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Abstract
The COVID-19 has affected and threatened the world health system very critically through-
out the globe. In order to take preventive actions by the agencies in dealing with such a 
pandemic situation, it becomes very necessary to develop a system to analyze the impact 
of environmental parameters on the spread of this virus. Machine learning algorithms and 
artificial Intelligence may play an important role in the detection and analysis of the spread 
of COVID-19. This paper proposed a twinned gradient boosting machine (GBM) to ana-
lyze the impact of environmental parameters on the spread, recovery, and mortality rate of 
this virus in India. The proposed paper exploited the four weather parameters (temperature, 
humidity, atmospheric pressure, and wind speed) and two air pollution parameters (PM2.5 
and PM10) as input to predict the infection, recovery, and mortality rate of its spread. The 
algorithm of the GBM model has been optimized in its four distributions for best perfor-
mance by tuning its parameters. The performance of the GBM is reported as excellent 
(where R2 = 0.99) in training for the combined dataset comprises all three outcomes i.e. 
infection, recovery and mortality rates. The proposed approach achieved the best prediction 
results for the state, which is worst affected and highest variation in the atmospheric factors 
and air pollution level.

Keywords COVID-19 · Weather parameters · Air pollution · Gradient boosting machine

1 Introduction

After the first reported case of severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) in Wuhan, China in December 2019, it spread exponentially covering approxi-
mately 215 countries worldwide by 28th June 2021 [1]. According to the WHO’s report, 
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it has infected over 180,654,652 people, and 3,920,463 confirmed deaths globally by 28th 
June 2021. According to the report of the Ministry of Health and Family Welfare, Govern-
ment of India, there is a total of 5,72,994 active cases, 29,30,9607 cured and discharged 
and 3,96,730 deaths by 28th June 2021 [2]. Governments made their all efforts to con-
trol the spread of COVID-19 at their level, including lockdown, social distancing meas-
ures, personal hygiene, testing, tracking, isolation, and trial of drugs already used for other 
diseases like malaria, HIV, tuberculosis, etc. Finally, vaccination became the main tool to 
control the spread of COVID-19. In India total of 32,36,63,297 vaccines are vaccinated of 
which 4.3% are fully vaccinated and 20% of the population are partially vaccinated upto 
28th June 2021 [2].

Despite these all-available precautions, the 2nd surge in India was unexpected and 
affected a large percentage of the population. 2nd surge of COVID-19 spread started in 1st 
week of April 2021 and declined after the 1st week of June 2021. In nearly two months, 
the country started to struggle with inadequate of hospital beds, oxygen cylinders, essential 
medicines, and vaccines all around the country. On 30 April 2021, India became the first 
country that reported over 4,00,000 newly infected cases in a very single day (24 h). This 
unexpected speed of infection created a huge demand for basic essentials.

It has been observed that both spikes were reported during the particular climate con-
ditions in India. Therefore, it becomes too necessary to study the impact of weather and 
atmospheric factor on the spread of COVID-19. Along with weather parameters the impact 
of air pollutants is equally, important to analyses its impact on COVID 19.

The initial research talks about the transmission of COVID-19 from bats to humans orig-
inating from the seafood market in Wuhan, China [1, 3–5]. However, the scientific explo-
ration of its route of transmission is requisite. The close contact of humans increases its 
transmission rate rapidly, through the surface and air [6]. In some recent studies, the pres-
ence of coronavirus in the air, fecal swabs, and blood of active cases have been informed 
[7, 8]. The change of climate conditions provides a favorable environment to grow viruses 
resulting common flu. The particular climate conditions also affect the transmission rate of 
the pandemic by presenting emergent or hostile conditions for humans. It was confirmed in 
cases of past infectious diseases as well as in the case of transmission of the present situ-
ation of COVID-19 in some countries. Like the transmission rate of influenza was high at 
the low temperature and humidity. It is also confirmed in the case of severe acute respira-
tory syndrome (SARS) in July 2003 which affected by climate change [9].

As reported that COVID-19 has a similar genetic sequence to SARS, therefore, it is 
highly expected that its transmission rate will be affected by the change in weather param-
eters [10]. The effect of climate factors on the spread of COVID-19 in different countries 
has been established in some recent studies [11–19]. Besides, the atmospheric factor, 
air pollution level may also be an affecting factor of the transmission of COVID-19, as 
reported high-rise of COVID-19 cases in Italy [20]. The effect of concentration of nitrogen 
oxide on the fatality due to COVID-19 has also been reported in Italy [7]. The effect of 
lockdown and air pollution level at the spread rate of COVID-19 in Wuhan, China has been 
also reported [21], etc. Even the atmospheric factors and air pollution levels are highly cor-
related; the study based on their combined effect on the transmission rate of COVID-19 
in India has not been reported yet. The present work tries to cover the combined effect of 
atmospheric factors and measures of air pollution on the spread of COVID-19 during 28th 
March 2020 to 20th May 2021 (Exclusively two major surges) period in India.

In the past few years, machine learning has become a very significant tool in the analy-
sis and design of prediction models [22–24]. Many machine-learning models have been 
designed and applied efficiently in the analysis of COVID-19 cases [25–29]. Apart from 
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the most famous deep learning methods, tree-based learning (extreme gradient boosting 
machine) was successfully applied to find the associations between microRNAs (miRNAs) 
and human diseases. This motivates us to design the twined gradient boosting machine 
(GBM) model to analyze the correlation among atmospheric factors (temperature, humid-
ity, pressure, and wind speed), and air pollution (max and min of PM2.5 and PM10) with 
the infection, recovery, and death cases of COVID-19 daily in different states or places of 
India.

This paper proposes the following contributions:

 i. The data for the period of 25th March 2020 to 20th June 2021, has been collected, 
and analyzed to confirm the suitability of the dataset.

 ii. The analysis of the impact of atmospheric and air pollutant parameters on the spread 
of the disease

 iii. Analysis of the impact of atmospheric and air pollutant parameters on the recovery 
rate of the patient

 iv. Analysis of the impact of atmospheric and air pollutant parameters on the mortality 
rate of the disease

 v. The worst affected states were analyzed and tested for spread, recovery and mortality 
rate of COVID-19 separately.

Rest of the paper is organized in the following manner: Sect. 2 describes the process of 
data collection and its analysis. Section 3 presents the proposed gradient boosting machine 
(GBM) approach; Experimental setup and results are presented in Sect. 4. The next Sect. 5 
discusses the results, and finally Sect. 6 summarizes the critical finding and future research 
directions in this domain.

2  Data Collection and Analysis

The data of eight atmospheric factors (maximum and minimum temperature, maximum and 
minimum air pressure, maximum and minimum air humidity, and maximum and minimum 
wind speed) and four measures of air pollution (maximum and minimum of PM2.5 and 
PM10) of the 21 significant states or places of India have been collected from the Indian 
meteorological department (IMD) and Indian central pollution control board (CPCB) dur-
ing the period of  14th March 2020 to 20th May 2021 on daily basis (433 days) [30, 31]. 
The cases (number of infected, recovered, and death) of COVID-19 of similar states have 
been collected from an open-access source and information published by the ministry of 
health and family welfare, the government of India [32, 33]. The data of some states and 
union territories were not so significant for COVID-19, so it was not considered at all. The 
atmospheric factors, measures of air pollution, and cases of COVID-19 were used in com-
bination for further analysis. The missing or doubtful values of the atmospheric factors, 
air pollution measures for some states at some days were replaced by the previous imputa-
tion technique. The variations of minimum and maximum temperature and humidity after 
imputation are shown in Fig. 1. The minimum and maximum of  PM10 and  PM2.5 are shown 
in Fig. 2. The statistics of the dataset are presented in Table 1.

The variation in cases of COVID-19 after imputation is shown in Fig. 3. Variations of 
pressure wind speed are presented in the Table 1.
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Eight atmospheric parameters and four measures of air pollution were considered as 
input in the proposed twined GBM to analyses the correlation and forecast the infected, 
recovered, and death cases of COVID-19, independently. The total 9,033 instances are 
taken for the preprocessing that was collected between 14th March 2020 to 20th May 2021 
(21 states /places × 433 days). Out of this, 5974 with 17 attributes are taken for the train-
ing and remaining 3119 with 17 attributes are taken for the testing. The performance of 
the proposed GBM was also evaluated by predicting the COVID-19 cases state-wise. The 
atmospheric factors and air pollution measures were used as input of GBM simultaneously 
to check their mutual influence on the cases of COVID-19. Moreover, the minimum and 
the maximum values of the atmospheric factors (temperature, pressure, humidity, and wind 
speed) used as input of GBM and GBM are suitable in the understanding of their better 
impact on the distribution of COVID-19 cases. Moreover, to evaluate the impact of air pol-
lution four measures maximum and minimum PM10 and PM2.5 have been included.

Fig. 1  The variation of the temperature (in.oC), humidity (in %)

Fig. 2  The variation of  PM25 and  PM10 on a daily basis
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3  Gradient Boosting Machine (GBM) Approach

The gradient boosting machine (GBM) is an efficient method in regression analysis since it 
selects the adaptive characteristics of the dataset in the analysis. The optimal values of the 
predicted variables are obtained in several iterations by using the values of the dependent 
variable of the previous iteration and average weights. The GBM approach is implemented 
using the H2O package in R [33]. The basic steps of the GBM approach are described as 
follows [34]:

Step-1: For k = 1, 2… K {fk0 = 0}
Step-II: For m = 1, 2, 3 …M

Step-III: For k = 1, 2… K

Fitting regression tree to the targets rikm , i = 1, 2… N to obtain the terminal regions 
Rjim, j = 1, 2,… Jm

�
pk(x) =

efk(x)∑K

l=1
efl(x)

k = 1, 2 … K

{
rikm = yik − pk

(
xi
)
, i = 1, 2,… ,N

�jkm =
K − 1

K

⎛⎜⎜⎝

∑
xi
∈ Rjkm

�
rikm

�
∑∑

xi
∈Rjkm

��rikm��
�
1 − ��rikm��

�
⎞⎟⎟⎠
, j = 1, 2,… , Jm

Fig. 3  The variation in COVID-19 cases in India on a daily basis
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fk(x) = fkM(x) , where k = 1, 2… K}
The additional classifier can support to further enhancing the performance metrics of 

the GBM without disturbing its overall speed. Such a combination reduces the process 
of parameter tuning by providing a parallelizable and distributable feature. Furthermore, 
it can result in optimal accuracy in big data analysis.

4  Analysis of Experimental Results

4.1  Statistical Analysis of the COVID‑19 Dataset

Table 2 summarizes the statistical analysis using ANOVA method of the complete data-
set (atmospheric factors, measures of air pollution, and cases of COVID-19). Results 
indicate that eight atmospheric factors, four pollution measures, and three significant 
parameters of COVID-19 are significant for further prediction modeling. Specifically, 
P-value is less than 0.05 indicates the confirmation in contrast to the null hypothesis for 
each of the dependent and independent variables. The F value represents the ratio of the 
variation between sample means and variation within the sample. Hence, a large value 
of F indicates a higher value of variation between sample means than within the sample. 
It also indicates that the null hypothesis is wrong (Table 2).

fkm(x) = fk,m−1 +

Jm∑
j=1

rikmI
(
x ∈ Rjkm

)}

Table 2  Statistical analysis of the complete dataset using ANOVA methods

Atmospheric/air pollution COVID-
19 metrics

Statistical analysis using ANOVA methods

DF F Value P value

Minimum temperature 20 & 9072 396.60 P =  < 2 ×  10−16 (less than 0.05)
Maximum temperature 20 & 9072 127.00 P =  < 2 ×  10−16 (less than 0.05)
Minimum humidity 20 & 9072 284.00 P =  < 2 ×  10−16 (less than 0.05)
Maximum humidity 20 & 9072 120.30 P =  < 2 ×  10−16 (less than 0.05)
Minimum pressure 20 & 9072 455.20 P =  < 2 ×  10−16 (less than 0.05)
Maximum pressure 20 & 9072 107.4 P =  < 2 ×  10−16 (less than 0.05)
Minimum wind speed 20 & 9072 30.87 P =  < 2 ×  10–16 (less than 0.05)
Maximum wind speed 20 & 9072 79.76 P =  < 2 ×  10−16 (less than 0.05)
Minimum PM2.5 20 & 9072 165.00 P =  < 2 ×  10−16 (less than 0.05)
Maximum PM2.5 20 & 9072 280.50 P =  < 2 ×  10−16 (less than 0.05)
Minimum PM10 20 & 9072 222.30 P =  < 2 ×  10−16 (less than 0.05)
Maximum PM10 20 & 9072 251.30 P =  < 2 ×  10−16 (less than 0.05)
Infected cases of COVID-19 20 & 9072 74.31 P =  < 1.2 ×  10−9 (less than 0.05)
Mortality cases of COVID-19 20 & 9072 164.10 P =  < 2 ×  10−16 (less than 0.05)
Recovery cases of COVID-19 20 & 9072 69.16 P =  < 2 ×  10−16 (less than 0.05)
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4.2  Experimental Setup

The GBM models was trained with learning rate = 0.01, sample rate = 0.8 the number of 
trees = 10,000, and folds = 10 on Intel(R) Core (TM) i7-8565U CPU @ 1.80 GHz 1.99 GHz 
with 8 GB RAM to get the optimal performance.

4.3  Gradient Boosting Machine Model Analysis Results

The optimal GBM model was obtained after tuning the parameters of distribution func-
tions, including the learning rate, the number of trees, folds, etc. Four result-oriented dis-
tribution functions were used in GBM, including Poisson, Gaussian, Tweedie, and Gamma 
out of seven compared distributions (excluding Huber, Laplace, and Quantile). The perfor-
mance of the twinned GBM model using four different distribution functions is summa-
rized in Table 3 (the rest distribution is discarded). The performance measures, including 
the goodness-fit-measures (R2), root mean square error (RMSE), mean residual deviance 
(MRD), and mean average error (MAE) were used to evaluate the efficiency of the GBM. 
In the training, the optimal prediction performance of the GBM was achieved with the 
Poisson distribution (R2 = 0.99) in all the three metrics of COVID-19 as infected, recov-
ered, and mortality cases as shown in Table 3. The performance metrics of the GBM model 
in the forecast of the COVID-19 cases of the test dataset are demonstrated in Figs. 4, 5, and 
6, respectively. Figure 4 exhibits a detailed performance analysis of different distribution 
functions of GBM to forecast the infected, recovered, and mortality cases of COVID-19, 
respectively for the combined dataset of different states/places of India.

All seven worst-affected states (Maharashtra, Delhi, Karnataka, Kerala, Madhya 
Pradesh, Uttar Pradesh, and West Bengal) data were tested with the twinned GBM with 
the four most result-oriented distributions as Poisson, Gaussian, Tweedie, and Gamma 
distributions. Five performance parameters were used as R2, MSE, RMSE, MAE, and 

Table 3  Performance metrics of twined GBM in training with combined dataset of India

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of India using twined GBM Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.99 697,073.2 834.90 549.45  − 68,306.81
Gaussian 0.97 2,334,416 1527.28 958.07 2,334,416
Tweedie 0.96 1,474,786 1214.40 600.14 9.32
Gamma 0.85 9,943,415 3153.31 1239.84 15.59

Recovery Poisson 0.99 508,361.5 712.99 777.06  − 58,347.96
Gaussian 0.98 1,549,178 1244.66 794.12 1,549,178
Tweedie 0.97 1,107,026 1052.15 519.56 9.63
Gamma 0.81 10,711,357 3272.82 1291.17 15.05

Mortality Poisson 0.99 72.24 8.49 5.62  − 352.88
Gaussian 0.97 214.41 14.64 9.19 214.41
Tweedie 0.98 133.50 11.55 5.94 1.20
Gamma 0.85 1459.253 38.20 15.07 5.64
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MRD to find the proper correlation and efficiency of the individual model. The test 
performance of seven states of India was summarized and presented in Tables 4, 5, 6, 
7, 8, 9 and 10 and Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 respec-
tively below:

Fig. 4  Correlative capability of twinned GBM in the training for infected cases of COVID-19 in terms of 
the combined dataset

Fig. 5  Correlative capability of twinned GBM in the training for recovery cases of COVID-19 in terms of 
the combined dataset



1972 L. K. Shrivastav, R. Kumar 

1 3

5  Discussion of Results

Tree-based machine learning approaches have high accuracy in the analysis of small and 
big datasets in previous research studies [35, 36]. In the case of analysis of the disease 
data, the GBM was used to predict the association of miRNAs [35]. Besides, the improved 

Fig. 6  Correlative capability of twinned GBM in the training for mortality cases of COVID-19 in terms of 
the combined dataset

Table 4  Performance metrics of twinned GBM in the forecast of infected, recovered and mortality cases of 
COVID-19 in Maharashtra

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of Maharashtra using twinned GBM 
Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.90 26,641,098 5161.50 2150.96  − 230,002.7
Gaussian 0.90 27,409,054 5235.36 275,374 27,409,054
Tweedie 0.88 32,401,221 5692.20 2506.71 23.05
Gamma 0.78 61,476,424 7840.69 3989.27 19.70

Recovery Poisson 0.87 35,233,383 5935.77 2083.57  − 208,900.6
Gaussian 0.89 29,515,814 5432.84 2635.31 29,515,814
Tweedie 0.85 40,477,651 6362.20 2427.32 28.22
Gamma 0.71 76,864,938 8767.26 4242.95 19.32

Mortality Poisson 0.84 7480.54 86.49 31.87  − 1857.321
Gaussian 0.88 5770.93 75.96 36.84 5770.931
Tweedie 0.83 8169.448 90.38 37.05 3.43
Gamma 0.65 17,140.35 130.92 72.00 11.78
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performance of the GBM in the predictive modeling of the pandemic has been discussed 
[35]. This is the reason for selecting the GBM model in the prediction of the COVID-19 
cases in India using the atmospheric factors and pollution levels. Due to a large geographi-
cal area, there is a huge variation in atmospheric factors (Fig. 1 and Table 1) in different 
states of India. Besides, the pollution levels also vary in different states, which is obvious 

Table 5  Performance metrics of twinned GBM in the prediction of COVID-19 in Delhi

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of Delhi using twinned GBM Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.75 7,099,035 2664.40 920.95  − 50,832.85
Gaussian 0.78 7,424,884 2724.864 902.08 13.80
Tweedie 0.74 6,258,603 2501.72 1232.27 6,258,603
Gamma 0.69 8,748,782 2957.83 1119.90 16.29

Recovery Poisson 0.70 7,416,954 2723.40 936.06  − 48,065.37
Gaussian 0.78 5,590,525 2364.42 1092.77 5,590,525
Tweedie 0.73 6,680,122 2584.59 893.76 19.05
Gamma 0.67 8,247,308 2871.81 1164.22 15.79

Mortality Poisson 0.77 1687.84 41.08 13.41  − 381.93
Gaussian 0.83 1238.01 35.18 15.62 1238.01
Tweedie 0.75 1809.62 42.53 13.84 13.06
Gamma 0.59 3026.10 55.01 22.80 626.64

Table 6  Performance metrics of twinned GBM in the prediction of infected, recovered and mortality cases 
of COVID-19 in Karnataka

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of Karnataka using twinned GBM 
Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.79 19,862,527 4456.73 1500.29  − 91,129.5
Gaussian 0.84 14,337,580 3786.5 1849.86 14,337,580
Tweedie 0.74 24,453,918 4945.09 1655.20 25.38
Gamma 0.54 43,640,970 6606.13 2505.40 16.71

Recovery Poisson 0.55 24,694,898 4969.39 1380.51  − 66,065.49
Gaussian 0.63 19,921,899 4463.39 164,133 19,921,899
Tweedie 0.50 27,565,253 5250 1483.41 29.55
Gamma 0.31 37,742,917 6143.52 2137.15 16.08

Mortality Poisson 0.64 3241.45 56.93 17.11  − 416.7302
Gaussian 0.71 2674.02 51.71 20.25 2674.02
Tweedie 0.60 3604.25 60.03 18.61 3.29
Gamma 0.39 5582.60 74.71 27.88 7.68



1974 L. K. Shrivastav, R. Kumar 

1 3

from the variation of minimum and maximum  PM10 and  PM2.5 (Fig. 2 and Table 1). The 
basic statistics in Table 1 and Fig. 3 demonstrates the variation in the cases of COVID-19 
in different states of India. The basic statistics on the atmospheric factors, pollution meas-
ures, and cases of COVID-19 suggest their unequal distribution.

Table 7  Performance metrics of twinned GBM in the prediction of infected, recovered and mortality cases 
of COVID-19 in Kerala

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of Kerala using twinned GBM Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.76 15,856,941 3982.07 1761.23  − 85,513.48
Gaussian 0.76 16,218,005 4027.15 2402.33 16,218,005
Tweedie 0.74 17,305,083 4159.93 1832.27 41.30
Gamma 0.59 28,000,496 5251.54 2513.33 17.51

Recovery Poisson 0.47 34,757,267 5895.52 1563.41 70,499.11
Gaussian 0.56 28,294,945 5319.29 1872.39 28,294,945
Tweedie 0.43 36,155,911 6212.97 1591.96 71.48
Gamma 0.19 46,725,269 6835.58 2331.723 19.08

Mortality Poisson 0.59 129.47 11.37 6.47  − 65.85
Gaussian 0.37 198.53 14.09 9.96 198.53
Tweedie 0.58 130.45 11.42 5.65 3.09
Gamma 0.46 171.18 13.08 6.64 6.76

Table 8  Performance metrics of twinned GBM in prediction of infected, recovered and mortality cases of 
COVID-19 in Madhya Pradesh

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of Madhya Pradesh using twinned 
GBM Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.87 1,099,131 1048.39 543.74  − 25,225.9
Gaussian 0.80 1,736,249 1317.66 836.93 1,736,249
Tweedie 0.86 1,230,043 1109.07 498.90 8.37
Gamma 0.75 2,195,843 1481.84 642.10 27.65

Recovery Poisson 0.88 936,599.5 967.78 557.09  − 22,263.02
Gaussian 0.81 1,460,947 1208.69 756.27 1,460,947
Tweedie 0.85 1,142,666 1068.95 433.96 5.58
Gamma 0.67 2,522,093 1588.11 661.08 12.80

Mortality Poisson 0.84 77.58 8.80 5.38  − 78.62
Gaussian 0.74 127.49 11.29 7.36 127.49
Tweedie 0.84 75.86 8.70 4.94 1.54
Gamma 0.65 171.64 13.10 7.27 6.21
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The training performance results of twinned GBM for infected cases on the combined 
dataset of significant states of India provide  R2 = 0.99, and RMSE = 834.90 with Pois-
son distribution,  R2 = 0.97, and RMSE = 1527.28 with Gaussian distribution,  R2 = 0.96, 

Table 9  Performance metrics of twinned GBM in the prediction of infection, recovery, and mortality cases 
of COVID-19 in Uttar Pradesh

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of Uttar Pradesh using twinned GBM 
Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.79 10,577,070 3552.24 1381.75  − 61,904.25
Gaussian 0.80 10,406,203 3225.86 1743.42 10,406,203
Tweedie 0.75 13,076,517 3616.147 1399.83 30.04
Gamma 0.67 17,071,418 4131.75 1747.28 16.68

Recovery Poisson 0.88 936,599.5 967.78 557.09  − 22,263.02
Gaussian 0.81 1,460,947 1208.69 756.27 1,460,947
Tweedie 0.85 1,142,666 1068.95 433.96 8.58
Gamma 0.67 2,522,093 1588.11 12.80 661.08

Mortality Poisson 0.73 1301.39 36.07 14.88  − 289.60
Gaussian 0.72 1375.24 37.08 19.75 1375.24
Tweedie 0.69 1499.57 38.72 15.54 3.69
Gamma 0.51 2423.18 49.22 22.37 8.29

Table 10  Performance of twinned GBM in the prediction of infestation, recovery, and mortality cases of 
COVID-19 in West Bengal

Performance metrics:  R2 (R squared), RMSE (root mean square error), MSE (mean square error), MRD 
(mean residual deviance) and MAE (mean average error)

COVID parameters Applied distributions Performance metrics of West Bengal using twinned GBM 
Model

R2 MSE RMSE MAE MRD

Infection Poisson 0.79 4,051,807 2012.91 883.78  − 42,267.37
Gaussian 0.78 4,271,421 2066.74 856.38 26.78
Tweedie 0.64 6,969,710 2640.02 1329.80 6,969,710
Gamma 0.68 6,107,182 2471.27 1055.63 10.37

Recovery Poisson 0.80 2,969,163 1723.12 756.79  − 36,596.96
Gaussian 0.72 4,218,383 2053.87 1106.53 4,218,383
Tweedie 0.78 3,331,449 1825.22 737.33 26.88
Gamma 0.60 6,129,715 2475.82 1145.73 16.34

Mortality Poisson 0.78 219.41 14.81 9.05  − 181.25
Gaussian 0.63 367.59 19.17 12.32 367.59
Tweedie 0.75 244.71 15.64 9.27 5.54
Gamma 0.57 424.39 20.60 13.14 8.94
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and RMSE = 1214.40 with Tweedie distribution and  R2 = 0.85 and RMSE = 1239.84 
with Gamma distributions. The training performance results of twinned GBM for recov-
ered cases on the combined dataset of significant states of India provide  R2 = 0.99, and 
RMSE = 712.99 with Poisson distribution,  R2 = 0.98, and RMSE = 1244.66 with Gaussian 
distribution,  R2 = 0.97, and RMSE = 1052.15 with Tweedie distribution and  R2 = 0.81 and 
RMSE = 3272.82 with Gamma distributions. The training performance results of twinned 
GBM for mortality case on the combined dataset of significant states of India provides 
 R2 = 0.99, and RMSE = 8.49 with Poisson distribution,  R2 = 0.97, and RMSE = 14.64 

Fig. 7  Correlative capability of twined GBM to forecast the infection rate of COVID-19 in Maharashtra

Fig. 8  Correlative capability of twined GBM to forecast the recovery rate of COVID-19 in Maharashtra
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with Gaussian distribution,  R2 = 0.98 and RMSE = 11.55 with Tweedie distribution and 
 R2 = 0.85 and RMSE = 38.20 with Gamma distributions. The complete performance result 
for infected, recovery, and mortality cases are presented in Table 3, Figs. 4, 5, and 6 respec-
tively. The performance results of the twined GBM with all four selected four distributions 
(Poisson, Gaussian, Tweedie, and Gamma) are quite good and quite better it assures that 
there is a close correlation among the atmospheric factor, air pollutants, and COVID-19 
parameters and the study may move for the further processing.

Now the trained model has applied the dataset to the seven largely affected states of 
India to explore the deeper analysis and correlation for testing. At first, one of the worst 

Fig. 9  Correlative capability of twined GBM to forecast the mortality rate of COVID-19 in Maharashtra

Fig. 10  Correlative capability of twined GBM to forecast the infection rate of COVID-19 in Delhi
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affected Maharashtra is taken for testing. Surprisingly the performance result of the infected 
case provides a very convincing correlation as  R2 = 0.90, and RMSE = 5161.50 with Pois-
son distribution,  R2 = 0.90, and RMSE = 5235.36 with Gaussian distribution,  R2 = 0.88, 
and RMSE = 5692.20 with Tweedie distribution and  R2 = 0.78 and RMSE = 7840.69 
with Gamma distributions. In the case of recovery, it also approves the hypothesis with 
 R2 = 0.87, and RMSE = 5935.77 with Poisson distribution,  R2 = 0.89, and RMSE = 5432.84 
with Gaussian distribution,  R2 = 0.85 and RMSE = 6362.20 with Tweedie distribution and 
 R2 = 0.71 and RMSE = 8767.26 with Gamma distributions. In the case of mortality, the 
performance results are also in the same hypothesis line as  R2 = 0.84, and RMSE = 86.49 

Fig. 11  Correlative capability of twined GBM to forecast the recovery rate of COVID-19 in Delhi

Fig. 12  Correlative capability of twined GBM to forecast the mortality rate of COVID-19 in Delhi
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with Poisson distribution,  R2 = 0.88, and RMSE = 75.96 with Gaussian distribution, 
 R2 = 0.83 and RMSE = 90.38 with Tweedie distribution and  R2 = 0.65 and RMSE = 130.92 
with Gamma distributions. The complete performance result for Maharashtra is already 
shown in Table 4, Figs. 7, 8, and 9 respectively.

Secondly, the model is tested for the largely affected state of Delhi. The performance 
result of this testing is  R2 = 0.75, and RMSE = 2664.40 with Poisson distribution,  R2 = 0.78, 
and RMSE = 2724.86 with Gaussian distribution,  R2 = 0.74, and RMSE = 2501.72 with 
Tweedie distribution and  R2 = 0.69 and RMSE = 2957.83 with Gamma distributions. In the 

Fig. 13  Correlative capability of twined GBM to forecast the infection rate of COVID-19 in Karnataka

Fig. 14  Correlative capability of twined GBM to forecast the recovery rate of COVID-19 in Karnataka
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case of recovery, it also approves the hypothesis with  R2 = 0.88, and RMSE = 5935.77 with 
Poisson distribution,  R2 = 0.81, and RMSE = 5432.84 with Gaussian distribution,  R2 = 0.85 
and RMSE = 6362.20 with Tweedie distribution and R2 = 0.67 and RMSE = 8767.26 with 
Gamma distributions. In the case of mortality, the performance results are also in the same 
hypothesis line as  R2 = 0.73, and RMSE = 36.07 with Poisson distribution,  R2 = 0.72, and 
RMSE = 37.08 with Gaussian distribution,  R2 = 0.69 and RMSE = 38.72 with Tweedie 
distribution and  R2 = 0.51 and RMSE = 49.22 with Gamma distributions. The complete 
performance result for Maharashtra is already shown in Table  5, Figs.  10, 11, and 12 
respectively.

Fig. 15  Correlative capability of twined GBM to forecast the mortality rate of COVID-19 in Karnataka

Fig. 16  Correlative capability of twined GBM to forecast infection rate of COVID-19 in Kerala
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Third, the trained model has applied the testing dataset of the significant state of Kar-
nataka. The performance result of this testing is as  R2 = 0.79, and RMSE = 4456.73 with 
Poisson distribution,  R2 = 0.84 and RMSE = 3786.50 with Gaussian distribution,  R2 = 0.74 
and RMSE = 4945.09 with Tweedie distribution and  R2 = 0.54 and RMSE = 6606.13 
with Gamma distributions. In the case of recovery, it also approves the hypothesis with 
 R2 = 0.55, and RMSE = 4969.39 with Poisson distribution,  R2 = 0.63, and RMSE = 4463.39 
with Gaussian distribution,  R2 = 0.50, and RMSE = 5250 with Tweedie distribution and 
 R2 = 0.31 and RMSE = 6143.52 with Gamma distributions. In the case of mortality, the 
performance results are also in the same hypothesis line as  R2 = 0.64, and RMSE = 56.93 

Fig. 17  Correlative capability of twined GBM to forecast recovery rate of COVID-19 in Kerala

Fig. 18  Correlative capability of twined GBM to forecast mortality rate of COVID-19 in Kerala
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with Poisson distribution,  R2 = 0.71, and RMSE = 51.71 with Gaussian distribution, 
 R2 = 0.60, and RMSE = 60.03 with Tweedie distribution and  R2 = 0.39 and RMSE = 74.71 
with Gamma distributions. The complete performance result for Karnatka is already shown 
in Table 6, Figs. 13, 14, and 15 respectively.

Fourth, the trained model has applied the testing dataset of the significant state of Ker-
ala. The performance result of this testing is as  R2 = 0.76, and RMSE = 3982.07 with Pois-
son distribution,  R2 = 0.76 and RMSE = 4027.15 with Gaussian distribution,  R2 = 0.74, 
and RMSE = 4159.93 with Tweedie distribution and  R2 = 0.59 and RMSE = 5251.54 

Fig. 19  Correlative capability of twined GBM to forecast infection rate of COVID-19 in Madhya Pradesh

Fig. 20  Correlative capability of twined GBM to forecast recovery rate of COVID-19 in Madhya Pradesh
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with Gamma distributions. In the case of recovery, it also approves the hypothesis with 
 R2 = 0.47, and RMSE = 5895.52 with Poisson distribution,  R2 = 0.56, and RMSE = 5319.29 
with Gaussian distribution,  R2 = 0.43, and RMSE = 6212.97 with Tweedie distribution and 
 R2 = 0.19 and RMSE = 6835.58 with Gamma distributions. In the case of mortality, the 
performance results are also in the same hypothesis line as  R2 = 0.59, and RMSE = 11.37 
with Poisson distribution,  R2 = 0.37, and RMSE = 14.09 with Gaussian distribution, 
 R2 = 0.58, and RMSE = 11.42with Tweedie distribution and  R2 = 0.46 and RMSE = 13.08 
with Gamma distributions. The complete performance result for Kerala is already shown in 
Table 7, Figs. 16, 17, and 18 respectively.

Fifth, the trained model has applied the testing dataset of the significant state of Mad-
hya Pradesh. The performance result of this testing is R2 = 0.87, and RMSE = 1048.39 
with Poisson distribution, R2 = 0.80, and RMSE = 1317.66 with Gaussian distribu-
tion, R2 = 0.86, and RMSE = 1109.07 with Tweedie distribution and R2 = 0.59 and 
RMSE = 1481.84 with Gamma distributions. In the case of recovery, it also approves the 
hypothesis with R2 = 0.88, and RMSE = 5895.52 with Poisson distribution, R2 = 0.81, 
and RMSE = 5319.29 with Gaussian distribution, R2 = 0.85, and RMSE = 6212.97 with 
Tweedie distribution and R2 = 0.67 and RMSE = 6835.58 with Gamma distributions. In the 
case of mortality, the performance results are also in the same hypothesis line as R2 = 0.84, 
and RMSE = 8.80 with Poisson distribution, R2 = 0.74, and RMSE = 11.29 with Gauss-
ian distribution, R2 = 0.84, and RMSE = 8.70with Tweedie distribution and R2 = 0.65 and 
RMSE = 13.10 with Gamma distributions. The complete performance result for Madhya 
Pradesh is already shown in Table 8, Figs. 19, 20, and 21 respectively.

Sixth, the trained model has applied the testing dataset of the significant state of Uttar 
Pradesh. The performance result of this testing is as R2 = 0.79, and RMSE = 3552.24 
with Poisson distribution, R2 = 0.80, and RMSE = 3225.86 with Gaussian distribu-
tion, R2 = 0.75, and RMSE = 3616.14 with Tweedie distribution and R2 = 0.67 and 
RMSE = 4131.75with Gamma distributions. In the case of recovery, it also approves the 
hypothesis with R2 = 0.88, and RMSE = 967.78 with Poisson distribution, R2 = 0.81, 
and RMSE = 1208.69 with Gaussian distribution, R2 = 0.85, and RMSE = 1068.95 with 

Fig. 21  Correlative capability of twined GBM to forecast mortality rate of COVID-19 in Madhya Pradesh
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Tweedie distribution and R2 = 0.67 and RMSE = 1588.11 with Gamma distributions. In the 
case of mortality, the performance results are also in the same hypothesis line as R2 = 0.73, 
and RMSE = 36.07 with Poisson distribution, R2 = 0.72, and RMSE = 37.08 with Gauss-
ian distribution, R2 = 0.69 and RMSE = 38.72 with Tweedie distribution and R2 = 0.51 
and RMSE = 49.22 with Gamma distributions. The complete performance result for Uttar 
Pradesh is already shown in Table 9, Figs. 22, 23, and Figs. 24 respectively.

Seventh, the trained model has applied the testing dataset of the significant 
state of West Bengal. The performance result of this testing is as  R2 = 0.79, and 
RMSE = 2012.91 with Poisson distribution,  R2 = 0.78 and RMSE = 2066.74 with 

Fig. 22  Correlative capability of twined GBM to forecast infection rate of COVID-19 in Uttar Pradesh

Fig. 23  Correlative capability of twined GBM to forecast recovery rate of COVID-19 in Uttar Pradesh
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Gaussian distribution,  R2 = 0.64 and RMSE = 2640.02 with Tweedie distribution 
and  R2 = 0.68 and RMSE = 247,127 with Gamma distributions. In the case of recov-
ery, it also approves the hypothesis with  R2 = 0.80, and RMSE = 1723.12 with Poisson 
distribution,  R2 = 0.72, and RMSE = 2053.87 with Gaussian distribution,  R2 = 0.78, 
and RMSE = 1825.22 with Tweedie distribution and  R2 = 0.60 and RMSE = 2475.82 
with Gamma distributions. In the case of mortality, the performance results are also 
in the same hypothesis line as  R2 = 0.78, and RMSE = 14.81 with Poisson distribution, 
 R2 = 0.63, and RMSE = 19.17 with Gaussian distribution,  R2 = 0.75 and RMSE = 15.64 
with Tweedie distribution and  R2 = 0.57 and RMSE = 20.60 with Gamma distribu-
tions. The complete performance result for West Bengal is already shown in Table 10, 
Figs. 25, 26, and 27 respectively.

The above-discussed performance parameter and the rest of the parameters are demon-
strated in Tables 4, 5, 6, 7, 8, 9 and 10 and Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 23, 24, 25, 26 and 27 suggests that the Maharashtra had an ideal atmosphere 
for infection, recovery, and mortality with  R2 = 0.99 in all three with the Poisson distribu-
tion. The testing model on Delhi is not so much performing on infection and recovery rate 
but it supports the mortality rate. The maximum performance was given by Gaussian dis-
tribution with  R2 = 0.78 for the infection rate, R2 = 0.78 for recovery rate and  R2 = 0.83 for 
the mortality rate.  R2 = 0.84 for an infection rate for the Karnataka state, recovery provides 
 R2 = 0.63 and mortality  R2 = 0.71 by Gaussian distribution. Kerala infection rate  R2 = 0.71 
and recovery rate  R2 = 0.56 provided by Gaussian distribution and mortality rate  R2 = 0.59 
by Poisson distribution does not support; it might lack non-arability/missing of the cor-
rect atmospheric or pollution dataset. Madhya Pradesh, maximum infection rate, recovery 
rate, and mortality rate R2 = 0.87,  R2 = 0.88, and  R2 = 0.84 respectively by Poisson distri-
bution. Uttar Pradesh, maximum infection rate, recovery rate, and mortality rate  R2 = 0.80, 
 R2 = 0.88, and  R2 = 0.73 respectively by Poisson distribution. West Bengal, maximum 
infection rate, recovery rate, and mortality rate  R2 = 0.79,  R2 = 0.80, and  R2 = 0.78 respec-
tively by Poisson distribution.

The COVID parameter according to the testing performance conclusion:

Fig. 24  Correlative capability of twined GBM to forecast mortality rate of COVID-19 in Uttar Pradesh



1986 L. K. Shrivastav, R. Kumar 

1 3

Infection Rate: Maharashtra > Madhya Pradesh > Uttar Pradesh > West 
Bengal > Karnataka > Delhi > Kerala.

Recovery Rate: Maharashtra > Madhya Pradesh > Uttar Pradesh > West 
Bengal > Karnataka > Kerala.

Mortality Rate: Maharashtra > Madhya Pradesh > Delhi > West Bengal > Uttar 
Pradesh > Delhi > Karnataka > Kerala.

The adverse effect of weather parameters like temperature and humidity on the cases 
of COVID-19 has been reported in some of the recently published research, like high 

Fig. 25  Correlative capability of twined GBM to forecast infection rate of COVID-19 in West Bengal

Fig. 26  Correlative capability of twined GBM to forecast recovery rate of COVID-19 in West Bengal
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spread rate at low temperature and humidity in Iran [11]; low spread rate at high humid-
ity and temperature in China [16]; and low spread rate of high average humidity and 
temperature [15]. The impact of additional atmospheric factors like air pressure and 
wind speed are not been properly noticed in any recent studies. A positive correlation 
between air pollution and the cases of COVID-19 has been established in some studies, 
like air pollution and spread rate in Italy and China [7, 20, 21]. Moreover, the atmos-
pheric factors and the air pollution levels are also related; therefore, the present study 
explored their combined effect (rate of spread) of COVID-19 in major states/places of 
India using the twinned GBM model. It was noticed that the states having lower mean 
temperature, humidity, and air pollution as Uttarakhand, Arunachal Pradesh, Himachal 
Pradesh, Sikkim, Mizoram, etc. have a smaller number of infected, and mortality cases 
and a higher number of recovered cases than other states/places with high mean tem-
perature, humidity, and air pollution as Maharashtra, Delhi, Karnataka, Kerala, and 
Madhya Pradesh, etc. However, in some states, it is still difficult to understand the cor-
relation between the spread rate of COVID-19, atmospheric factors, and air pollution 
measures. The collected data and the analysis outcomes of the different distribution of 
GBM suggest a significant correlation between the spread rate of COVID-19, atmos-
pheric factors, and air pollution measures in most of the states of India. Besides, the 
high population density of some of the states and activities of people towards the gov-
ernment regulations, movement of migrant workers, social gatherings, etc. during the 
lockdown period are also some factors responsible for the spread of COVID-19.

Maharashtra, Delhi, Kerala, Karnataka, Madhya Pradesh, Uttar Pradesh, and West Ben-
gal are worst affected states than other states of India. The predicted numbers of infected 
cases in Maharashtra, Madhya Pradesh, and Uttar Pradesh by different distribution of GBM 
are equal to their exact values for most of the day (Figs. 19, 20, 21, 22, 23 and 24). There-
fore, Maharashtra was the ideal place for the spread and mortality. The missing information 
on the atmospheric factors, air pollution measures, and cases of COVID-19 in the duration 
of data collection may be one of the reasons for the average and poor forecast metrics of 
the different distribution of GBM for some states.

Fig. 27  Correlative capability of twined GBM to forecast mortality rate of COVID-19 in West Bengal
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6  Conclusions and Future Research Scope

This paper presents a correlation between the atmospheric factors, air pollution measures, 
and infection, recovery, and mortality rate of COVID-19 in the significant states/places of 
India. The paper proposed a twin GBM model to capture the deep and intrinsic nature of 
the different datasets. The experimental results confirms that the improved GBM model 
is proficient enough to determine the correlation among atmospheric parameters, air pol-
lution measures, and COVID-19 impact (infection, recovery, and mortality rate) in the 
aggregate dataset of different states/places of India. The enhanced performance metrics  (R2 
and different errors mechanism) of the improved GBM establish a convinced connotation 
of transmission rates of COVID-19 with air pollution measures and atmospheric factors. 
Particularly in some states like Maharashtra, Delhi, Karnataka, Kerala, Madhya Pradesh, 
Uttar Pradesh, and West Bengal where maximum number of COVID-19 cases have been 
reported, the air pollution measures and atmospheric factors have a significant role in the 
spread of the pandemic. Future research will focus on improving the state-wise prediction 
efficiency of COVID-19 cases by considering more parameters of the weather and atmos-
pheric pollutants.
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