must be pro-
cured. DUs are connected to antennas using optical connections. Reducing costs by sharing 

Fig. 3   Ultra-dense network layout. CUs are indicated by hexagons, DUs are indicated by triangles and UEs 
are represented by circles. DUs and UEs divide between the two CUs along the dashed line
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infrastructure is important in UDN scenarios due to the high number of sites. Furthermore, 
placing a physically larger, fully-fledged base station on street furniture is more difficult 
than a smaller frontend and antenna unit. Sharing infrastructure can also enable a neutral-
host model, where the infrastructure owner rents facilities to mobile network operators.

2.2 � C‑RAN Delay Model

The introduction of the midhaul changes the structure of the RAN and hence its opera-
tional characteristics. In particular, the split into the CU and DU introduces a new source 
of latency and jitter. A midhaul link increases system delays in two ways. First, it forms 
an extra component that all information shared between CU and DU must traverse, as 
compared to a monolithic design. Second, splitting the CU and DU into separate physi-
cal devices leads to separate clocks, which need to be synchronized. Any difference in the 
notion of local time can result in variation in the timing of scheduled events. Similarly 
to the need for a channel model to properly design a wireless network, the latency per-
formance characteristics of a C-RAN platform influence the design of a communication 
system. This is especially true in real-world implementations of system with centralized 
decision making but distributed data collection. Such systems will only achieve their per-
formance targets if information can be transferred in a timely manner. Latency profile char-
acterization also constitutes a prerequisite for certain new use-cases that are more latency 
sensitive than traditional applications  [38]. Quantifying the scaling behaviour helps net-
work planning and configuration.

Understanding the delay model of the midhaul in a split C-RAN design is important 
as its latency and jitter performance affects all network co-ordination functions as well 
as the feasible function splits. Lower level splits (more centralization in the CU) required 
tighter bounds  [36] as their function operate on shorter timescales. Algorithms designed 
for a midhaul-based C-RAN must therefore account for timing differences compared to 
monolithic independent BS implementations. The requirements for these RAN function 
algorithms vary in timing requirements widely, from tens of nanoseconds to tens of mil-
liseconds [32, 35, 39, 40].

This work aims to characterize the scalability of CU-DU midhaul communication in a 
GPOS-based platform on commodity hardware. The number of DUs placed under the con-
trol of a single CU impacts the latency and jitter of communication. This occurs because 
messages to and from DUs must queue in the CU. Thus, the first message will experience 
a shorter delay than the last. Message generation times can vary due to the soft–real-time 
nature of the platform. This variation causes the DU messages’ ordering to not be static, 
thus creating jitter. Furthermore, the soft–real-time nature of CU processing can result in 
additional variance in the time required to execute tasks distributed between CU and DU. 
Of particular note is the fact that clock synchronization occurs using a software-based PTP 
implementation. Like other software, the PTP task is subject to variance in execution time 
leading, in turn, to variance in the synchronization between CU and DU.

3 � Experimental Assessment

Distributed network architectures rely on co-ordination between network nodes to provide 
service to UEs. The more information the network can gather and share the better decisions 
it can make. However, greater information volume also increases the capacity required to 
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transmit it. Measurements were carried out to quantify the communication latency between 
RAN nodes with GPOS and commodity hardware. The testbed used implements a distrib-
uted architecture as discussed in Sect. 2.1 with one CU controlling multiple DUs. Perfor-
mance is assessed in terms of the latency observed for a given number of DUs under the 
control of one CU. In this work, two signalling performance metrics are used: command 
delay and reporting time accuracy.

3.1 � Midhaul Metrics

Command latency from CU to UE represents the time elapsed from the moment the CU 
issues a command through a DU to the moment the UE’s frontend receives the signal. It 
includes delays incurred by the radio frontend and its driver. No processing of data takes 
place in this testbed in either CU or DU and therefore the processing time is assumed to be 
zero. This is done as the delay would depend on the algorithm and the focus of this work is 
on the midhaul. Command latency impacts the CU’s response time for changing the signal 
a UE receives. It thus also represents a lower bound for the time taken by a message from 
the CU to reach an application running on the UE.

Reporting latency measures the time elapsed between the expected report arrival time at 
the CU and when the DU reports actually arrive. If each DU sends a report at nominally the 
same time, these reports would all ideally arrive at the CU at the same time. In a practical 
system however, the notion of current time in each node likely differs. A mismatch of the 
current time between CU and DU will result in DUs making measurements at a different 
time than the CU intended. Combining the measurements will then suffer from increased 
error due to the data not pertaining to the same time instant. In addition to current time 
differences, there will likely be congestion and queuing effects as well. Consequently, mes-
sages are transmitted at slightly different times from each DU. The non-zero difference 
results in delay variation in reports originating from different DUs. Consequently, the CU 
faces uncertainty in the arrival time of measurement data. Estimating the delay is done in 
the CU by taking the difference between its local time at reception and the DU’s timestamp 
in the message.

As an illustrative example, consider location-based mobility management, based on 
wireless positioning performed by the RAN. Figure  4 illustrates the impact of midhaul 
delay as pertains to UE positioning. DUs measure the AoA of the UE using its positioning 
reference signal at some point in time (dashed lines). They then send their measurement 
report to the CU. Upon arrival, the DU measurements are used by the CU to compute a 

Fig. 4   Midhaul delay induced positional error. The solid lines represent the UE’s true location while the 
dashed lines represents the information available to the CU
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position for the UE, update mobility management decisions and send these decisions to 
the DUs. The UE continues to move and has changed position by the time the CU has 
computed its position (continuous lines). Synchronization imperfections impact the perfor-
mance of a location-based mobility management scheme in two aspects.

Firstly, in order for a handover to be successful, both the target and source DUs must 
have the same notion of when to execute the transfer. Otherwise, one of the two may exe-
cute its part of the handover too early or too late, resulting in either interference due to 
overlap or an interruption in service for the UE.

Secondly, clock offsets cause the position estimate of a UE to suffer degraded accuracy. 
This results from the CU having to wait for all required AoA reports to arrive before it can 
compute the UE’s position. During this wait, the UE can potentially continue to move. An 
alternative to waiting would be to compute the UE’s position using whatever reports are 
available. However, this approach also entails a loss of accuracy as the CU uses less infor-
mation for its computations. Delayed or less accurate information can impair the CU’s abil-
ity to perform interference management between DUs based on the UE’s position.

3.2 � Measurement Setup

Experiments were conducted using two directly connected servers. Server specifications 
are given in Table 1. One server operated as the CU and the other executed the DUs either 
directly on the host OS or inside containers. In an actual deployment, the CU would be 
located in a datacenter while the server hosting DUs would be closer to the served physical 
locations. The servers were connected directly using two connections: one for the midhaul 
link and one for PTP clock synchronization. PTP was chosen as it is suitable for standard 
Ethernet networks with no built-in clock transfer and synchronization method.

Testbed software was run with scheduling priority set to the SCHED_FIFO class of the 
Linux scheduler. DUs were pinned to specific CPU cores in an effort to reduce timing vari-
ance. Futher isolation was provided by the use of containers to virtualize the environment 
of each DU. PTP software daemons were ran on dedicated cores as well to reduce interfer-
ence from the testbed software and vice-versa. Messages are exchanged as Ethernet frames 
with no higher-layer protocol. Design of suitable midhaul protocols is left to future work.

Measurements for the command latency metric  (see Sect.  3.1) were carried out as 
depicted in Fig. 5. The CU sends a command to the DU to transmit a pulse. The latter then 
instructs its frontend to send a square wave pulse. The CU continuously monitors its fron-
tend. Upon detection of the RF pulse, the CU computes the latency from its issuing of the 

Table 1   Main test server 
hardware and software 
components

Component Model

CPU AMD Epyc 7401P
NIC Intel X710-DA4
OS Arch Linux kernel 5.5.9
Container system LXD/LXC version 4.0.0
PTP software linuxptp version 2.0
PTP profile ITU G.8275.1
Frontend National instruments 

USRP-2932 (UHD 
3.15)
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transmission command to the reception of the pulse. The CU plays the role of UE which, 
in an actual system, would be the recipient of the CU’s transmission. Since the CU and UE 
are the same in this setup, the transmit time recorded for the command can be directly com-
pared to the reception time of the RF pulse.

Transmitting and retrieving samples from the frontends incurs some delay. The meas-
ured arrival time of commands is lengthened by the time it takes for the radio frontend’s 
driver to retrieve the samples containing the pulse. This delay is expected to be larger in 
this setup than with commercial hardware used in a real-world deployment. The latency 
seen by the CU when recording arrival time will likely be greater than that seen by an 
application running on a commercial UE with lower processing time. The results therefore 
constitute a pessimistic assessment of midhaul command latency.

Command latency was tested with a sampling rate of 1 Msps and 250 samples per 
buffer. Both values impact the command latency by changing how long it takes for a com-
mand buffer to get filled and how fast it is transmitted. However, the focus of this work is 
on the midhaul and the design of a low-latency air interface is thus out of scope.

Measurements for the reporting metric  (see Sect. 3.1) were carried out as depicted in 
Figure 6. The CU configures DUs to transmit a 100-byte long report at 100 ms intervals. 
The inter-message interval is kept long to test the accuracy of synchronization for sched-
uled events as opposed to steady-state flows. When the time to transmit arrives, each DU 
sends a message to the DU. These messages go through the virtual network bridge in the 
DU host before reaching its 10G network interface card (NIC) for transmission to the CU. 
Upon receipt, message arrival times are timestamped. Since the CU knows the transmis-
sion interval it configured, it is able to compute the offset of the timestamps from the 
expected time. In order for the CU and DUs to share the same notion of time, the clock of 
the DU server is synchronized to that of the DU server using PTP.

The PTP implementation performs synchronization in two parts. First, the CU uses 
its OS time of day to set the time of its NIC, which then redistributes it to the DU’s 
NIC. Second, the now synchronized NIC clock is used to set the DU server’s OS clock. 
The aim of time of day synchronization is to provide the same notion of current time for 
the testbed software running on the CU and DU. DUs transmit a message to the CU at 
a pre-determined periodicity as determined by the current OS time. All DUs send their 
reports synchronously at the same nominal time. Upon reception of the DU’s report 
messages, the CU computes the difference between the timestamp contained in the mes-
sage and its own local time. The difference between the scheduled time of measurement 

Fig. 5   Measurement setup for CU-to-UE command latency
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and the time of reception of these messages at the CU then indicates the combined 
latency and clock synchronization error of the system. Both servers must therefore have 
the notion of current time to schedule distributed tasks correctly.

Ideally, the difference between the actual and expected arrival time of DU report 
messages would be as close to zero as possible. In practice there will be an offset from 
imperfect clock synchronization, processing delay, queueing and transfer delay for the 
messages. Additionally, software incurs variable delays depending on load and the 
behaviour of other software executing concurrently. This impacts DUs’ ability to begin 
transmission at precisely the intended time. The aforementioned sources of variance are 
part of the nature of soft–real-time GPOS systems impacting performance.

The measurement software runs in userspace making use of the Express Data 
Path (XDP) feature of the Linux kernel. XDP is a kernel networking stack bypass tech-
nology. It aims at providing the lowest possible latency for network frame processing by 
passing frames directly from the NIC driver to the userspace application to which they 
are destined. Doing so avoids the overhead of going through the kernel’s processing for 
those applications that do not need it. Designated frames or packets are handled by XDP 
while all other traffic transmits through the kernel’s networking stack. The ability to uti-
lise both on a single network interface enables retaining the features of kernel process-
ing where required while enabling low latencies for select traffic. The control plane can 
therefore reside in userspace, where programming is easier due to many libraries and 
frameworks being available. Once the control plane has computed a course of action, 
the rules in the XDP are updated. One of the advantages of XDP lies in providing a high 
performance network frame processing capability without requiring hardware-specific 
solutions. Consequently, portability and migration of BBUs becomes easier. This, in 
turns, helps in building inter-operable and maintainable implementations conforming to 
standards such as O-RAN [41].

Fig. 6   Measurement setup for DU-to-CU timing synchronization
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4 � Results and Analysis

Measurements were carried out as described in Sect. 3.2 with 1, 2, 4, 8, 16 synchronized 
DUs sharing a midhaul link. Workload and DU process mappings to CPU cores were kept 
constant. Data recording aimed to asses the impact of the commodity hardware GPOS plat-
form on midhaul performance.

First, results are presented for the command and reporting latencies. Second, homogene-
ity of the performance is analyzed across DUs and over time. Third, a model is developed 
based on the data collected. The model aims to generalize the results in order to enable 
estimation of performance in other network configurations. Finally, the impact of midhaul 
performance on localization performance is studied as an example of the impact of mid-
haul latency.

4.1 � Measured Latencies

As described in Sect. 3.1, midhaul latency is assessed using the two metrics of command 
and reporting latency. Measured command latencies between CU and DU are presented 
in Figure  7. While the maximum is more than an order larger than the mean, it can be 
observed that the majority of values are clustered together. Such clustering is indicative of 
low jitter for the majority of data points. The distribution has a low typical value but a long 
tail with most latencies being of similar magnitude.

The second metric analyzed is reporting latency. Figure  8 presents its distributions 
for the case of 2, 4, 8 and 16 DUs, from left to right and top to bottom. Similarly to the 
command latency, the recorded values cluster around a low typical value with a long tail. 
Table 3a–e presents the minimum, maximum and standard deviations of the latency across 

Fig. 7   Histogram of CU command latency on a semi-log scale. N = 132 692 265
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all DUs. Certain standard deviations are zero due to the rounding of measured latencies 
resulting in the same value for all DUs.

Figure 8 has large values in the dataset omitted from the figures for clarity. It can be 
observed that the distribution exhibits a dependency on the number of DUs reporting. 
This dependency can be explained by the centralization of the network. Since the CU must 
handle all the reports from the DUs, it constitutes a bottleneck in terms of scalability. As 
all DUs report synchronously, there will be contention on the shared midhaul. The extra 
latency caused by concentrating decision making into a single controller constitutes a 
trade-off with regards to the benefits of centralization. The more DUs report to a single 
CU, the more information is available to make optimal decisions on the network level. On 
the other hand, a high degree of centralization creates congestion for transferring the infor-
mation required.

Results for both the command and reporting latency exhibit a low typical value and long 
tail. This behaviour results from the soft–real-time nature of the experimental platform. 
Since there are no upper limits on the duration of operations, very large latencies may 
occur when tasks interfere with each other. While relatively rare, these events can produce 
delays much larger than the typical case as shown by the difference between the 99.99 % 
and 99.999 % quantiles, and maximum value in Tables 2, 3a–e.

4.2 � Performance Homogeneity

Scaling up the RAN to higher NDU-per-CU ratios increases not only the average latency of 
messages but also the differences between DUs. In Table 3e, it can be seen that the latency 
ratio of worst performing to best performing DU is higher for NDU = 16 than the cases 
with fewer DUs. For instance, in terms of worst-to-best mean ratio, the value grows from 
1.3 at NDU = 4 to 1.8 at NDU = 16.

Figure 9 depicts the late rate performance for each DU as function of TTI duration in 
the NDU = 4 (top of the figure) and NDU = 16 (bottom of the figure) cases. The number of 
DUs affects the late rate with curves being steeper at lower NDU . Adding DUs results in 
more queuing on the shared midhaul. This increases the range of possible delays experi-
enced and thus makes the late rate curve less steep. The stair-like pattern seen in Figure 9 
is cause by the separation of the peaks in Figure 8.

At NDU = 16 , two DUs diverge in behaviour. DU-6 and DU-12 exhibit a higher rate of 
deadline misses than the other DUs. They benefit less from an increase in TTI length in 
terms of their deadline miss performance. Platform overhead affects DU-6 and DU-12 more 
than other DUs. This overhead is visible in Figure 8 as the values between the peaks. Inter-
ference from other processes cause latencies to grow beyond the typical value represented 

Table 2   Descriptive statistics of 
CU command latency

Values are rounded to the nearest microsecond.

μs

min 440
mean 799
max 13 934
std 107
99.999 % quantile 1  378
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Table 3   Report arrival time latency distribution for (a)1, (b)2, (c)4, (d)8 and (e)16 DUs

(a)1 DU

μs

min 36
mean 55
max 858
std 2
99.9 % 40
99.99 % 42
99.999 % 248

(b)2 DUs

Min–Max ( μs) Std ( μs)

min 48–48 0
mean 66–67 0.71
max 758–903 102.53
std 13–13 0
99.9 % 69–69 0
99.99 % 74–74 0
99.999 % 237–239 1.41

(c)4 DUs

Min–Max ( μs) Std ( μs)

min 49–49 0
mean 79–103 11.21
max 1093–1161 31.22
std 27–29 0.96
99.9 % 134–137 1.26
99.99 % 143–146 1.26
99.999 % 313–481 74.76

(d)8 DUs

Min–Max ( μs) Std ( μs)

min 42–43 0.46
mean 139–164 9.44
max 2013–2118 33.40
std 58–64 2.20
99.9 % 264–265 0.52
99.99 % 292–296 1.28
99.999 % 744–897 58.53

(e)16 DUs

Min–Max ( μs) Std ( μs)

min 38–40 0.72
mean 214–377 49.04
max 3192–7295 1389.50
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by the peaks. At NDU = 4 , one DU also performs better than the others but the shape of its 
curve remains broadly similar. Greater variation at NDU = 16 suggests that higher DU-per-
server densities generate less homogenous latency performance across DUs.

In addition to inter-DU differences, behaviour also varies over time. Variation occurs 
due to the soft–real-time nature of the platform on which the CU and DUs execute. Exter-
nal factors such as background processes, OS tasks and hardware characteristics can 
increase or decrease the processing time of operations. These sources of interferences do 
not operate with TTI granularity. Patterns may therefore appear at other time scales. It can 
be seen in Figure 8 that latencies are less quantized for higher NDU.

Percentage values indicate quantiles. Minimums, maximums and standard deviation are calculated using the 
values for each individual DU. Values are rounded to the nearest microsecond. N = 50000000.

Table 3   (continued)

(e)16 DUs

Min–Max ( μs) Std ( μs)

std 102–124 6.13
99.9 % 449–472 7.33
99.99 % 466–494 9.01
99.999 % 865–1055 49.52

Fig. 8   Histogram of difference between DU nominal timestamp and CU local time at reception with 2, 4, 8 
and 16 DUs
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The coefficient of variation is computed as the standard deviation divided by the mean 
from the per-time slice high latency rate for each DU. A coefficient of variation close to 
zero indicates that the DU has a similar number of large latencies in each period and its 
behaviour is thus predictable. Conversely, a high coefficient of variation indicates that the 
DU undergoes periods of either particularly good or poor performance throughout the 
recorded data. Table 4 presents the coefficient of variation of the number of large latency 
TTIs per time periods for each DU in the NDU = 16 case. The threshold for a large latency 
was taken as the 90 % quantile over all values for each DU. Table 4 presents variability of 
the distribution of the 10 % highest latencies at aggregation periods of one second, one 
minute and one hour. The ratio of worst-to-best coefficient of variation for the three peri-
ods considered are: 8.6 at one second, 16.2 at one minute and 6 at one hour. Performance 
monitoring should therefore be performed at multiple granularities and not only consider 
aggregates over long periods.

Figure 10 shows the evolution of performance in terms of large latency for each DU 
in the NDU = 16 over time in one minute slices. For each time slice, the number of large 
values is computed for each DU and then divided by the total number to obtain their 

Fig. 9   Deadline miss rate for individual DUs as a function of TTI duration for N
DU

= 4  (top) and 
N
DU

= 16 (bottom)
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relative share. In addition, the total number of lates is plotted as a line graph. Figure 11 
presents the same information as Figure 10 for a time slice length of one second. The 
time range of Figure 11 corresponds to the second and third bars of Figure 10. It can 
be observed that some DUs, such as 1-3, have consistent performance throughout the 
timespan of Figure 10. Others, such as DU-10 and DU-11, exhibit much more instabil-
ity. Unstable DUs do not have the highest means or maximums. For example, DU-6 
experiences higher values than the other DUs as can be seen in Figure 9 but its perfor-
mance is consistent over time. Its high mean only reduces the computation time budget. 
Assessing performance should therefore be done using multiple metrics suitable for the 

Table 4   Inter-DU comparison of the number of large latencies for 16 DUs at three different time aggrega-
tion lengths

Coefficient of variation (CV) values indicate variation across time slices. The threshold for a large latency 
was set to the 90 % quantile of the recorded latencies.

CV DU

1 2 3 4 5 6 7 8

1 s 0.13 0.12 0.13 0.87 0.12 0.23 0.12 0.14
1 min 0.06 0.06 0.07 0.63 0.05 0.15 0.05 0.06
1 h 0.03 0.03 0.05 0.12 0.03 0.04 0.02 0.03

CV DU

9 10 11 12 13 14 15 16

1 s 0.54 0.85 0.82 0.21 0.13 1.03 0.12 0.12
1 min 0.38 0.61 0.63 0.13 0.06 0.65 0.04 0.06
1 h 0.07 0.10 0.12 0.03 0.03 0.12 0.02 0.04

Fig. 10   Total large-latency TTIs and per-DU relative share for the N
DU

= 16 at one minute aggregation 
period
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studies application. Certain use-cases benefit more from a high-but-stable mean while 
other benefit from lower averages even at the cost of lower predictability.

The variability of DU performance impacts algorithm and system design. Algorithms 
should be able to cope with changes in the midhaul latency reducing the available pro-
cessing time budget. Correlations between DUs also affect the reliability by impacting the 
probability of two DUs serving the same UE being late at the same time. If this probabil-
ity is low, use of multiple DUs to transmit the same data can be effective in reducing the 
probability of outage. Another aspect impact by inter-DU variability is large-scale scal-
ing of applications. Different MEC providers will very likely use different equipment and 
software platforms. Assumptions about fungibility may thus not hold. An edge computing 
workload migrating from one server to another might thus experience different latency per-
formance even when allocated nominally the same amount of resources. One reason for 
migrating workloads is to load balance DU instances. Since load balancing aims at achiev-
ing more even performance, it is important to account for possible inter-DU differences to 
achieve the desired end result.

4.3 � Latency Model

In order to generalize the results, a simplified model of midhaul latency can be built. Such 
a model for estimating the performance of the RAN for various DU counts can be useful 
in dimensioning a network. The average delay and its standard deviation can be estimated 
from the number of DUs. To build the model, the mean and standard deviation of all DUs 
at a given DU count are averaged. Model fitting was done using Matlab [42]and its Curve 
Fitting Toolbox [43]. The model predicts the latency in microseconds. The resulting func-
tions are:

(1)fmean(NDU) =14.16NDU + 39.39

Fig. 11   Total large-latency TTIs and per-DU relative share for the N
DU

= 16 at one second aggregation 
period
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where NDU is the number of DUs, fmean(NDU) is the mean delay of reporting and fstd(NDU) 
is the standard deviation of reporting delay.

Since the latency distributions for command and reporting delays possess long tails, 
a log-normal distribution was selected to model the behaviour. The obtained mean and 
standard deviation in (1) and (2) are then used to compute the parameters of the log-normal 
distribution estimating the midhaul reporting latency. The mean and the variance of the 
log-normal distribution are:

Relating the experimental mean to the closed form ones, we find the parameter � of the 
distribution as

By substituting the value obtained for � into the formula for the variance f 2
std

,

� can be obtained:

The obtained log-normal distribution will provide a first-order approximation of the report-
ing delay seen by a CU. The system latency model can be used during system and algo-
rithm design to assess the impact of the midhaul on the considered solution. A trade-off 
exists between the amount of information and co-ordination (DU-to-CU ratio) and the mid-
haul latency generated by the control signalling. Values generated for the case of 16 DUs 
agree well with the empirically recorded 16 DU data with regards to the mean averaged 
over all DUs: 266.15 μs compared to 265.95 μs . In terms of the .999, .9999 and  .99999 
quantiles, however, the approximation is more conservative: 868.70 μs compared to 
458.31 μs , 1124.10 μs compared to 471.75 μs and 1406.10 μs compared to 956.50 μs . The 
difference can be used as a safety margin during system design.

The structure of the CU-DU latency can be further modelled into peaks and a tail as 
seen in Figure 8. The peaks are comprised of NDU log-normals. These contain the bulk 
of the probability mass and represent the typical case in terms of communication latency. 
Each peak contains roughly the same number of values indicating that all cases are equally 
likely to occur. This reflects the queueing experienced by DU messages over the shared 
midhaul. Larger latencies form a long tail with a shape dependent on NDU . Fitting the log-
normals to the empirical data yields:

(2)fstd(NDU) =7.14NDU − 1.503

(3)m
Log−normal

=e
�+

�
2

2

(4)v
Log−normal

=(e�
2

− 1)e2�+�
2

� =
2 log fmean − �

2

2

f 2
std

= v
Log−normal

= (e�
2

− 1)e2�+�
2

= (e�
2

− 1)e2
2 log fmean−�

2

2
+�

2

� =

√
log(

f 2
std

e2 log(fmean)
+ 1)
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where n is in [0,NDU] . Total variation distance  (TVD) quantifies the difference between 
two probability distributions. TVD is calculated as:

where X are the latency values being compared, p(x) are the empirical latency bin counts 
and q(x) are the predicted latency bin counts. Comparing the predicted values to the empiri-
cal ones using a bin size of 10 μs for NDU = 1, 2, 4, 8, 16 yields TVD values average over all 
DUs of: 0.013, 0.144, 0.160, 0.142, 0.234. The reason for the larger value in the NDU = 16 
likely lies in the dissimilar behaviour of DU-6 and DU-12. Their different latency distribu-
tion results in probability mass not aligned with the peaks generated by other DUs, which 
the model fails to capture.

A transition exists between the typical and high latency regime. Estimation of this point 
can be done by setting a probability threshold for latencies considered rare. The transition 
point can be approximated by � + 2� , which for NDU = 1, 2, 4, 8, 16 yields 65 μs , 93 μs , 
150 μs , 264 μs and 491 μs . In each case, the late rate will be less than 0.01. Such an approx-
imation is useful to determine whether the log-normals or the tail sets the late rate for a 
given TTI duration. Since the majority of probability mass is in the typical area and there 
are NDU equal peaks in the model, the late rate depends on whether the TTI length consid-
ered is above or below the transition point. If the target TTI duration is below, there will a 
late rate roughly proportional to the number of peaks on both sides of the target.

4.4 � Midhaul Impact Assessment

As an illustrative example, the created midhaul latency profile was used in a simulation 
assessing the UE position estimate error induced by CU-DU communication. One use-
case is for network-provided location data to complement global navigation satellite sys-
tems  (GNSS)  [44]. When UEs enter deep urban canyons, GNSS performance degrades. 
The RAN can then provide a replacement or augmentation system to enhance accuracy and 
reliability.

In the simulation scenario, two DUs are used by a CU to track a single moving UE’s 
position, see Figure 4. The CU is assumed to also control other DUs that are not involved 
in the tracking of the considered UE. For each report sent to the CU, the latency is drawn 
randomly in a two-step process from a mixture distribution.

ppeak = 53.625 +
NDU

2
+ 26.1047n

� =

⎧⎪⎪⎨⎪⎪⎩

log

�
p2
peak√

4.25+p2
peak

�
, if n = 0

log

�
p2
peak√

10+p2
peak

�
, otherwise

� =

⎧
⎪⎨⎪⎩

0.03, if n = 0�
log

�
1 +

10+n

p2
peak

�
, otherwise

dtv =

∑
x∈X �p(x) − q(x)�

2



1359Midhaul Performance Modelling Using Commodity Hardware C‑RAN…

1 3

First, the mixture component for the DUs are selected using a uniform distribution. Doing 
so simulates the multi-modal distribution seen in Figure 8. This represents the uncertainty as 
to the ordering of DU reports. Each mixture component represents a particular position in the 
queue.

Second, a log-normally distributed sample is generated for both the command latency and 
the report latency. Latencies are drawn from the statistics of the component picked in the first 
step.

Table 5 presents the positioning error induced for the case of one CU and two DUs. Values 
for the two DUs are drawn from the 16 DU case above even though only two DUs are used 
to serve the UE being studied. In an actual deployment, the CU would also handle other UEs 
using other DUs and thus have to process their reports as well. Latency values were obtained 
by using the command and reporting latencies (Tables 2, 3a and e) to compute the position 
error resulting from delays in the midhaul for various UE speeds. The values in the table repre-
sent the whole area served by the two DUs in question. The average is taken over 106 locations 
and the realisation of the log-normally distributed command and reporting random variables.

Positioning targets for 5G aim to support [45] cars with speed up to 200 kmh−1 and less 
than one meter accuracy in 95 % of the service area. Results in Table 5 show that midhaul 
communication latency will not prevent meeting the positioning accuracy targets set for 5G.

The delay model can also be taken into account during algorithm design. Algorithms can 
be then be made robust against the expected variation in midhaul communication latency. For 
instance, a scheduler can account for the latency between CU and DU when making its deci-
sions. Decisions could be made sufficiently in advance to account for expected jitter to reduce 
the likelihood of the scheduling instructions reaching the DU late. Missing the deadline for 
sending scheduling information from CU to DU might result in no transmissions, thus weak-
ening spectral efficiency and jeopardizing application level latency targets. In general, the 
latency for a desired reliability level can be obtained by computing its corresponding quantile 
using the delay estimation function:

where � is the desired quantile, � and � are parameters of the log-normal distribution and 
qN is the corresponding quantile of the normal distribution.

(5)q(�) = e�+�qN (�)

Table 5   UE positioning error obtained in midhaul latency simulation results

One CU controlling two DUs with the latency distribution of the 16 DU case above. DUs are 25 m from 
each other and the UE travels in a line parallel to DU 1-DU 2. Values rounded to two decimal place.

User speed 
( kmh

−1)
Min ( cm) Median ( cm) 99.9 % ( cm) 99.99 % ( cm) 99.999 % ( cm)

6 0.09 0.17 0.35 0.45 0.59
30 0.50 0.87 1.74 2.26 2.93
60 0.93 1.75 3.48 4.40 5.53
 90 1.48 2.62 5.22 6.80 8.37
120 1.79 3.49 6.98 9.04 11.92
200 3.28 5.82 11.60 14.73 19.15
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5 � Conclusion

Next-generation RAN architectures will require increased amounts of inter-node co-
operation due to designs splitting functions into separate hardware. The latency and 
jitter of the midhaul joining these separate nodes thus impacts overall system perfor-
mance. The midhaul performance of the RAN must be taken into account when net-
works, just as the behaviour of the channel is considered. Failure to account for the 
different characteristics of distributed architectures may jeopardize the network ability 
to meet its targets.

A testbed was used to obtained data on the performance of GPOS-based C-RAN plat-
forms operated on commodity hardware. Functionality was distributed between one CU 
and multiple virtualized DUs and scheduled using a shared notion of current time. Both 
the CU-to-DU command latency and DU-to-CU reporting latency were studied. Results 
show that the presented commodity hardware implementation offers adequate perfor-
mance. The collected data also indicates that while the typical command or reporting 
latency is close to the average, when deviation do occur, they can be orders of magni-
tude larger and occur too frequently to support ultra-reliable communication (99.999 % 
reliability requirement). This is expected considering the testbed’s soft–real-time nature 
but warrants further work to improve bounds in order to support more applications.

Midhaul performance variability was observed to occur between DUs and across 
time. This impacts RAN and MEC design. Creating or moving DU instances on servers 
can result in a change in latency behaviour for existing instance. Algorithms must there-
fore be able to cope with variable time budgets.

Measurement results were used to create a model of scaling performance as a func-
tion of the number of DUs controlled by a single CU. Modelling the RAN latency ena-
bles improved development and design of new networks. A model of latency enables 
determining the supported number of DUs per CU given a particular set of require-
ments, such as a given functional split. Changing the number of DUs assigned to each 
CU enables modifying the trade-off between the quantity of information available for 
co-ordination and the extra latency and jitter created by collecting said information. 
Network and algorithm design could benefit from such a model for use in optimization.

Additional work is required to better understand the both the causes and implications 
of the observed timing indeterminism. Tighter bounds could enable support for features 
with tighter timing and reliability requirements. Improved understanding of the causes 
of jitter might also offer insights into suitable scheduling intervals, functional splits and 
the optimal ratio of DUs to CU as well as the distribution of tasks between them.
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