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Abstract
Cognitive Radio is a novel concept that has invoked a paradigm shift in wireless commu-
nication and promises to solve the problem of spectrum underutilization. Spectrum sens-
ing plays a pivotal role in a cognitive radio system by detecting the vacant spectrum for 
establishing a communication link. For any spectrum sensing method, detection probabil-
ity and error probability portray a significant part in quantifying the detection performance. 
At low SNR, it becomes cumbersome to differentiate noise and signal due to which sensing 
method loses robustness and reliability. In this paper, mathematical modeling and critical 
measurement of detection probabilities has been done for energy detection-based spectrum 
sensing at low SNR in uncertain noisy environment. A mathematical model has been pro-
posed to compute double thresholds for reliable sensing when the observed energy is less 
than the uncertainty in the noise power. A novel parameter “Threshold Wall” has been for-
mulated for optimum threshold selection to overcome sensing failure. Comparative simula-
tion and analytical result measurements have been presented that reveals improved sensing 
performance.

Keywords Spectrum measurement · Energy detection · Noise uncertainty · Dynamic 
threshold · Threshold wall · Probability of detection · Probability of error

1 Introduction

In the present pandemic situation due to the spread of COVID 19 virus worldwide, where 
millions of people are forced to stay at home with schools/ colleges/ offices/ entertainment 
theatres closed, people are now spending more of their times online. The internet usage and 
its consumption has surged significantly and has pushed people of all ages to online mode 
for work, play and education. With the rise in social distancing norms, users are seeking 
new ways to connect mostly through internet according to the recent collated reports from 
telecom industry [1].
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The main problem encountered while rendering such wireless services is the spectrum 
scarcity. Research studies carried out by FCC state that the use of fixed spectrum alloca-
tion policies makes the wireless spectrum underutilized [2]. The measurement of spectrum 
usage portrays the underutilization as well as overcrowding of few chunks of RF spec-
trum [3, 4]. The reason behind spectrum scarcity is the inefficient existing scheme of spec-
trum allocation. In the present situation, the spectrum scarcity problem has aggravated and 
needs attention. The issue of spectrum crunch is of utmost significance and needs immedi-
ate action for future networks.

For efficient spectrum usage, un-licensed secondary users (SU) can share and access 
the spectrum along with licensed primary users (PU) with the help of Dynamic Spectrum 
Allocation via Cognitive Radio [5]. Cognitive Radio (CR) has invoked a paradigm shift 
in wireless communication era and has the intelligence to detect the vacant band of spec-
trum and adapt its parameters accordingly [6, 7]. For cognitive radio systems, identifica-
tion of spectrum availability in the vicinity is the most crucial task which is implemented 
through spectrum sensing. For spectrum sensing in CR the primary objective is to achieve 
the desired Receiver Operator Characteristics (ROC) in terms of detection probability  PD, 
false alarm probability  PFA, number of samples  Ns, sensing duration at an acceptable level 
of SNR (Signal to noise ratio).

The main contribution of this work is given as follows: firstly, a novel mathematical 
framework for computing the “Threshold Wall” has been proposed and simulated to over-
come a sensing failure without additional hardware or an extra detection stage. To further 
enhance the system performance a novel concept of adaptive double threshold has been 
proposed to make the sensing reliable. The variation in the adaptive thresholds with respect 
to noise uncertainty has been quantified and formulated as the “Threshold Wall” to avoid 
sensing error at low SNR in presence of noise uncertainty. The computation of double 
thresholds prevents detection malfunction and hence reduces the overall error probabilities. 
This work presents a mathematical model to compute double thresholds for reliable sens-
ing and a new constraint to avoid failure with a computed “Threshold Wall”.

The rest of the paper is organized as: Sect. 1.1 describes the recent related work in the 
field of spectrum sensing in cognitive radio networks. Section 2 presents the conventional 
system model in a spectrum measurement process and the exhibits the shortcomings as 
well. Section  3 proposes a novel method of spectrum sensing through adaptive double 
thresholds. Section 4 gives the simulation results and presents a comparative analysis of 
the proposed technique with the existing ones. The paper has been summarized and con-
cluded in Sect. 5.

1.1  Related Work

Over two decades, researchers worldwide explored upon various methods for spectrum 
sensing. Based on the literature survey on spectrum sensing various methods like: 
Energy detection (ED) [8–11]; Cyclo-stationary feature detection [12–14]; Matched 
filter detection [15, 16]; Statistical covariance-based detection [17, 18]; Cooperative 
sensing [19, 20]; compressed sensing [21–23] were proposed to examine the spectrum 
occupancy under different scenarios. Considering the research on spectrum sensing 
methods; energy detection draws the attention of the researchers for its lesser com-
putational and operational complexity [24]. Energy Detection doesn’t require a pri-
ori knowledge about the primary user (PU) signal being sensed but is significantly 
affected by noise conditions [25]. The major constraint that puts a check on the 
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performance of the energy detection (ED) method is selection of threshold at low SNR 
(signal-to-noise-ratio). Fixed single threshold concept at low SNR prolongs the sens-
ing time. The situation worsens with flickering noise power and leads to sensing failure 
below a certain SNR (termed as “SNR wall”) which is characterized by low  PD and 
increased probability of error or error rates The noise power fluctuation causes deg-
radation in the performance of a spectrum sensing method which can be improved by 
using dynamic threshold factor [26–28]. The authors of [29] have presented a double 
threshold-based sensing technique that narrows down the uncertainty zone to increase 
the robustness of the system against noise power fluctuations. Several adaptive double 
threshold-based detection methods have been proposed which incorporates an adap-
tive factor in computation of the decision threshold to improve the robustness of the 
system against noise [30–32]. The authors in [33] have proposed a two-stage scheme, 
fitted to perform in TV bands. It promises to offer a good detection of the occupied 
bands with desirable false alarm rates (Stage 1) and an exact measurement of the real 
occupied spectrum (Stage 2). A new adaptive sensing time technique-based spectrum 
sensing that depends on the SNR has been given in [34] to increase the literal spec-
trum usage and the achievable throughput. Apart from using double threshold, some 
methods employ machine learning or optimization algorithms to achieve desirable 
sensing performance and prevent sensing failure [35, 36]. Authors in [37, 38] have 
proposed the use of artificial neural networks (ANN) to implement hybrid spectrum 
sensing. However, all these methods require extra implementation cost and increased 
hardware complexity. Our previous work in [39] aimed at introducing a novel math-
ematical model for energy detection-based sensing. It was re-modeling of the existing 
mathematical system to achieve desirable performance metrics without changing the 
sensing algorithm. The concept of cooperative communication has been used for spec-
trum sensing in [40] to enhance the detection performance of an energy detector for 
VANET. The region of uncertainty is addressed with the help of a Fusion center that 
makes a cooperative decision on the presence of an available band. Some of the latest 
research as reported in [41–43], the extensive use of cooperative sensing clubbed with 
deep learning techniques promises to enhance the system performance and robustness. 
Furthermore, the sensing technique with the use of double threshold can be made more 
robust with optimization techniques as illustrated in [44].

All the methods discussed above, aim at reducing the error probability or increas-
ing the detection probability as well as throughput. None of the methods, aimed at 
inclusion of a minimum threshold value that should be taken into consideration at low 
SNR. Moreover, adaptive double threshold not only divides the sensing scenario in two 
regions of high and low SNR but also varies it according to the changing SNR.

Therefore, this paper aims at spectrum measurement at low SNR in the presence of 
uncertainty in noise with the help of double thresholds that can adapt its value accord-
ing to the varying noise. A novel mathematical model to compute the double threshold 
based on the dynamic threshold factor and noise uncertainty has been proposed to offer 
robustness and higher detection probability even in the region of uncertainty without 
incorporating extra relays, fusion center or deep learning. Therefore, the presented 
work aims at simplifying the detection problem by addressing the mathematical for-
mulations that relate the performance metrics. The obtained detection probability and 
error rate through the simulation depicts improvement as well as reduction in the width 
of uncertainty zone at low SNR using the proposed scheme of double threshold-based 
spectrum sensing.
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2  System Model

Spectrum sensing via energy detector involves observation of received signal energy 
over a certain time interval [7]. Signal detection is tested by formulation of two hypoth-
eses with the following conditions:

where X(n) is the received signal samples at CR node, S(n) is the primary signal of interest 
and N(n) is the noise samples. Assume that the noise is Gaussian with zero mean and band 
limited power spectral density. H0 and H1 are the hypothesis denoting absence/presence of 
a PU signal respectively.

Suppose total number of samples observed during a spectrum sensing time is  NS, 
average power of received signal X(n) is known and noise has a constant variance σn

2. 
The test statistic D(X) is given as follows:

Without noise uncertainty, the central limit theorem gives performance analysis 
parameters  PFA and  PD as per [9] is given below:

In Eqs. (3) and (4), λ is the detection threshold, Q(.) is the standard Gaussian com-
plementary function and SNR = P/σn

2. The total error rate can be expressed as sum of 
error probabilities: false alarm  (PFA) and Probability of missed detection  (PMD):

To compute the number of samples  NS, the detection threshold λ is eliminated from 
Eqs. (3) and (4) and expressed as:

According to Eq.  (7), if the noise variance is completely known and constant then 
signal detection is possible even at low SNR just by increasing  NS. However, number 
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of samples NS → ∞ when SNR <  < 1 (less than 0 dB). In such a scenario, detection of 
signal becomes difficult with a fixed threshold for all SNR levels [40].

(A) With noise uncertainty and fixed threshold

In previous section, the general model for spectrum sensing assumed constant noise with 
zero mean and no uncertainty. In real world, model uncertainties cannot be completely 
ignored since it affects the reliability of the entire system under observation. The noise 
uncertainty factor ρ is introduced in the noise model ρ ≥ 1 and for practical requirements 
the σn

2 in (3) and (4) now lie between (σn
2 /ρ, ρσn

2) as presented in [9]. At low SNR and 
uncertain noise, the selection of threshold (λ) by each SU becomes a crucial task to avoid 
missed detection or raised false alarm. In such a scenario sensing capability of the detec-
tion scheme fails. Taking noise uncertainty factor ρ into account in the noise model, 
Eqs. (3) and (4) are modified as follows:

The uncertainty in the noise power is distributed in the interval [σn
2/ρ, ρσn

2] and can be 
quantified as shown in Eq. (10). The abovementioned probabilities  PD and  PFA are used to 
compute the total error probability  PE, which is the sum of probability of false alarm and 
probability of missed detection  PMD (1 −  PD):

The error rate or error probability  PE should be as low as possible for better sensing per-
formance. In [27] the authors have presented the role of “SNR Wall”, and its influence on 
detection robustness. SNR wall has been defined as the minimum required SNR for proper 
detection in presence of noise uncertainty. It has been explained as the margin below which 
the detector cannot robustly sense the presence or absence of the signal when the signal 
power is less than the uncertainty in noise i.e. P ≤ (ρ − 1/ρ).

It is considered that when ρ = 1, the noise has constant power and when ρ > 1, the 
noise model exhibits noise power fluctuations. While designing the sensing-error trade-
off problem, SNR wall is taken as a major constraint that leads to failure of the detection 
capability. The sensing tradeoff issue signifies the situation when the detector fails to 
detect or sense the spectrum and does not give any decision on the spectrum availability. 
This state arises when the SNR at which the measurement is being made is lower than 
the threshold SNR or SNR wall and is a serious degradation factor for spectrum sensing 

(8)PFA = Q

⎛
⎜⎜⎜⎝

� − �σ2
n�

2

NS

�σ2
n

⎞⎟⎟⎟⎠

(9)PD = Q

⎛
⎜⎜⎜⎜⎝

� −
�
P +

σ2
n

�

�
�

2

NS

�
P +

σ2
n

�

�

⎞⎟⎟⎟⎟⎠

(10)PE = PFA + PMD

(11)SNRwall = � −
1

�



1868 G. Mahendru 

1 3

performance. Such a sensing tradeoff problem holds great significance while deciding a 
threshold for signal detection as well as threshold for SNR to avoid any sensing failure. 
At low SNR, it is assumed that the factor (1 + SNR) 1 and  Ns can be now expressed as 
below:

From Eq. (12) it can be inferred that when SNR becomes less than the uncertainty in 
noise (11), then  NS  ∞ and sensing failure occurs as shown in Fig. 1 [28, 29].

Setting the threshold within the uncertainty region leads to detection failure no mat-
ter how large the sensing time is or how large is number of samples  (Ns). Thus, selec-
tion of detection threshold in the noise uncertain region remains a problem.

(B) With noise uncertainty and dynamic threshold

The performance of a detection technique degrades significantly in a noise uncertain 
environment at very low SNR. The authors in [28] suggest the use of dynamic threshold 
for spectrum sensing in presence of noise uncertainty since fixed detection threshold 
leads to non-robust and unreliable performance. A dynamic threshold factor ρ′ in the 
range [λ/ρ′, ρ′λ] is introduced in detection probabilities and λ is modified to get follow-
ing equations:

Again, eliminating λ from the Eqs. (13) and (14), we get  NS as:
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Fig. 1  Testing of Hypotheses  H0 and  H1
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In Eq. (15) it can be observed that if the noise uncertainty factor is equal to dynamic 
threshold factor numerically (ρ = ρ′), the expression will become like that without noise 
uncertainty as given in Eq. (7). Thus, it can be interpreted that the effect of noise uncer-
tainty can be nullified by the dynamic threshold factor ρ′. But if the threshold is kept fixed 
then sensing might become unreliable due to uncertainty in noise at low SNR according to 
Eq. (15).

3  Proposed Mathematical Model

In this section, the proposed model for spectrum sensing using dynamic double threshold 
concept has been presented and a new term “Threshold wall” has been coined to account 
for the ambiguous decision zone due to noise uncertainty at low SNR. The case when the 
received energy lies in the region of confusion between the two thresholds at low SNR is 
considered and a novel method is proposed. Furthermore, a comprehensive comparison 
of the proposed spectrum sensing technique with few of the existing schemes has been 
presented to have a better insight into the improvement in spectrum sensing performance 
measurement proposed by the novel method.

(C) Threshold wall

As discussed previously, “SNR wall” deters the selection of threshold within the noise 
uncertainty zone and renders unreliable performance. This may result in false alarm 
or missed detection and could disrupt the PU communication system. Such undesirable 
consequences can be prevented by dynamically adjusting the threshold according to the 
varying uncertainty in noise. The uncertainty in noise can be compensated by introducing 
dynamicity/variation in the detection threshold, expressed as below:

From Eq. (16) it can be observed that when the uncertainty in noise is at the lower limit 
(σn

2/ρ), it can be balanced by dynamicity in detection threshold (ρ′λ). Similarly, when the 
noise uncertainty is at the upper limit (ρσn

2), its effect can be annulled by reducing the 
threshold level by (λ/ρ′). Considering the degrading effect of uncertainty in noise and the 
exalting repercussion of dynamic threshold factor on sensing performance, a new param-
eter “Threshold Wall” can be quantified through Eq. (17):

Threshold wall can be defined as the check parameter to keep the performance metrics 
within desirable limits by knowing the actual change in the detection threshold value with 
respect to the noise uncertainty. It can be regarded as the edge where the performance of the 
detector in terms of number of samples improves drastically at very low SNR. The proposed 
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mathematical expression for threshold wall solves the problem of threshold selection in uncer-
tain noise region. It is observed in Eq. (15)  Ns won’t tend towards infinity even at low SNR 
with suitable selection of the threshold wall value.

Previously, it was observed in Sect. 2 that threshold selection below the minimum required 
SNR (“SNR wall”) leads to a situation where  Ns increases infinitely. It ultimately ends up in 
a detection failure with impractical value of probability of error  (Pe ≥ 1). In such a scenario, 
sensing failure can be eschewed by using the threshold wall (17) for making a decision and 
varying ρ′ in accordance with the ρ when SNR is less than the uncertainty in noise. Grounded 
on the threshold wall, a novel sensing method based on double dynamic thresholds has been 
proposed in the next sub section.

(D) Dynamic double threshold

In [31–33] two threshold based energy detection model has been proposed to mitigate the 
effect of noise uncertainty by maximizing the  PD and minimizing the error probabilities  (Pe). 
The prediction is based on PU activity profile and switching the detection threshold dynami-
cally between the two limits. The upper threshold to achieve higher  PD is taken as λHIGH and 
lower threshold for reduced  PFA is considered as λLOW. In this work, a novel mathematical 
model has been proposed for enhanced detection by considering the following conditions and 
illustrated in Fig. 2:

Region of confusion occurs in uncertain low SNR environment and raises the probability 
of missed detections or false alarm. According to the proposed technique, the detection thresh-
old is switched between the two suggested thresholds in accordance with the variation in noise 
uncertainty when the detection enters the region of confusion. The concept of threshold wall 
as proposed in Sect. 3A and as proposed in [31, 39] is taken as the basis for formulation of 
mathematical expressions of double dynamic thresholds and justified below:

(18)PFA = P
(
D(X) > 𝜆|H0

)

(19)PD = P
(
D(X) > 𝜆|H1

)

(20)�HIGH =
���

�

Fig. 2  Proposed Dynamic Double Threshold concept for Region of Confusion
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The two thresholds expressed in Eqs. (20) and (21) depict the two extreme points of 
the region of confusion. These thresholds help in achieving desired detection probabil-
ity at varying levels of SNR. At low SNR the lower threshold λLOW is considered and at 
higher values of SNR, the second threshold λHIGH is taken. In both the cases, the effect 
of noise uncertainty ρ is compensated by a nullifying effect of dynamic threshold fac-
tor ρ′. Therefore, the dynamic double threshold can be varied according to the change 
in noise uncertainty factor at low or high SNR. This not only increases the system 
robustness but also reduces the probability of error. The proposed method outperforms 
fixed threshold detection, double threshold and cyclo-stationary feature detection at 
lower values of SNR. Furthermore, the detection threshold λ is the mid-point of the 
double thresholds. The difference in the double thresholds can be computed as below:

In Eq. (22),  
(

��

�
−

�

��

)
 is the detection threshold wall according to Eq. (17). Appro-

priate optimization of this factor helps in attaining desired  PD, lower  Pe and aims at 
finding the targeted number of samples  NS. The two novel thresholds λHIGH and λLOW 
are termed as “dynamic” as they depend on the variable uncertain noise (ρ) and a 
dynamically changing parameter (ρ′). Apart from these two factors, it is dependent on 
λ which is in turn reliant on noise variance σn

2
. The proposed technique exhibits 

enriched detection probability when ρ′ > ρ. The main aim to lower the false alarm and 
raise detection probability at low SNR is thereby achieved. The novel double thresh-
old-based method performs appropriately at smaller values of SNR and ensures 
improved sensing performance even with increasing uncertainty in noise as confirmed 
by the simulation results in Sect. 4. To validate the improvement in performance of a 
sensing technique with the proposed method, a comprehensive comparison of the few 
existing sensing methods and their parameters is given in Table 1. For cyclo-stationary 
detection method, the test statistic is the autocorrelation coefficient assuming OFDM 
(Orthogonal Frequency division multiplexed) signals with  Td as the number of data 
symbols;  TC is the number of symbols in cyclic prefix and SNR is signal to noise ratio. 
The basic concept of cyclo-stationary feature detection is extraction of statistical prop-
erties of the signal. In [14] OFDM modulation is considered due its popularity and the 
correlation structure of the signals with cyclic prefix. Table 1 represents the test statis-
tic parameter used and decision threshold mathematical expressions for different detec-
tion techniques like Matched filter detection, cyclostationary feature detection, conven-
tional energy detection with fixed threshold, existing double thresholds, available 
adaptive double thresholds, and the proposed energy detection with dynamic double 
thresholds. The parameters from Table  1 have been utilized to obtain simulations 
results depicting different sensing methods as shown in Fig. 8 to showcase their com-
parative analysis and the enhancement achieved through the proposed detection 
method.
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4  Simulation Results and Discussion

This section provides simulation results and comparative analysis to validate the proposed 
mathematical model in the Sect.  3. The results have been obtained through MATLAB 
simulations and its analysis has led to a conclusion that the proposed method offers better 
sensing performance in terms of increased detection probability and reduced error prob-
ability at low SNR in presence of noise uncertainty. The channel is assumed to be AWGN 
with noise variance �2

n
 = 1,  NS is varied between 200 and 2000 samples, SNR is set low 

between − 20 and 10 dB, noise uncertainty factor is taken as: 1 < ρ < 1.09 and dynamic 
threshold factor is varied between 1 < ρ′ < 1.7. The probability of false alarm is kept low at 
 PFA = 0.1 and high detection probability is aimed [38, 39]. Table 2 depicts the simulation 
parameters and its values in a tabular form.

At low SNR (− 20 to − 2 dB),when signal power is less than the uncertainty in noise 
P < 

(
� − 1∕�

)
 , then detection becomes impractical as the number of samples  (10log10NS) 

increases infinitely as shown in Fig. 3. It denotes the location of SNR wall with a dotted 
line in dB below which detection does not takes place for uncertainty factor of ρ = 1.002, 
1.02, 1.04 and 1.06 respectively. It clearly depicts that with increasing noise uncertainty 
factor (ρ > 1), the SNR wall shifts on the higher side and makes the signal presence very 
vague which ultimately leads to sensing failure. In other words, it depicts that there exists a 
minimum value of SNR at which detection takes place and is termed as SNR wall [27]. 

Table 1  Comparison of different sensing methods

Sensing technique Test statistic D(X) Threshold λ

Energy detection with fixed threshold λ [7]
D(X) =

1

NS

NS−1∑
n=0

X(n)2 λ = Q−1
(
PFA

)
�2
n

√
2

Ns

+ �2
n

Energy detection with double threshold λ1, λ2 [28]
D(X) =

1

NS

NS−1∑
n=0

X(n)2
λ1 = (� − 1)λ

λ2 = (� + 1)λ

Energy detection with adaptive double threshold λ1, 
λ2 and λ* [30] D(X) =

1

NS

NS−1∑
n=0

X(n)2
λ1 = (� − 1)λ

λ2 = (� + 1)λ

λ∗ =
(
λ2 − λ1

)
� + λ1

Cyclo-stationary feature detection [12] D(X) =
TD

TD+TC
.

SNR

1+SNR
λ =

1√
NS

erfc−1
�
2PFA

�

Proposed method with double dynamic threshold
D(X) =

1

NS

NS−1∑
n=0

X(n)2 λHIGH =
��

�
λ

λLOW =
�

��
λ

Table 2  List of simulation 
parameters

S. no. Simulation parameter Value/range

1 Ns (number of samples) 200–2000
2 SNR (Signal to Noise ratio) − 20–10 dB
3 ρ (noise uncertainty factor) 1–1.09
4 Ρ′ (dynamic threshold factor) 1–1.7
5 PFA (Probability of false alarm) 0.1
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The signal cannot be detected unless SNR becomes greater than the SNR wall no matter 
for how long the channel is sensed. The sample complexity  10log10Ns increases at low 
SNR and thus makes the system performance error prone. The number of samples and 
SNR has been expressed in dB; performance metrics are taken as  PFA = 0.01,  PD = 0.9, and 
1.002 < 𝜌 < 1.4.

Figure 4 illustrates the concept of SNR wall as discussed in Sect. 2A. It depicts SNR as 
a function of noise uncertainty  (10log10ρ) defined by (10) and depicts the position of SNR 
wall for ρ = 1.02 [27].

Fig. 3  Increase in  Ns at low SNR with increasing noise uncertainty ρ

Fig. 4  “SNR Wall” as a function of noise uncertainty [25]
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The effect of noise uncertainty on error rate  (PE) can be seen in Fig.  5 using the 
Eqs.  (10), (11) and (12). Without considering noise uncertainty, the performance of the 
system in terms of error rate and number of samples seems acceptable (as per Eqs.  (8), 
(9) and (10)). Though it requires higher number of samples to obtain lower error rate. 
However, error rate increases impractically (beyond 1) at low SNR in presence of noise 
uncertainty according to Eqs.  (10) and (12). A significant enhancement in the sensing 
performance can be observed when dynamic threshold factor (Eq. (15)) is introduced and 
increased with respect to ρ (ρ′ = 1.3, 1.5). It can be observed in Fig. 5 that when dynamic 
threshold factor is introduced the error rate reduces at lower value of  Ns. With ρ′ = 1.5, 
there is a reduction of about 20% in the error rate at same  Ns as compared to error rate at 
ρ′ = 1.3. Similarly, in Fig. 6 a graph is plotted between error rate and detection threshold in 
presence and absence of noise uncertainty ρ using the same set of equations and by varying 
the detection threshold this time. It can be inferred from the plot that as dynamic threshold 
factor ρ′ is increased in accordance with ρ, the error rate improves significantly thereby 
making the system robust.

Finally, in Fig. 7, the proposed model for “threshold wall” has been analyzed and vali-
dated. It demonstrates the concept of “SNR wall” for fixed threshold method and “Thresh-
old wall” for dynamic double threshold method. The later one shows significant enhance-
ment in sensing performance that helps in overcoming the sensing failure at low SNR in 
noise uncertain zone. It indicates that with proper selection of the threshold wall parameter, 
 Pe can be reduced with respect to number of samples at low SNR. As dynamic threshold 
factor is introduced, it compensates for the performance deterioration due to noise uncer-
tainty factor, thereby promising better performance with reduced error probability.

In Fig.  8, a comparative analysis of the sensing performance in terms of ROC 
(Receiver Operator Characteristics) curve is shown. The plot between  PD and  PFA signi-
fies the enhancement in the performance of the energy detection-based spectrum sens-
ing method using proposed dynamic double threshold as compared to few of the existing 

Fig. 5  Pe Vs  Ns with fixed and dynamic threshold in presence and absence of ρ
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techniques mentioned in Table 1 of the previous section. It can be observed in Fig. 8 
that the proposed method using dynamic threshold factor ρ′ = 1.6 for an uncertainty in 
noise ρ = 1.04, outperforms the fixed threshold, double threshold [29], adaptive double 
threshold [31] and cyclo-stationary feature detection [12] at SNR = − 10 dB. Thus, the 
proposed method exhibits robust and reliable sensing performance using dynamic dou-
ble threshold. Using double thresholds that adapts itself with respect to the uncertainty 
in noise at low SNR would enhance the sensing performance in terms of increased 
detection probability.

Fig. 6  Pe Vs detection threshold with increasing dynamic threshold factor ρ′ in presence of ρ

Fig. 7  “Threshold wall” to overcome detection failure
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5  Conclusion

Energy detector-based spectrum sensing technique does not provide robust and reliable 
performance at low SNR in presence of noise uncertainty. It leads to sensing failure 
and urges for a minimum SNR value over which it can perform appropriately. How-
ever, SNR wall does not provide a method to select appropriate detection threshold in 
uncertainty zone and results in increased error rates. A novel parameter “Threshold 
Wall” along with its mathematical model has been proposed that alleviates the effect of 
noise uncertainty by using dynamic threshold factor. The dynamicity in the threshold 
level with respect to noise uncertainty has been quantified as the “threshold wall” and 
it represents the compensation offered by the dynamic threshold factor in the sensing 
performance to noise uncertainty factor. To further enhance the performance the con-
cept of dynamic double threshold is considered and a significant reduction in error rate 
is observed through simulation measurements by using two dynamic thresholds. The 
role of threshold wall for double thresholds has been analyzed based upon the newly 
calibrated expressions. Simulated results show that error rates decrease by increas-
ing dynamic threshold factor with respect to noise uncertainty. The proposed dynamic 
double threshold concept improves the sensing performance and makes it robust at low 
SNR in presence of noise uncertainty.
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