Skip to main content
Log in

High Isolation Compact UWB MIMO Antennas

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, two elements and four elements compact UWB MIMO antennas are designed and fabricated. A printed circular disc with five circular slots is selected in this work due to its UWB performance and compact size for the MIMO antenna system. CST software is used in the simulation process. Measured S parameters show that the MIMO antennas work well from 3 GHz up to 20 GHz (maximum working frequency of the measurement instruments). The two elements MIMO antenna has a size of 70 × 40 mm2 meanwhile the four elements MIMO antenna has a size of 70 × 70 mm2. Measurement results show that the isolation among the antenna elements is higher than 20 dB. The envelope correlation coefficient, diversity gain, channel capacity loss, mean effective gain and total active reflection coefficient are studied in this paper. Simulations results show that the MIMO antennas have a satisfactory performance up to 50 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

Datasets are analyzed during this research work are not available publicly due to future scope of research.

References

  1. Federal Communications Commission revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems. FCC, Washington, DC, First Report and Order FCC, 02. V48 (2002).

  2. Sturm, C., Porebska, M., Timmermann, J., & Wiesbeck, W. (2007). Investigations on the applicability of diversity techniques in ultra-wideband radio. In Proceedings of international conference electromagnetics in advanced applications (ICEAA) (pp. 899–902).

  3. Rajagopalan, A., Gupta, G., Konanur, A. S., Hughes, B., & Lazzi, G. (2007). Increasing channel capacity of an ultrawideband MIMO system using vector antennas. IEEE Transactions on Antennas and Propagation, 55(10), 2880–2887.

    Article  Google Scholar 

  4. Ben, I. M., Talbi, L., Nedil, M., & Hettak, K. (2012). MIMO-UWB channel characterization within an underground mine gallery. IEEE Transactions on Antennas and Propagation, 60(10), 4866–4874.

    Article  Google Scholar 

  5. Lee, J. M., Kim, K. B., Ryu, H. K., & Woo, J. M. (2012). A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices. IEEE Antennas Wireless Propagation Letter, 11, 990–993.

    Article  Google Scholar 

  6. Hong, S., Chung, K., Lee, J., Jung, S., Lee, S. S., & Choi, J. (2008). Design of a diversity antenna with stubs for UWB applications. Microwave and Optical Technology Letters, 50(5), 1352–1356.

    Article  Google Scholar 

  7. Zhang, S., Ying, Z. N., Xiong, J., & He, S. L. (2009). Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wireless Propagation Letter, 8, 1279–1232.

    Article  Google Scholar 

  8. See, T. S. P., & Chen, Z. N. (2009). An ultrawideband diversity antenna. EEE Transactions on Antennas and Propagation, 57(6), 1597–1605.

    Article  Google Scholar 

  9. Pouyanfar, N., et al. (2018). A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure. Radioengineering, 27(3), 1.

    Article  Google Scholar 

  10. Liu, P., Sun, D., Wang, P., & Gao, P. (2018). Design of a dual-band MIMO antenna with high isolation for WLAN applications. Progress in Electromagnetics Research Letters, 74, 23–30.

    Article  Google Scholar 

  11. Tao, J., & Feng, Q. Y. (2016). Compact isolation-enhanced UWB MIMO antenna with band-notch character. Journal of Electromagnetic Waves and Applications, 30(16), 2206–2214.

    Article  Google Scholar 

  12. Jaglana, N., et al. (2018). Triple band notched mushroom and uniplanar EBG structures based UWB MIMO/diversity antenna with enhanced wide band isolation. AEU—International Journal of Electronics and Communications, 90, 36–44.

    Google Scholar 

  13. Mewaraab, H. S., Mahendra, D. J., Jitendra, M. S., & Deegwala, K. (2018). A printed monopole ellipzoidal UWB antenna with four band rejection characteristics”. AEU—International Journal of Electronics and Communications, 83, 222–232.

    Google Scholar 

  14. Sharma, M., Dhasarathan, V., & Pateld, S. K. (2020). An ultra-compact four-port 4×4 superwideband MIMO antenna including mitigation of dual notched bands characteristics designed for wireless network applications”. AEU—International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2020.153332

    Article  Google Scholar 

  15. Khorramizadeh, M., & Mohammad-Ali-Nezhad, S. (2021). Radar cross-section reduction of an UWB MIMO antenna using image theory and its equivalent circuit model. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22563

    Article  Google Scholar 

  16. Abdulkawi, W. M., Malik, W. A., Abdul Aziz, S. U. R., Sheta, A. A., & Alkanhal, M. A. (2021). Design of a compact dual-band MIMO antenna system with high-diversity gain performance in both frequency bands. Micromachines. https://doi.org/10.3390/mi12040383

    Article  Google Scholar 

  17. Ahmed, B. T., Olivares, P. S., Campos, J. L. M., & Vazquez, F. M. (2018). (3.1–20) GHz MIMO antennas. AEU—International Journal of Electronics and Communications, 94, 348–358.

    Google Scholar 

  18. Ahmed, B. T., Carreras, D. C., & Marin, E. G. (2021). Design and implementation of super wide band triple band-notched MIMO antennas. Wireless Personal Communications, 121, 2757.

    Article  Google Scholar 

  19. Rekha, V. S. D., et al. (2020). Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications. IEEE Access, 8, 145871–145880.

    Article  Google Scholar 

  20. Pokkunuri, P., et al. (2019). Metamaterial inspired reconfigurable fractal monopole antenna for multiband applications. International Journal of Intelligent Engineering and Systems, 12(2), 53–61.

    Article  Google Scholar 

  21. Bora, P., et al. (2020). Design and analysis of EB antenna for Wi-Fi, LTE, and WLAN applications. Applied Computational Electromagnetics Society Journal, 35(9), 1030–1036.

    Article  Google Scholar 

  22. Khalid, M., Naqvi, S. I., Hussain, N., Rahman, M., Mirjavadi, S. S., Khan, M. J., & Amin, Y. (2020). 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9, 71. https://doi.org/10.3390/electronics9010071

    Article  Google Scholar 

  23. Jiao T, Jiang T, Li Y, Mao X (2017) A low mutual coupling MIMO antenna array with periodic crossing electromagnetic band gap. In: 2017 Progress in electromagnetics research symposium-fall (PIERS-FALL), Singapore, 19–22 November 2017.

  24. Song, Z.-L., Zhu, Z.-J., & Cao, Lu. (2018). High isolation UWB-MIMO compact micro-strip antenna. Applied Computational Electromagnetics Society Journal, 33(3), 293–297.

    Google Scholar 

  25. Jiang, T., Jiao, T., & Li, Y. (2018). “A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures. Applied Computational Electromagnetics Society Journal, 33(3), 305–311.

    Google Scholar 

  26. Li, W., & Yu, W. (2013). A multi-band/UWB MIMO/diversity antenna with an enhance isolation using radial stub loaded resonator. Applied Computational Electromagnetics Society Journal, 28(1), 8–20.

    Google Scholar 

  27. Kong, Y., & Yu, W. (2016). (2017) A minimized MIMO-UWB antenna with high isolation and triple band-notched functions. Frequenz-Journal of RF-Engineering and Telecommunications, 70(11–12), 463–471.

    Google Scholar 

  28. Khan, M. S., Capobianco, A. D., Asif, S. M., Anagnostou, D. E., & Shubair, R. M. (2017). A compact CSRR-enabled UWB diversity antenna. IEEE Antennas and Wireless Propagation Letters, 16, 808–812.

    Article  Google Scholar 

  29. Zhao, L., Liu, F., Shen, X., et al. (2018). A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands. IEEE Access. https://doi.org/10.1109/ACCESS.2018

    Article  Google Scholar 

  30. Khan, M. S., Capobianco, A. D., Iftikhar, A., & Asif, S. (2016). A compact dual polarized ultrawideband multiple-input-multiple-output antenna. Microwave and Optical Technology Letters, 58(1), 163–166.

    Article  Google Scholar 

  31. Khan, M. S., Capobianco, A. D., Iftikhar, A., & Shubair, R. M. (2017). Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines. IET Microwaves, Antennas & Propagation, 11(7), 997–1002.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bazil Taha Ahmed.

Ethics declarations

Conflict of interest

The author of the article, on his behalf and that of all the authors, declares that there is no potential conflict of interest related to the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Figure 23 shows the simulated S11 and S21 of the two elements UWB antenna with maximum simulation frequency of 50 GHz. It can be seen that the impedance-working band of the antenna with S11 lower than − 10 dB is 2.65 up to 50 GHz. For the same band, S21 is lower than − 20 dB.

Fig. 23
figure 23

Simulated S11 and S21 of the two elements UWB antenna with maximum simulation frequency of 50 GHz

Figure 24 shows the simulated S11, S21, S31 and S41 of the four elements UWB antenna with maximum simulation frequency of 50 GHz. It can be noticed that the impedance-working band of the antenna with S11 lower than − 10 dB is 3.05 up to 50 GHz. For the same band, S21, S31 and S41 are lower than − 20 dB.

Fig. 24
figure 24

Simulated S11, S21, S31 and S41 of the four elements UWB antenna with maximum simulation frequency of 50 GHz

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, B.T. High Isolation Compact UWB MIMO Antennas. Wireless Pers Commun 128, 3003–3029 (2023). https://doi.org/10.1007/s11277-022-10083-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10083-8

Keywords

Navigation