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Abstract
The use of computer-assisted analysis to improve image interpretation has been a long-
standing challenge in the medical imaging industry. In terms of image comprehension, 
Continuous advances in AI (Artificial Intelligence), predominantly in DL (Deep Learning) 
techniques, are supporting in the classification, Detection, and quantification of anoma-
lies in medical images. DL techniques are the most rapidly evolving branch of AI, and 
it’s recently been successfully pragmatic in a variety of fields, including medicine. This 
paper provides a classification method for COVID 19 infected X-ray images based on new 
novel deep CNN model. For COVID19 specified pneumonia analysis, two new customized 
CNN architectures, CVD-HNet1 (COVID-HybridNetwork1) and CVD-HNet2 (COVID-
HybridNetwork2), have been designed. The suggested method utilizes operations based on 
boundaries and regions, as well as convolution processes, in a systematic manner. In com-
parison to existing CNNs, the suggested classification method achieves excellent Accuracy 
98 percent, F Score 0.99 and MCC 0.97. These results indicate impressive classification 
accuracy on a limited dataset, with more training examples, much better results can be 
achieved. Overall, our CVD-HNet model could be a useful tool for radiologists in diagnos-
ing and detecting COVID 19 instances early.

Keywords  Deep learning · COVID 19 · CNN · X-ray · Accuracy · Matthews correlation 
coefficient

1  Introduction

With the rapid advancement of artificial intelligence, an increasing number of researchers 
are focusing on intelligence, deep learning-based diagnostic approaches. A few of them 
have produced some very impressive outcomes. DL (Deep Learning) techniques are the 
significant contributor to the current emergence of AI in practically every aspect of life [1]. 
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It’s a direct result of current achievements in a wide range of scientific domains, includ-
ing chemical structure analysis, Particle Physics, Computer Vision, Natural Language Pro-
cessing, DNA analysis, brain circuit’s studies. It has recently stimulated the importance of 
clinical imaging investigators, indicating which it holds enormous promise for the field’s 
future [2]. The Deep Learning model enables machines that can learn extremely compli-
cated data representational mathematical models, which can then be utilised to do precise 
data analysis [3]. These methods perform linear functions and/or non-linear of the input 
image or data which are weighted with the model parameters in a hierarchical fashion [4]. 
Deep learning approaches have a common aim of continuously learning the features of a 
computer model using training datasets, so that the model improves over time at perform-
ing a specified task, such as classification and detection, over that datasets under a stated 
metrics [5].

Machine Learning has been employed in the medical imaging sector since the 1960s. 
However, it was in the 1990s that the first major contributions relating to contemporary 
Deep Learning techniques appeared in the Medical Imaging field [6]. In recent decades, 
medical imaging modalities including X-ray, Magnetic Resonance (MR), Mammography, 
Computed Tomography (CT), Positron Emission Tomography (PET) and ultrasound had 
grown more significant in early disease detection, diagnosis, and treatment. Today’s Medi-
cal imaging techniques including MRI/fMRI, X-ray, CT, and PET scanners provide a pleth-
ora of complicated and highly useful images to computer-aided diagnosis (CAD) [6, 7].

Appropriate feature extraction [8] or feature illustration is at the core of machine learn-
ing’s attainment in completing specified jobs. Relevant features were traditionally defined 
by medical specialists depending on their understanding of the aim of the field, making it 
difficult for non-experts [9] to use machine learning models for their own research. Deep 
learning models, on the other hand, has overcome these challenges by integrating the fea-
ture engineering process into a learning phase. That example, inspite of manually extract-
ing features, DL techniques just necessitates a collection of image data’s and some basic 
pre-processing [10].

The current technological improvements have resulted in the combination of DL clas-
sifiers and medical images providing greater impressive outcomes comparable to conven-
tional RT-PCR screening while increasing the accuracy of COVID 19 case prediction and 
diagnosis. From December 2019, a novel coronavirus (SARS-CoV-2) had spread across 
Wuhan to the rest areas of China and numerous other nations. And over 230 million cases 
have been confirmed, with approximately 5 million deaths had been recorded worldwide 
by October 1 2021. (https://​www.​world​omete​rs.​info/​coron​avirus). Figure  1 shows the 
Global Situation of COVID-19 Total Cases, Total Deaths and Recovered Cases taken by 
World meter. Which has far implications on people’s daily lives, global economy and pub-
lic health. It’s critical to identify confirmed cases as quickly as possible to stop the out-
break from growing faster and to help patients as quickly as possible [11]. The demand of 
supplemental diagnostic equipment has grown since there are no effective automated tool-
kits available. Such images convey essential information regarding the COVID-19 virus, as 
according latest researches obtained employing radiological imaging techniques. Improved 
AI based techniques paired with imaging techniques can help to detect exact disease, along 
with solve the issue of a physician scarcity in rural regions [12].

One among the most vital significant drawbacks of chest x-ray analysis is their being 
unable to recognise COVID-19 in its early phases due to a lack of sensitivity while per-
forming GGO detection [13–15]. Deep learning models that have been well-trained, on the 
other hand, can concentrate on details which the human eye misses, potentially reversing 
this view.

https://www.worldometers.info/coronavirus
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In Sect. 2 we present some general classifications of learnings, In Sect. 3 we cover the 
principles of extracting high-level representations from data using neural networks and 
deep architectures such as Artificial Neural Network (ANN), Recurrent Neural Network 
(RNN) and Convolutional Neural Network (CNN) [11]. Section  4 covers classification 
approach based on Proposed COVID-HNet (COVID-HYBRIDNet). Finally, in Sect. 5, we 
summarise the study patterns of one of application of deep learning such as COVID19 
classification and finally in Sect. 6 we present conclusions and make some recommenda-
tions for future improvements.

2 � Learning Types

The following are the 14 categories of learning that we must be acquainted with as AI spe-
cialists. Figure 2 shows the various kinds of learnings available in machine learning.
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Fig. 1   Global Situation of COVID-19 Total Cases, Total Deaths and Recovered Cases by Worldometer

Machine Learning

Learning Problems Hybrid Learning Problems Statistical Inference Learning Techniques

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Semi-Supervised 
Learning

Self-Supervised 
Learning

Multi-Instance 
Learning

Inductive 
Learning

Deductive 
Learning

Transductive 
Learning

Multi-Task Learning

Active Learning

Online Learning

Transfer Learning

Ensemble Learning

Fig.2   Learning Types



3282	 S. Suganyadevi, V. Seethalakshmi 

1 3

2.1 � Supervised Learning

Supervised learning is among the most prevalent types of Machine Learning (ML). 
In this instance, the algorithm is given training on annotated data. In spite of the fact 
that appropriate annotated data is mandatory used for this method to work, this kind of 
learning can be extremely effective while utilised under the right situations [12–14].

The environment has a set of data inputs and resulting data outputs (xt, yt) ∼ p when 
contemplating such a technique. If the input is xt , the smart agent will assume ytΛ = f

(
xt
)
 

and return ( ytΛ , yt) as a loss value [15]. In this classification scenario, normally y would 
be a class value which is always scalar but it could be a vector of continuous data in a 
regression setting [16].

Deep Neural Networks (DNNs), Recurrent Neural Networks (RNNs) and Convolu-
tional Neural Networks (CNNs) are examples of supervised learning techniques for DL. 
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) techniques are 
also included in the RNN category [17]. The primary benefit of this technology is the 
capacity to gather data or develop a data output using prior knowledge. The downside 
of this strategy is that when the training set lacks samples that should be in a class, the 
decision boundary may be overstrained. In general, this strategy is easier to learn than 
other high-performance learning techniques [18].

2.2 � Unsupervised Learning

Unsupervised learning algorithms are trained to discover patterns in unlabelled data, 
such as latent subspaces. Conventional unsupervised methods includes Principal Com-
ponent Analysis (PCA) and clustering approaches. This implies that no human labour 
is necessary to make the dataset machine-readable, enabling the programme to work on 
much larger datasets [19].

When compared to supervised learning, unsupervised learning algorithms allow users 
to complete more complicated processing tasks. However, when compared to other natural 
learning methods, unsupervised learning is more unpredictable [20]. Clustering, anomaly 
detection, and neural networks are examples of unsupervised learning methods [21].

Some of the most newly invented elements of the DL category, such as Deep Boltz-
mann Machines, Auto-Encoders, and Generative adversarial Network, have fared well 
along nonlinear dimensionality reduction (DR) and clustering issues [22]. RNNs includ-
ing LSTM and GRUs approaches, have now been employed used in a variety of applica-
tions for unsupervised learning. Unsupervised learning’s key drawbacks are its inability 
to give precise data sorting information and its computational complexity. Clustering is 
one of the most often used unsupervised learning techniques [23].

2.3 � Reinforcement Learning

Reinforcement Learning (RL) is based on interacting with the environment, whereas 
supervised learning is based on a set of data that is presented. This method was created 
in 2013 with the help of Google Deep Mind. As a result, numerous improved reinforce-
ment learning approaches have been developed [24].

Reinforcement learning is a machine learning training strategy that involves reward-
ing specific behaviours while punishing unwanted ones [25]. A reinforcement learning 
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agent can observe and comprehend its surroundings, execute actions, and learn through 
trial and error in general. There is no answer in reinforcement learning, but the rein-
forcement agent decides how to complete the job. It is obligated to learn from its experi-
ence in the absence of a training dataset.

Since the reinforcement learning technique does not have a straightforward loss func-
tion, it is far more difficult to perform than typical supervised techniques [25, 26]. Further-
more, There have been two key differences among supervised and reinforcement learning. 
first, there is no comprehensive availability towards the function, necessitating optimiza-
tion, suggesting that it should be questioned such as through interaction, and second, the 
state has been interacted with is based on a surroundings, with the data relying on previous 
actions [27].

3 � Deep Models

Hinton and Salakhutdinov released an article in the science journal in 2006 that ushered in 
the DL era [28]. They demonstrated that a neural network with hidden layers was crucial in 
boosting learning’s features’ power [29].The accuracy of these algorithms can be improved 
while classifying different types of data [30]. Figure 3 describes the general classification 
of machine learning model [31].

3.1 � Artificial Neural Network (ANN)

A single perceptron or neuron could be thought of a Regression Model. At each layer of an 
ANN, there are numerous perceptron’s/neurons [31]. Because data inputs are exclusively 
processed in the forward direction, that ANN is furthermore known as a Feed-Forward 
Neural Network. ANN comprises of 3 layers explicitly Input, Hidden and Output layer 
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[32]. The data is received by the input layer, evaluated by the hidden layer, and synthesized 
by the output layer. In essence, each layer is attempting to learn specific weights [33].

3.1.1 � Advantages

Artificial Neural Network learns any non—linear function. As a result, these networks are 
commonly referred to as Universal Function Approximators [34]. An artificial neural net-
work (ANN) can train weights that map every input to the desired output. One of its pri-
mary reasons for universal approximation would be the activation function [35]. Activation 
functions are used to establish the network’s non-linear properties. This makes it easier for 
the network to learn any complicated input–output connection [36].

3.1.2 � Challenges

Before training an ANN model in solving picture classification challenge would be to 
transform a two-dimensional picture into a one-dimensional vector [37]. This has some 
disadvantages, as the image size grows larger, the number of trainable parameters grows 
dramatically. The spatial properties of an image are lost while using ANN. Spatial charac-
teristics pertain to how pixels are arranged in an image [38].

In most of these Neural Network models, the Vanishing and Exploding Gradient will 
be a frequent problem. Back propagation algorithm is also linked with this issue [39]. This 
Back propagation algorithm finds the gradients and updates the weights of a neural net-
work. As a result, when a highly deep neural network (DNN) propagates backward, the 
gradient vanishes and bursts, resulting in vanishing and exploding gradients [40]. ANN 
does not capture sequence information in the data input, which is required for handling 
with sequence data sets [41].

3.2 � Recurrent Neural Network (RNN)

Recurrent Neural Networks are used to address problems involving time series data, text 
data, and audio data. RNNs were originally designed for the analysis of discrete sequence 
of data [42]. It will be seen of a generalisation of Multilayer perceptron since both input, 
output could be of various lengths, making them appropriate for applications like machine 
translation, where the input and output are a phrase from the source and target languages, 
respectively [43]. The model learns a distribution across classes P(y|x1, x2,… xT) from a 
series x1, x2,… xT instead of only one vector x in a classification context [44].

At time t, the basic RNN keeps a hidden or latent state h, which is the result of a nonlin-
ear mapping between its prior state ht−1 and input x(t). Here R and W are weight matrices 
shared among time shown in Eq. (1) [45].

3.2.1 � Advantages

During making predictions, RNN preserves the sequence data available in the input data-
sets, which is the dependent seen among words in the text [45]. The parameters of RNNs 

(1)�

(
Wxt + Rht−1 + b

)
= ht
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are shared between time steps. This is commonly referred to as parameter sharing. As a 
result, there are lesser factors to train and the computing cost is lower [46].

3.2.2 � Challenges

The vanishing and exploding gradient issue is a prevalent issue in all forms of Neural Net-
works, and it also affects deep RNNs that is RNNs with higher number of time steps [47].

3.3 � Convolutional Neural Network (CNN)

In DL community, Convolutional Neural Networks (CNN) are all the rage right now [48]. 
These CNN models are employed in a variety of regions and applications, but they are 
particularly common in picture and video dealing out projects [49]. Filters, often known 
as kernels, are the building components of CNNs. The kernels are utilised to extract rel-
evant information from input by using convolution approach. Even though CNNs had been 
developed to handle issues with image data, they can function well with sequential inputs 
[50]. The inputs to SAE, DBN, and DBM deep models are always in vector form. How-
ever, structural data among surrounding pixels is a significant source of data for medical 
pictures [51]. As a result, image vectorization invariably eliminates structural and configur-
able information. A CNN is meant to best utilize spatial and setup information by taking 
2-dimensional and 3-dimensional images as input [52]. In the structure of a CNN, convolu-
tional layers are alternated with pooling levels, preceded by fully connected layers, as in a 
traditional multilayer neural network. The working model of the basic structure for a CNN 
is shown in Fig. 4 [53].

3.3.1 � Advantages

CNN automatically learns the filters without revealing them. These filters aid in the extrac-
tion of the most relevant and appropriate features from the incoming data [54]. The spatial 
features of a picture is acquired by CNN. The pattern of pixels and their interrelation in an 
image are referred to as spatial characteristics [55]. They assist us in precisely identifying 
an object, as well as its location and relationship to other things in a picture. The concept 

Input Pooling Layers Output Fully Connected LayersConvolutional Layers

Fig.4   General Architecture of CNN
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of parameter sharing is also used by CNN. A feature map is created by applying a single 
filter to various portions of an input [56].

3.3.2 � Challenges

After a sample of data has been prepossessed, backprob is a way for determining the 
influence of each weight in the error, and most good optimization algorithms like SGD, 
ADAM, etc. uses to find the gradients [57]. Back propagation has performed admirably 
in recent years, but it is not an effective method of learning because it necessitates a large 
dataset [58].

When we talk about translational invariance, we mean that if an object’s orientation or 
position changes significantly, the neuron that is meant to detect that object may not fire 
[59]. The problem is partially solved through data augmentation, but it is not completely 
solved [60].

Pooling layers is a huge mistake since it loses a lot of useful information and ignores the 
relationship between the parts and the whole [61]. For example, if we’re talking about a 
face detector, we need to combine various traits (mouth, two eyes, a face oval, and a nose) 
to declare it’s a face. Table 1 provides a comparison between ANN, RNN and CNN [62]. 
Various Processes involved in CNN model is shown in Fig. 5.

4 � Deep CVD‑HNet Architecture and Classification

We used a new novel deep CNN models to identify the clear COVID 19 Pneumonia abnor-
malities in chest X-ray images in this work. Because of their high capacity for learning 
prominent features and patterns revealed by images, deep CNN models have been widely 
used in image recognition and classification. CNNs are employed for both feature crea-
tion and classification because of their high learning capabilities. We termed CVD-HNet1 
(COVID-HybridNet1) and CVD-HNet2 (COVID-HybridNet2) are two new Convolutional 
Neural network designs depends on boundaries and regions based procedures for COVID 
19 specialized pneumonia in X-ray samples. These approaches are tuned from beginning 
to end to acquire pneumonia-specialized data from X-ray pictures. The recommended deep 
CNN designs use fully—connected layers for categorization [63]. The subsequent subsec-
tions summarise the design features.

Table 1   Comparison between ANN, RNN and CNN

ANN RNN CNN

Data (Input) Tabular data Sequence data
(i) Time Series
(ii) Text
(iii) Audio

Image data

Recurrent Connections Not Available Available Not Available
Parameter sharing No Yes Yes
Spatial relationship No No Yes
Vanishing & exploding gradient Yes Yes Yes
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The suggested CVD-HNets design is inspired by traditional image processing methods [64] 
and also is built on the concept of leveraging fundamental features in images. In order to effi-
ciently learn the COVID 19 unique patterns of pneumonia, we rigorously synergized the usage 
of boundaries and regions based procedures, along with convolutional processes in CNN to 
evaluate the advantages of this suggested boundaries and region based approach in informa-
tion extraction with CNN models, we employed VGG 16 and ResNet 18 as baseline methods 
[65, 66]. In this study, we gathered 7000 pictures from the Open Source GitHub and Kaggle 
repositories, which included 3500 COVID 19 patients and 3500 healthy people. VGG 16 can 

Fig.5   Process of the CNN model
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be a state-of-the-art CNN that uses mean pooling throughout design to regulate picture size 
and convolution operations for feature extraction. Rather than pooling, ResNet 18 employs 
strided convolution for picture down sampling, taking benefit of convolution in tandem with 
the Relu activation function enabling feature extraction. Four convolution blocks make up the 
proposed CVD-HNet1. Batch normalisation, a convolutional layer (Eq. (2)) and also ReLU as 
an activation function are all included in every block. After each convolutional block, aver-
age (Eq.  (3)) and max pooling (Eq.  (4)) are used to perform boundaries and regions based 
procedures. These methods improve the image’s region-specific qualities and boundaries data, 
whilst the convolutional process extracts the image’s sequence features. The proposed model 
employs fully—connected layers, as shown in Eq. (5), to produce goal information for clas-
sification. The setup of the proposed CVD-HNet architecture for the COVID 19 dataset is 
summarised in Fig. 6.

(2)fx,y =

p∑

a=1

q∑

b=1

fx+a−1,y+b−1Ka,b

(3)f avg
x,y

=
12

W

w∑

a=1

w∑

b=1

fx+a−1,y+b−1

(4)f max
x,y

= maxa=1,…w,b=1,…wfx+a−1,y+b−1

Fig. 6   Model Summary and Training Parameters of CVD-HNet Architecture
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The regions operator helps to smooth out region variances through average pooling 
(Eq. (3)), and so functions as a noise suppression for X-ray imaging aberrations. The edge 
operators, on the other hand, uses the max pooling operation to promote CNN to acquire 
effective feature and narrow features (Eq. (4)).To limit the possibilities of overfitting, drop-
out is given to the fully-connected layers. CVD-HNet-2, on the other hand, is built on the 
same concept but with more depth.

COVID-HNet-2 is made by 4 convolutional blocks and each with distinct no. of opera-
tions. Table 2 provides the performance comparison of suggested CVD-HNETs and Exist-
ing CNNs. By features extraction from the proposed COVID-penultimate HNet’s layer and 
assigning it to the ADAM classifier, the suggested COVID-mapping HNet’s capability is 
tested and it’s shown in Table 3.

4.1 � Implementation of Existing Standard CNNs

VGG, Inception, GoogleNet, ResNet, SqueezeNet, Xception and DenseNet [67–75] were 
used to compare several existing state-of-the-art deep CNN algorithms. These CNNs were 
employed extensively for a broad range of picture classification issues, including COVID 
19 X-ray classification by numerous studies. These methods differ in blocks architecture 
and design, but they all used a unique unit of pooling process for complexity regulation 
or substituted the pooling process with a strided convolutional. These CNNs were imple-
mented in end-to-end manner for classification, with extra Fully Connected and classifica-
tion layer introduced to adjust them for COVID 19 infected categorization based on X-rays. 
According to the standard metrics accuracy, MCC and F-score, Table  4 reveals that the 
suggested 2 new novel CVD-HNet1 and CVD-HNet2 architectures could better distinguish 
the COVID 19 abnormalities from datasets.

(5)v =

D∑

d

C∑

c

udfc

Table 2   Comparison among 
CVD-HNets in contrast to 
baseline methods

Deep models Accuracy F score MCC Depth

VGG16 96.16 0.98 0.95 18
Resnet18 96.21 0.98 0.96 16
CVD-HNet1 97.46 0.99 0.97 10
CVD-HNet2 97.75 0.99 0.97 08

Table 3   ADAM based Learning capability assessment using baseline approaches and proposed CVD-
HNets

Deep Models Accuracy Sensitivity Specificity TP FP FN TN MCC F Score

VGG16 95.90 0.96 0.96 639 26 28 625 0.95 0.96
Resnet18 96.64 0.97 0.97 641 21 23 628 0.96 0.97
CVD-HNet1 98.09 0.98 0.98 651 12 13 636 0.97 0.99
CVD-HNet2 98.84 0.99 0.99 660 8 7 628 0.98 0.99
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4.2 � The Proposed Technique’s Transfer Learning Based Optimization

Transfer learning is used to train the planned CVD-HNet1 and CVD-HNet2 using the 
X-ray dataset. CNNs are parametric, and best performance necessitates high volume 
data, but training with lesser X-ray images may result in convergence issues [76]. When 
a large dataset is unavailable, Transfer learning can be a methodology that has demon-
strated favourable outcomes for CNN architectures. It allows the weight space of previ-
ously trained models to be reused and minimises overfitting in highly specified algo-
rithms by giving a better initial set of weights [77]. As a result, we routinely used the 
concept of Transfer learning in this approach to accomplish significant results. In this 
case, we used the parameter space of the pre-trained model to initialise the weights of 
the suggested CVD-HNets [78]. Similarly, we are using the same training technique for 
existing CNN models to ensure a fair comparison. These models have now been opti-
mised with X-ray images by applying domain adaptation enabled Transfer learning to 
modify the ImageNet pre trained techniques for categorization of COVID 19 specific 
pneumonia for the dataset. [79].

4.3 � Proposed Methodology

The entire dataset has been split into two separate groups, each having an 80:20 percent 
ratio for the train and test sets (70% of X-ray pictures of the chest are used for training, 10% 
for validation purpose, and 20% for testing purpose). The fivefold cross validation tech-
nique was used to optimise the architectures parameters. SGD was utilised as an optimizer 
with a momentum of 0.94 during CNN training. Here learning rate was fixed as 0.0001 
as well as weight decay was set as 0.0005. The model has been trained over ten epochs. 
For smooth training, a mini batch training has been used with batch size of 15 photos per 
epoch. Softmax can be utilised as activation function for all deep CNNs, and they were 
all optimised for picture classification by minimising cross-entropy loss. For the machine 
learning based classification analysis, ADAM was applied [80–85]. MATLAB 2019b was 
used to run all of the simulations. For MATLAB simulations, a 2.90 GHz Dell 8th gen intel 
core-7500 processor as well as a Multi core Nvidia GTX 1060 Tesla has been used. The 
models were trained for around 12 h. On the Nvidia Tesla K80, one epoch took 30–60 min 
to train. Figure 7. Provides the Performance analysis of proposed CVD-HNet1 and CVD-
HNet2 models with Existing CNNs.

Table 4   Proposed CVD-HNets versus Existing CNNs

Deep models Accuracy Sensitivity Specificity TP FP FN TN MCC F score

Inceptionv3 96.82 0.97 0.97 626 20 21 624 0.94 0.97
DenseNet201 96.51 0.97 0.96 627 26 19 618 0.94 0.98
Google net 95.59 0.96 0.96 641 30 29 640 0.94 0.96
Squeeze Net 95.99 0.96 0.96 629 25 27 618 0.94 0.96
Xception 96.29 0.97 0.96 626 27 21 620 0.94 0.97
Resnet50 96.52 0.96 0.96 630 23 22 620 0.95 0.96
CVD-HNet1 98.15 0.97 0.98 640 9 17 635 0.97 0.97
CVD-HNet2 98.85 0.99 0.98 645 8 7 645 0.97 0.99
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5 � Results and Discussions

Utilizing chest X-ray images, this research describes a new novel deep CNN model for 
distinguishing COVID 19 affected cases. Two experiments have been carried out to empiri-
cally assess the efficiency of the suggested model. We looked at the benefits of synchronis-
ing employing max and average pooling in CVD-HNets for region classification in the first 
experiment shown in Table 5. The second section compares results to popular state-of-the-
art methods in order to make a broad assessment of the COVID 19 identification challenge 
shown in Table 6.
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5.1 � Performance Analysis of the Proposed CVD‑HNets

There are a variety of metrics that may be used to assess the effectiveness of categorization 
models, including accuracy, sensitivity, specificity, F-score, precision, confusion matrix. 
Table 7 provides a mathematical description of the various measurements [86–90].

Here suggested CVD-HNet1 and CVD-HNet2 models are assessed using Accuracy, 
Matthews Correlation Coefficient and F score, which are conventional measurements in 
medical image diagnosis systems, on an unknown test dataset. Unlike Accuracy, both F 
score and Matthews Correlation Coefficient give recall and precision equal weight. 642 
images of COVID 19 and normal people were accurately identified using the suggested 
CVD-HNet1 model. Similarly, the suggested CVD-HNet2 functions admirably, prop-
erly categorizing 631 COVID 19 afflicted and 636 normal people. The detection rate for 
COVID-19 tends to enhance when the depth is increased. Misclassification is most likely 
caused by lighting variations, low contrast areas, and a complex regions of images. In order 
to increase generalisation and improve robustness to unseen images, we used multiple data 
augmentation procedures during training (Fig. 8).

Benchmarking the feasibility of the suggested model against ResNet and VGG is used 
to assess its efficiency. ResNet-18 and VGG 16, the two baseline methods, are about as 
deep as CVD-HNet1 and CVD-HNet2. VGG 16 model uses a unique sort of pooling opera-
tors, whereas ResNet 18 employs strided convolution operation instead of pooling down, 

Table 5   Correctly identified images

Classified 
image

Test image Activation map Segmented 
activation map

Composite image

Normal

Bacterial 
pneumonia

Viral 
pneumonia

Covid 19 
pneumonia
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as opposed to the idea of employing two opposing pooling procedures in CVD-HNets. 
Table  2 shows the results comparison including Accuracy-98%, Matthews Correlation 
Coefficient -0.97 and F score-0.99 both CVD-HNets outperform ResNet 18 and VGG 16, 
according to performance analysis. In comparison to existing VGG16 and ResNet 18, the 
suggested CVD-HNets importantly enhance the metrics for both COVID 19 affected cases 
and healthy people.

In assessing the learning potential of deep CNN models, extracting feature is crucial. 
The contribution of the proposed model’s feature set in learning class specified map-
pings is assessed using the traditional ML model. By extracting features from the pro-
posed CVD-HNet’s penultimate layer and allocating it to the ADAM classifier, mapping 
capacity of the suggested CVD-HNet is tested. Table 3 reveals that the sequence lent 
by proposed CVD-HNet1 and CVD-HNet2 can be used to distinguish COVID 19 cases 
from normal patients in two classes. Quantitative examination of Accuracy-98.84%, 

Table 6   Wrongly identified images

Classified 
image

Test image Activation map
Segmented 
activation map

Composite 
image

Results

Normal

Predicted class: 
Covid 19
pneumonia
Predicted score: 
0.9132

Predicted class:  
Bacterial 
pneumonia
Predicted score:
0.9241

Predicted class:  
Viral pneumonia
Predicted score:
0.9129

Pneumonia

Predicted class:  
Normal
Predicted score 
0.7123

Predicted class:   
Covid 19 
Predicted score:
0.7255

Predicted class:  
Normal
Predicted score 
0.7436
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Matthews Correlation Coefficient-0.98, F score -0.99, and suggests that this technique 
outperforms ResNet 18 (Accuracy-96.64%, Matthews Correlation Coefficient-0.96, F 
score-0.97) and VGG-16 (Accuracy-95.90%, Matthews Correlation Coefficient -0.95, F 
score-0.96).

For a thorough empirical evaluation, we compared the proposed technique to pop-
ular CNN architectures on unseen chest X-ray pictures. Accuracy, MCC, AUC-ROC, 
F-score, precision and sensitivity used to evaluate the outcomes.

Table 7   Performance matrices for classification

Sl. No Metrics Formula

1 TP If COVID-19 is identified in a COVID-19 affected person
2 TN If an individual is identified as NONCOVID-19 correctly
3 FP Depicts an inaccurate identification in which a healthy person is found to have 

COVID-19
4 FN Indicates an inaccurate identification in which a person affected with COVID-

19 is mistakenly identified as a healthy person
5 Accuracy No. of Images Correctly predicted as both COVID − 19 and Non COVID

Total No.of Images

=
TP + TN

(TP + TN + FP + FN)

6 Sensitivity/Recall No. of Images Correctly predicted as COVID−19

Total No. of COVID−19 Images
=

TP

(TP+FN)

7 Specificity No. of Images Correctly predicted as Non COVID−19

Total No. of Non COVID−19 Images
=

TN

(TN+FP)

8 Precision No. of Images Correctly predicted as COVID−19

Total No. of predicted Positive Images
=

TP

(TP+FP)

9 F-Measure 2 ×
Recall ×Precision

Recall+Precision

10 Confusion Matrix

True 
Positive
(TP)

False 
Negative 
(FN)

False 
Positive
(FP)

True 
Negative 
(TN)

Predicted Class

Ac
tu

al
 C
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Fig. 8   Confusion matrix
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5.1.1 � Performance Comparison with Existing CNNs

The suggested CVD-HNet1 and CVD-HNet2 are compared to DenseNet-201, Goog-
leNet, ResNet-50, InceptionV3, Xception, SqueezeNet, and in terms of performance 
[91–100]. In accordance with the standard performance metrics Accuracy, MCC, F 
score, and the performance analysis demonstrates that suggested CNN designs CVD-
HNet1 and CVD-HNet2 could better distinguish the COVID 19 unique pneumonia 
affected regions from X-ray pictures. This increase the speed due to the proposed CNN 
architecture’s systematic usage of max and average pooling operations.

6 � Challenges and Future Directions

On ImageNet Challenger, the most important picture classification and segmenta-
tion challenge in the image analysis field, a considerable result was achieved using the 
numerous CNN-based deep neural networks constructed. The primary benefit of CNN 
over its counterparts is that it could detect critical properties without human assistance 
[101]. Table 6 shows how several classification models produced various performance 
indicators such as Accuracy, Sensitivity/Recall, Precision, Specificity, Receiver Operat-
ing Characteristic (ROC) Curves and F-measure. We may evaluate the best CNN model 
according to these performance metrices [102].

In recent days we’ve seen so much about imbalanced datasets, lack of confidence 
intervals [103], and also improperly labelled data in deep learning-related Medical 
Imaging literature which it is simple to label it the core obstacle while fully investigat-
ing Deep Learning (DL) breakthroughs [104–110]. The number of image samples and 
cases in database searches now available for diagnostic imaging activities is limited, 
with the exception of a few datasets. When compared with datasets for basic Computer 
Vision challenges that typically ranges from some few thousand to millions of labelled 
images [111], medical imaging datasets are far too small. Alternatively, now we are 
seeing a rising trend in the community of medical imaging professionals to learn deep 
models end-to-end, similar to what we’re seeing in the wider Pattern Recognition com-
munity. Alternatively, the wider community has traditionally supported as such endeav-
ours because large-scale labelled datasets are a required condition for producing correct 
DL models [112]. As an outcome, its unknown how well end-to-end certified DL mod-
els can execute medical image diagnosis activities without overfitting to training exam-
ples. Principal Component Analysis (PCA), Image flipping, image cropping, padding, 
and adversarial training are some of the basic data augmentation techniques we’ve cre-
ated. These techniques, however, aren’t as sophisticated as the Generative Adversarial 
Network when it comes to augmenting dataset images [113–115].

A further big stumbling block would be the usage of black boxes, the legitimate 
implications of black box functionality would be a disincentive, as Medicare practition-
ers could not trust on it. If the decision was unfavourable, who may be held liable? The 
hospital may be hesitant to utilise a black-box technique which could allow hospital to 
track that a certain outcome came from an optometrist, owed to the sensitivity of this 
location [116]. The black-box problem is an important research topic, and deep learning 
researchers are striving to address it [117].
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Furthermore, teaching deep learning models is a very expensive endeavour due to the com-
plicated data structures. They frequently demand high-end GPUs and hundreds of computers, 
raising the cost to users [118].

Because the increased complexity of numerous layers needs a large computing burden, 
training performance degrades as a result. To fight vanishing gradient and over-fitting con-
cerns, researchers have used improved activation functions, drop-out techniques and cost 
function design [119]. High computational load has been addressed with the use of massively 
parallel technologies like GPU’s and batch normalization [120]. The construction of an inter-
disciplinary data repository is made possible by the presence of a huge volume of electronic 
healthcare data.

7 � Conclusion

Medical image diagnosis is a vital technology which bridges the gap between scientific and 
societal needs, and it has the potential to produce a substantial synergy that will benefit each 
of these sectors. Our investigation revealed the current state-of-the-art, which may be valuable 
to radiologists all over the world, according to the latest 120 medical imaging research papers. 
In this research, two new customized deep CNN methods are proposed to distinguish COVID 
19 infected pneumonia cases from healthy people in X-ray pictures. The proposed COVID 19 
classification method is compared against existing CNN models to see how well it performs. 
The proposed CVD-HNet1 and CVD-HNet2 models outperform existing CNN models and 
baseline in terms of Accuracy, MCC and F score according to experimental results. The pro-
posed method is intended to aid physicians in the analysis of COVID 19 affected individuals. 
Furthermore, it provides a great potentiality in analysing various sorts of chest X-ray image 
anomalies. We discussed the current obstacles, main issues, and future directions.
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