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Abstract
Face Recognition aims at identifying or confirming an individual’s identity in a still image 
or video. Towards this end, machine learning and deep learning techniques have been suc-
cessfully employed for face recognition. However, the response of the face recognition sys-
tem often remains mysterious to the end-user. This paper aims to fill this gap by letting 
an end user know which features of the face has the model relied upon in recognizing a 
subject’s face. In this context, we evaluate the interpretability of several face recognizers 
employing deep neural networks namely, LeNet-5, AlexNet, Inception-V3, and VGG16. 
For this purpose, a recently proposed explainable AI tool–Local Interpretable Model-
Agnostic Explanations (LIME) is used. Benchmark datasets such as Yale, AT &T dataset, 
and Labeled Faces in the Wild (LFW) are utilized for this purpose. We are able to dem-
onstrate that LIME indeed marks the features that are visually significant features for face 
recognition.

Keywords Explainable AI · Face Recognition · Deep Neural Network · LeNet-5 · AlexNet · 
Inception-V3 · VGG16

1 Introduction

A face recognition system provides a means for the automatic recognition of the various 
subjects against the already stored datasets. The applications of face recognition include 
unlocking smartphones, searching missing persons, etc. With advancement in digital 
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technology, face recognition is also being used in various cyber investigations [1, 2]. This 
complements well with the aftermath of the COVID-19 outbreak, which has forced the 
world to adopt face recognition technology with a primary focus on the contact-less opera-
tion [3, 4]. The most prominent issue that affects the outcome of face recognition systems 
is related to the illumination variation, which may be due to varying lighting conditions 
[5]. Aside from this, concerns with posture variation or camera angles can cause significant 
changes in facial appearance and/or form, as well as intra-subject face variations [2, 4–6]. 
Also, the occlusion of a face by other objects or varying levels of emotions may impede the 
performance of face recognition systems [7].

To deal with uncontrolled environments which may lead to false positives and negatives 
during classification, and to improve the overall performance of the face recognition sys-
tems, various techniques have been proposed by research groups all over the world. Tang 
et  al. [8] employed a novel Distance Weighted Linear Regression Classifier (DWLRC) 
to overcome the problem of faces being misclassified in the systems using linear regres-
sion. The distance between each sample point and the original linear space is utilized as 
an adjustment parameter to optimize the regression line in order to produce a better result 
under varied scenarios. The proposed methodology outperforms the traditional Linear 
Regression Classifier (LRC), Nearest-Farthest Subspace (NFS), Kernel Linear Regres-
sion Classifier (KLRC), and Center-based Weighted Kernel Linear Regression Classifier 
(CWKLR). The method reported recognition rates of 96% on the AT &T dataset.

In addition to the above, other Machine Learning (ML) algorithms have also been uti-
lized for the robust classification of face samples. Damale et al. [9] have presented three 
different methods based on ML paradigms, based on Support Vector Machine (SVM), 
Perceptron Multilayer (MLP), and Convolutional Neural Network (CNN). SVM and MLP 
approaches rely on features extracted through Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA), whereas in CNN the images are directly used as a 
feature vector. The proposed systems, as reported, demonstrated test accuracies of nearly 
87%, 86.5%, and 98% for SVM, MLP, and CNN respectively on self-generated databases. 
Abuzneid et al. [10] proposed an improved face recognition system using Back-Propagation 
Neural Network (BPNN) supported by a pre-processing through a Haar-Cascade detection, 
Histogram Equalization (HE), and local feature extraction through Local Binary Patterns 
(LBP) descriptor. The system, as reported achieves an accuracy of ∼ 98% on both Yale 
and ORL datasets with a significant reduction in computational time. In addition to this, 
an Ensemble-aided face recognition approach proposed by Venkateswar et al. [11], dem-
onstrated good performance in rough environments by relying on Image Frontalization and 
pre-processing through different enhancement methods. The feature extraction is based on 
several descriptors including histograms of gradients (HOG), improved center-symmetric 
local binary patterns (ICSLBP), SIFT descriptors, and dominant color structure descrip-
tors for final classification through SVM. This approach combines the utility of robust pre-
processing with a good classification accuracy of 99% and 94% for the data samples from 
FERET and LFW databases respectively.

Qu et al. [12] demonstrated another face recognition system based on CNN and FPGA. 
This is important primarily because the FPGA is able to implement parallel computing 
and can be used to design exotic logic circuits, which help in achieving higher process-
ing speed in comparison to standard CPU, GPUT, and TPU processors. The network is 
reported to work at the clock frequency of 50MHz achieving the recognition speeds of up 
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to 400FPS and a recognition rate of 99.25%. A modified Deep Neural Network (DNN) 
system was reported by Aiman et al. [13], which consists of CNNs, RELUs, and fully con-
nected layers to improve recognition rates when the training dataset is limited. This is done 
by using the data augmentation technique which helps in increasing the number of training 
face samples. Further, as reported, this also improves the generalization capabilities of the 
employed CNN systems. The group reports, the accuracy of 95.21% the AT &T face data-
base for 4 training samples whereas 99.92% for 5 training samples. A new eight-layered 
CNN architecture was proposed by Coskun et al. [14], which relies on the batch Normali-
zation process to improve the accuracy of the proposed system and a Softmax classifier 
to classify the face samples. Görgel et al. [15] proposed another face recognition system 
that uses deep-stacked denoising sparse autoencoders (DSDSA) for the identification of 
face areas and/or distinctive landmark features. The classification methodology relies on 
multi-class support vector machines (SVM) and SoftMax classifiers. A novel deep neural 
network presented by Zhao et al. [16], makes use of CNN to realize a feature vector for 
human face representation. This is followed by PCA for dimension reduction to remove 
the redundant and contaminated visual features. The authors report a recognition rate of 
98.52% on the CAS-PEAL dataset, and the system as reported is robust under face rec-
ognition attacks. FaceNet [17], introduced by Google researchers, proposed a face recog-
nizer based on machine learning. The group makes use of two pre-trained models from 
CASIA-WebFace and VGGFace2 for testing the system performance. The proposed system 
is robust and can achieve recognition rates of 100%. This is because FaceNet relies on 
comparing each face sample, one after the other with the pre-trained Tensorflow model. 
The pre-trained data model has a considerable influence on the accuracy of the FaceNet 
approach, with VGGFace2 producing better average recognition accuracy.

Face recognition has also found its way towards robust and intelligent video surveillance. 
In this regard, Wang et al. [18] have put forward a brute force detection method for violence 
detection based on CNN and trajectory features. The authors have proposed two methods to 
deal with face images extracted at lower resolutions from a surveillance video by using multi-
foot input and SPP-based CNN models. The accuracy as reported on Crow and Hockey data-
sets is 92% and 97.6%, respectively. To improve the performance of face recognition systems 
in adverse conditions (such as blurred low - resolution samples, improper illumination, etc), Li 
et al. [19] have proposed a new technique called as Learning the Covariance Matrix Of Gabor 
Wavelet (GW) (LCMoG). The Covariance Matrix, however, is disjoint from the Euclidean 
space, and therefore, Euclidean-based measures cannot be adopted directly. To address this, 
the authors propose two methods, one based on shallow CNN (called LCMoG-CNN) to pro-
ject covariance matrix of GW into a feature vector of euclidean space, and the other based 
on matrix-logarithm (called LCMoG-LWPZ) which uses Whitening PCA to learn face fea-
tures from the embedded covariance matrix. The recognition accuracies for LCMoG-CNN 
and LCMoG-LWPZ methods on Feret and Extended Yale-B datasets as reported is above 95% 
even under noisy environments. Further, the proposed models demonstrated a higher recogni-
tion accuracy of 96% through hybrid LCMoG-(LWPZ + CNN) on CMU MoBo and You-
Tube datasets. Fredj et al. [20] have developed a CNN framework based on aggressive data 
augmentation for face recognition in unconstrained environments. The authors have reported 
the robust performance of the proposed system in classifying noisy (face samples captured 
with higher noise content) and occluded face samples by using a deep face representation. 
The proposed model as reported demonstrates accuracies of 99.2% and 96.63% for LFW and 
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YTF datasets, respectively. Xie et al. [21] have reported a novel face recognition model that 
targets images having narrow spectral bands, often called hyperspectral face recognition. The 
authors put forward a modified version of the light CNN framework that is supported by trans-
fer learning methodology. With this, the hyperspectral face samples could be projected into 
another subspace that has the capability to improve the classification accuracy of the proposed 
system. The proposed system as reported, sports classification accuracies of 92.83% (for 
PolyU), 95.12% (for CMU), and 99.73% (for UWA).

A CNN-based model for 3D face recognition was put forward by Dutta et al. [22]. The 
model works on 40 component faces generated by a combination of a mathematical model 
(4 components) and a data-level fusion technique (36 components) to project samples into 
a new space called ’complement component face space’. The model relies on extracting rel-
evant features through a combination of SVD and fused through a crossover operation of a 
genetic algorithm based on hamming distance. Particle Swarm Optimization (PSO) is then 
used for discarding redundant features so that only the relevant features are selected, thereby 
improving the system performance. The proposed system, as reported demonstrates classifica-
tion accuracy of 97.86%, 98.25%, and 99.89% for Frav3D, Bosphorus, and Texas3D datasets, 
respectively. Variability in the captured face samples degrades the performance of a face rec-
ognition system. In this regard, Meng et al. [23] have proposed a system called ’MagFace’ 
that works on an adaptive mechanism by sifting through easy and hard samples to avoid over-
fitting on noisy low-resolution samples. This consequently improves the face recognition in 
wild environments, and the proposed system sports verification accuracies of 92–99% on easy 
benchmarks, and 90–96% on difficult benchmarks. Qui et al. [24] on the other hand, focus on 
the generalization of face recognition systems in presence of real-world occluded face images. 
In this regard, the authors have proposed a single end-to-end DNN called Face Recognition 
with Occlusion Masks (FROM) which learns to discover corrupted features from Deep CNNs 
and clean them from dynamically learned masks. The proposed system, as reported exhibits 
classification accuracies of 96.22% for RMF2 and 98.32% for LFW-SM (Simulated Masks). A 
detailed review on the low - resolution face recognition systems [25, 26] gives insights into the 
different aspects of the face recognition system. These, however miss out on the most crucial 
aspect, that is the model explainability. Although there has been some investigation into the 
Explainable Face Recognition (XFR) [27–29], the model explainabiltiy for face recognition 
system has not gained much traction. In this regard, the work done in this manuscript is one 
such attempt towards XFR using LIME.

A close observation towards all the methods proposed for improving the face recognition 
systems as discussed above, reveals that the major focus of all the research groups has been 
towards improving the statistics of the proposed system. All the face recognition systems listed 
above were traditionally deployed like black boxes and did not indicate to the end-user the 
rationale behind these decisions. Answering "why" and "how" predictions are made, assists in 
understanding the behavior of the model. To elucidate this, an AI tool–LIME has been utilized 
to investigate the superpixels that have contributed to the black box for the classification of 
subjects. To the best of our knowledge, it has not been explained yet as to what features drive 
the black box in classifying a particular subject.

This paper is structured as follows. Section 2 presents the dataset description followed by a 
preliminary description of different Deep Neural Networks (DNN) used in this paper. Experi-
mental setup and results are discussed in Sect. 3 and the explainability of models is discussed 
in Sect. 4 Finally, the paper is concluded in Sect. 5
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2  Materials and Methods

This section presents the datasets used during the experiments and the deep neural net-
works used in XAI-FR framework. A brief description of the working of different DNN 
models employed and the working of LIME has been explained with a specific focus 
towards the explainability of black boxes in classifying a face sample.

2.1  Datasets Used

This section briefly summarizes the datasets used for experimentation.

2.1.1  The Yale Dataset

Yale face database comprises 165 grayscale images of 15 distinct subjects [30]. Each sub-
ject has 11 face samples, one for each face expression (happy, normal, sad, sleepy, sur-
prised, and wink) and configuration (center-light, with glasses, left-light, without glasses, 
right-light). An example of different face samples available in the Yale face database is 
shown in Fig. 1(a).

2.1.2  The AT & T Dataset

The AT &T database originally known as ’The ORL Database of Faces’ comprising 400 
grayscale images of 40 distinct subjects [31]. For each subject, there are 10 images that 
capture every possible combination of features. The face samples for each subject are avail-
able in PGM format. An example of different face samples available in the AT &T Face 
Database is shown in Fig. 1(b).

Fig. 1  Sample face images from a YALE, b AT &T, and c LFW Datasets
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2.1.3  The LFW Dataset

LFW (Labeled Faces in the Wild) is a database of face images created to investigate the 
problem of unrestricted face recognition [32]. More than 13,000 photos of faces were gath-
ered from the internet for the data collection. The collection contains 1680 subjects, each 
of which has two or more distinct photographs. In the present work, we considered only 
those subjects that have at least 70 face samples. An example of different face samples 
available in the LFW Face Database is shown in Fig. 1(c).

2.2  Methods

A Deep Neural Network [33, 34] is an artificial neural network [35] with several layers 
between the input and output layers. The subsections that follow briefly describe the vari-
ants of deep neural networks and explainable AI method – LIME used for the interpretabil-
ity of the trained models..

2.2.1  LeNet‑5 Model

The LeNet-5 model was proposed by LeCun et  al. [36] for handwritten and machine-
printed character recognition. This architecture is a simple multi-layer convolution neural 
network for the classification of images. A schematic of LeNet-5 model adapted from [36] 
is depicted in Fig. 2. Two convolutional and average pooling layers make up the LeNet-5 
architecture. This is followed by two fully connected layers. Finally, a Softmax classifier is 
used which classifies images into respective classes.

2.2.2  AlexNet Model

The AlexNet model was proposed by Krizhevsky et  al. [37] achieved a top-5 error rate 
of 15.3 % on the ImageNet LSVRC-2010 dataset comprising 1.2 million high-resolution 
images. The AlexNet is comparatively deeper as compared to its LeNet-5 counterpart. The 
schematic architecture of AlexNet is shown in Fig. 3. The AlexNet has 11 layers compris-
ing five layers of convolutions layers and the subsequent three layers of max pooling. After 
convolution and max-pooling blocks, the architecture consists of 3 fully connected layers 
having RELU activation function, except in the last layer.

Fig. 2  Depiction of LeNet-5 Architecture as adapted from [36]
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2.2.3  Inception‑V3 Model

Inception-V3 is the third variant of GoogLeNet used for image analysis and object detec-
tion. Inception-V3 scores over other CNN classifiers in terms of speed and accuracy. The 
previous models were just improving the performance and accuracy of their model but 
compromising the computational cost. To improve the system performance, the Inception-
V3 relies on various tricks for optimizing its network. Szegedy et al. [39], had proposed 
several upgrades for the Inception-V3 model which increased the accuracy and reduced 
the computational complexity. These include optimizing the network, in order to loosen 
the constraints for easier remodeling by including factorized convolutions, regularization, 
dimension reduction, and parallelized computations. The architecture of an Inception-V3 
network, as depicted in Fig. 4.

As can be observed from Fig. 4, the Inception-V3 architecture consists of a stem, com-
prising traditional pooling and convolutional layers. Subsequently, it comprises a pooling 
layer followed by fully connected and softmax layers. The Inception-V3 architecture also 
involves reduction modules that are designed for reducing the dimensions of the input. The 
architecture has about 24 million parameters and takes a default input of size 299 × 299 × 3

.

2.2.4  VGG16 Model

Simonyan et al. [41] introduced VGG16, a CNN model that achieved 92.7 percent top-5 
test accuracy in the ImageNet Dataset. The ImageNet comprises 14 million images belong-
ing to 1000 different classes. It improves on AlexNet by successively replacing large ker-
nel-sized filters of sizes 11 and 5 in the first and second convolutional layers with multiple 
kernel-sized filters of size 3.

In Fig. 5, the convolution layers using a non-linear activation function, known as recti-
fied linear unit (ReLU), are represented by all the blue color rectangles. VGG16 comprises 
13 convolution layers and 5 max-pooling layers. In addition to these, three green rectangles 
represent fully connected layers. Finally, there is an output layer which is a fully connected 
softmax output layer ŷ with possible values corresponding to the number of classes.

2.2.5  LIME

Local Interpretable Model-agnostic Explanations, better known as LIME is an explainable 
AI method developed by Ribeiro et al. [42]. LIME can be used for a classifier model that 
classifies tabular data, pictures, or texts to better understand the behavior of the applied 
black-box classifier model. It is ’Local’, meaning that LIME attempts to explain the 

Fig. 3  Depiction of AlexNet Architecture as adapted from [38]
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proposed black-box model by approximating the model’s local linear behavior, and it is 
’Interpretable’, meaning that it provides a solution to understand why the model acts the 
way it does. The four steps involved in LIME: 

1. Input data permutation: In this step, LIME generates several perturbed images similar 
to the input image by turning on and off some of the super-pixels of the image.

2. Class prediction of each artificial image: In this step, a class prediction for perturbed 
each artificially generated image is carried out using the trained model.

3. Weight computation for each artificial image: In this step, a weight is computed for 
each artificial image to measure its degree of importance. The distance is computed 
between every artificially generated image point and the corresponding points of the 
original input image. Using a kernel function, the distance metric value is mapped into 
a weight value between 0 to 1. The closer proximity of the perturbed instance to the 
instance being explained contributes to the higher associated weightage signifying its 
importance.

Fig. 4  Schematic representation of a Inception -V3 Architecture as adapted from [40]
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4. Explaining important features by fitting a linear classifier: This step involves fitting 
a linear regression model with the help of the weighted artificial data points. In this way, 
the fitted coefficient is obtained for each feature. On sorting based on coefficient values, 
the superpixels corresponding to higher coefficient values are the ones contributing 
significantly to the prediction of the black-box machine learning model.

3  Experimental Setup and Results

All experiments have been performed in Python 3.7 in the Google Colaboratory using 
runtime environment for NVIDIA Tesla K80 GPU. In order to test the applicability of 
deep neural networks (DNN) summarized in Sect. 2.2, the datasets mentioned in Section 
Sect. 2.1 were split in a ratio of 80:10:10 for realizing disjoint sets for training, validation, 
and test sets, respectively. The choice of hyperparameters for each DNN is based on the 
exploration of search space. The batch size is set to 32, the learning rate equals 0.001, and 
the optimizer employed is Adam optimizer [43, 44].

3.1  Results and Discussions

In this section, we present the results of employing LeNet, AlexNet, Inception-V3, and 
VGG16 on the three face datasets mentioned above. The plots depicted in Fig.  6 shows 
the variation of validation accuracy of the face recognizers based on different deep neural 
networks with respect to the number of epochs for each of the three datasets. The LeNet 
based face recognizer (Fig. 6(a)) shows fluctuations till epoch = 30 after which it almost 
stabilizes. The AlexNet based face recognizer (Fig. 6(b)) shows poor generalization per-
formance on the unseen face samples. Likewise, Inception-V3 based face recognizer 

Fig. 5  Schematic of a VGG16 Architecture as adapted from [41]



672 A. Rajpal et al.

1 3

(Fig. 6(c)) is unable to stabilize with an increase of number of epochs. The VGG16 based 
face recognizer stabilizes after 15 epochs and (Fig.  6(d)) shows the best generalization 
capability. The classification performance of the above-mentioned four deep neural net-
works on different datasets is given in Table 1. We note that VGG16 yields consistently 
the best performance across the chosen datasets in terms of classification accuracy, recall, 
precision, and F1-Score.

4  Model Explainability

In this section, we evaluate the explainability of each of the four DNN-based face recog-
nition models. Towards this end, LIME has been used to mark the superpixels that have 
contributed towards the classification label generated for a particular subject. The regions 
shown in green color have contributed positively for the predicted label and the regions 

Fig. 6  Plots depicting variation in validation accuracy w.r.t. number of epochs for three datasets namely, AT 
&T, Yale, and LFW for the face recognizers based on a LeNet, b AlexNet, c Inception-V3, and d VGG16
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Fig. 7  LIME-generated explanations for a correctly predicted face (True label: 5) using a LeNet-5, b 
AlexNet, c Inception-V3, and d VGG16. Each sub-figure shows explanations generated for the best six 
matches along with prediction score
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shown in red color have contributed negatively to the predicted label. Out of 40 test sam-
ples from the AT &T database, we randomly picked an image (true label 5) for which each 
of the four models predicted the correct label. Figure 7 shows the prediction scores of top 
six matches for each of the LeNet-5, Alex-Net, Inception-V3, and VGG16 models. As 
expected, for each model, the prediction score of the correctly predicted subject (99.81%, 
99.92%, 92.78%, and 95.86% for the LeNet-5, AlexNet, Inception-V3, and VGG16 model 
respectively) that appears leftmost in a row is significantly higher than the other images 
that appear in the same row. Each sub-figure shows explanations generated for the best six 
matches. It may be noted that even though each of the models predicts the correct label, it 
focuses on somewhat different features for generating its prediction. As we could not find 
an image for which each of the models predicted a wrong label, Fig. 8 depicts different 
instances predicted wrongly corresponding to the models LeNet-5, ALexNet, Inception-
V3, and VGG16 respectively. As the models output a wrong label, we note that in Fig. 8, 
the prediction score of the true label is lower than the best match that resulted in a wrong 
prediction.

4.1  Subjective Assessment of LIME generated Explanations

For subjective assessment of the LIME-generated explanations, we randomly selected 20 
samples from the test dataset. Each image was passed to the LeNet, AlexNet, Inception-V3, 
and VGG16 models for recognizing the person in the image. For each image, the explana-
tion generated by LIME for each of the four deep learning models was shown to a group 
of twenty volunteers. Each volunteer was asked to score the models on a scale of 4, Thus, 
given an image, a volunteer would assign a score of 4 to the model for which LIME gen-
erated the most comprehensible explanation as per his/her judgement and a score of 1 to 
the model for which the generated explanation was least comprehensible. The responses 
were collected using a Google Form. Based on the responses of 20 volunteers, LIME 
explanations using the VGG16 model ranked highest with an average score of 3.35, fol-
lowed by Alex-Net, Inception-V3, and LeNet, having average scores 3.02, 2.87, and 1.75 
respectively.

5  Conclusions and Future Scope

In this paper, we have examined the interpretability of four deep neural networks (DNN) 
models, namely, LeNet-5, AlexNet, Inception-V3, and VGG16 on the AT &T dataset. 
For this purpose, we used Local Intepretable Model-Agnostic Explanations (LIME) as 
the explanation model to mark the visually significant features in terms of the superpix-
els. Based on an experimental study involving twenty volunteers, we found that that the 
explanations generated for the classification performed by VGG16 were significantly more 
explainable than those produced for the other models. Furthermore, the LIME-generated 
superpixels on face images correspond to the region of non-interest (RONI) comprising 
background features. RONI can be segmented in future work so that these insignificant 
features do not influence the interpretability XAI methods.
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Fig. 8  LIME-generated explanations for the subjects with true labels 9, 23, 23, and 7 predicted wrongly by 
the models a LeNet-5, b AlexNet, c Inception-V3, and d VGG16 respectively
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