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Abstract
Electroencephalography (EEG) is a technique of Electrophysiology used in a wide vari-
ety of scientific studies and applications. Inadequately, many commercial devices that are 
available and used worldwide for EEG monitoring are expensive that costs up to thousands 
of dollars. Over the past few years, because of advancements in technology, different cost-
effective EEG recording devices have been made. One such device is a non-invasive sin-
gle electrode commercial EEG headset called MindWave 002 (MW2), created by Neuro-
Sky Inc that cost less than 100 USD. This work contributes in four distinct ways, first, 
how mental states such as a focused and relaxed can be identified based on EEG signals 
recorded by inexpensive MW2 is demonstrated for accurate information extraction. Sec-
ond, MW2 is considered because apart from cost, the user’s comfort level is enhanced due 
to non-invasive operation, low power consumption, portable small size, and a minimal 
number of detecting locations of MW2. Third, 2 situations were created to stimulate focus 
and relaxation states. Prior to analysis, the acquired brain signals were pre-processed to 
discard artefacts and noise, and band-pass filtering was performed for delta, theta, alpha, 
beta, and gamma wave extraction. Fourth, analysis of the shapes and nature of extracted 
waves was performed with power spectral density (PSD), mean amplitude values, and 
other parameters in LabVIEW. Finally, with comprehensive experiments, the mean values 
of the focused and relaxed signal EEG signals were found to be 30.23 µV and 15.330 µV 
respectively. Similarly, average PSD values showed an increase in theta wave value and a 
decrease in beta wave value related to the focus and relaxed state, respectively. We also 
analyzed the involuntary and intentional number of blinks recorded by the MW2 device. 
Our study can be used to check mental health wellness and could provide psychological 
treatment effects by training the mind to quickly enter a relaxed state and improve the per-
son’s ability to focus. In addition, this study can open new avenues for neurofeedback and 
brain control applications.
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1  Introduction

The brain is the most complex system known and contains approximately 14–16 billion 
neurons. Electroencephalograms (EEGs) are the recording of electrical signals generated 
by ion movements flowing through brain neurons. Activities of the neurons produce cir-
culating ion movements and the space–time potential generated by these ion movements 
is extracted by placing a range of electrodes across the scalp [1, 2]. In the early twentieth 
century, Hans Berger had recorded the first electrical EEG signal from the anthropological 
brain using a d’Arsonval meter placed in the brain with one electrode and identified a sin-
gle wave known as an alpha wave. Modern EEG-based instrumentation systems are com-
monly based on several electrodes and can identify five basic waves, e.g. delta, theta, alpha, 
beta, and gamma, but these systems are extremely expensive and often require specialized 
training [3, 4].

The brain control interfaces (BCIs) is an approach that records, interprets and converts 
neurological activities into actions that are communicated to actuators to perform the 
required tasks [5, 6]. BCIs can be categorized into two major classes, invasive and non-
invasive. In the invasive BCIs class, electrodes are internally inserted into the grey brain 
tissue via neurosurgery, and the best value of brain signals can be obtained by this method. 
Although this method may be used to control various actuators and output devices, this 
method is not feasible, since the incorporation of intrusive procedures require more 
expense and can jeopardize the subject.

As a result, non-invasive BCIs have become popular that do not require a surgical pro-
cedure to obtain brain signals [7]. Over the last few years, various technology firms such as 
OCZ Technology, Emotiv Systems, NeuroSky, Avatar Solutions, PLX Inc. and InteraXon 
have developed low-cost EEG recording headsets based on the non-invasive BCIs [8]. Sci-
entists and engineers around the world have reported a number of studies using these EEG 
headsets for games, toys, education [9], health and automotive applications [10]. However, 
these devices are rarely used in clinical applications. Most neuroscience studies use multi-
ple electrodes that are costly and not readily available, although they give a detailed results 
[11, 12]. Recent advances in commercial EEG devices have seen the use of low-cost [13], 
non-invasive EEG headsets in various applications [14, 15]. These headsets are easy to use, 
comfortable to wear and readily available for people to purchase and rarely require techni-
cal expertise in electrode handling and installation [16]. One such low-cost EEG headset is 
a single-channel MW2 developed by NeuroSky Inc., San Jose, California. Its price is less 
than USD 100. MW2 is a portable, non-invasive, user-friendly, lightweight headset with 
unipolar conduction and Bluetooth communication.

The operating principle of MW2 is very simple. The tip of the Frontopolar (Fp1) elec-
trode is used for the capture of EEG signals. The EEG signals are often corrupted by bio-
logical noise (EMG, ECG, and eye artefacts) and electrical circuit noise [17]. In the same 
way, the MW2 Fp1 electrode can capture various artefacts produced by different nearby 
electrical devices, sockets, light bulbs, computers and human muscles [18]. Additional 
electrodes are located on the ear jack and these electrodes are grounded and referenced, 
allowing the MW2 processor to remove the artefacts. The EEG measurement is obtained 
by MW2 at 512 Hertz. This paper used the Laboratory Virtual Instrument Engineering 
Workbench (LabVIEW) tool, produced by National Instruments USA, for EEG signal 
processing, it is a visual programming language-based development environment and sys-
tem design tool [19]. LabVIEW is easily understood by engineers, doctors, and techni-
cians, because it depends on graphic symbols and icons instead of text-based, complex 
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programming language, where text-based instructions are used to execute the flow of 
acquired data. In addition, LabVIEW supports parallel processing, which enables more 
processing power at a given code and faster speed.

This research work has four key contributions. First, comprehensive investigation of the 
changes in EEG signals during the course of focused and relaxed state of mind using MW2 
headset. Second, MW2 exploration, MW2 is adopted because it is non-invasive, portable, 
small, and user friendly with low power consumption. It is discussed in detail how to cap-
ture and analyze the raw EEG signal via MW2 and LabVIEW respectively. We found a fine 
difference in relaxation and focused EEG signals, and the eye-blink artifacts. Third, we 
developed two scenarios, by stimulating focus and relaxation state for recording of EEG 
signals. We also performed preprocessing to remove noise and described the procedure 
for extracting delta, theta, alpha, beta, and gamma waves from EEG signals. Fourth, anal-
ysis of the shapes of waves was performed and evaluated based on the power spectrum 
technique, mean values, and other parameters in LabVIEW. The analysis showed that, in 
a focused state, the PSD value was significantly different from the relaxed state. We found 
that beta waves of focused state EEG signal were also 1.5 times higher than relaxed state 
signal, and PSD value of alpha wave of relaxed state was nearly twice the focused state 
value. To the extent of our knowledge, there is no report that used an inexpensive, single-
channel device for such study. Our study can be used for checking mental health wellness, 
by training the mind to rapidly enter a relaxed state, moreover, this study can open up new 
avenues for the BCIs and neurofeedback applications. As at present, there is no standard 
EEG signal database available for analysis regarding a relaxed and focused state.

2 � Related Work

Over the last few years, several studies have used MW2 and other single-channel port-
able EEG devices for various applications [20–22]. Rebolledo-Mendez et al. conducted a 
controlled experiment with 34 participants on the basis of a MW device and found that 
the EEG signal attention score was positively correlated with self-reported attention [23]. 
They did not, however, examine the relaxation aspects. Juti Naraballobh et al. studied the 
effect of music on the human brain based on the MW2 device that was employed to collect 
EEG signals. They found the effect of relaxing music stimulation on normal stress level 
participants and found a significant reduction in values of mid-gamma, high alpha, and 
theta waves. Whereas the same stimulation on over stress level participants resulted in an 
increase in low alpha value and a decrease in low gamma value [24]. Likewise, CKA Lim 
et  al. studied the effectiveness of cognitive stress recognition algorithms using the same 
MW device. The accuracy obtained in the recognition of stress-related EEG signals was 72 
percent, based on DCT as a feature extraction method with KNN Classification [25]. Crow-
ley et al. successfully demonstrated MW as a non-invasive device for recording the degree 
of mediation and attention of participants. EEG signals clearly indicated when the subject 
undergoes a change of mediation and attention emotions. The results were verified on the 
basis of the Hanoi and Stroop towers. Several studies have been carried out on the basis of 
EEG signals to examine emotions, to recognise feelings after watching different sports or 
listening to music, to assess mental exhaustion [26]. Yaomanee et al. found scalp positions 
suitable for the detection of attention-related EEG signals. The work involved three phases 
(response questionnaires, location of 3D images and study of a book) to assess whether 
the participants were attentive. To stimulate relaxation, participants were asked to listen 
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to music prior to data acquisition. Higher Beta waves were found when subjects were alert 
and higher alpha waves when subjects were unattentive [27]. JM Rogers et al. employed 
the MW headset to identify EEG signals during 3 min of a cognitive visual task, three min-
utes of eyes open and three minutes of eyes closed counterbalanced with 19 elderly partici-
pants, 21 adults, and 19 youths. The findings showed a significant increase in alpha waves 
and a decrease in theta waves in the closed-eye state. Likewise, alpha waves decreased, and 
beta waves increased, in the open eyes and visual cognition conditions. However, the work 
did not confirm the relaxation and focus state scores from the headset, as their goal was to 
understand whether MW’s EEG patterns were consistent with EEG patterns reported for 
eyes closed and opened states in the previous studies [28]. SJ Johnstone et al. carried out a 
comparative validation analysis between (1) the PSD of the raw EEG data obtained via the 
MW headset and (2) the PSD of the raw data obtained from the 10–20 EEG research-grade 
system. Participants were adults with no mental health problems. The study showed a clear 
positive association between the power spectra of the two headsets without a significant 
difference. Although the authors had described the ‘relaxation’ and ‘attention’ score, they 
did not carry out a comparative validation of those scores achieved during each task [29]. 
There is a research gap, for the identification of relaxed and attentive brain states based on 
commercially available low-cost headset. As previous studies have not statistically distin-
guished between relaxed and attentive states. We address this research gap in this work.

3 � Methodology

The reproducible acquisition of EEG signals is a basic requirement for an effective analysis 
and for the monitoring of brain activity and abnormalities that are formed [30, 31]. Over 
the years, many methods and techniques have been reported based on the size, frequency 
and shape of EEG signals and associated signals for the diagnosis of various diseases and 
other applications [32, 33]. This paper uses Fast Fourier Transform (FFT) which decreases 
the number of computations required for N points from 2N2 to 2NlogN and it is an excellent 
algorithm for computing Discrete Fourier Transform (DFT) and Inverse Discrete Fourier 
Transform (IDFT) [34]. This algorithm involved the divide-and-conquer technique. The 
main scheme is to truncate the transform of size N into 2 transforms of size N/2. FFT algo-
rithm used for the size of the sample is given by the formula:

In this work, the MW2 device acquired EEG signals by a single dry sensor positioned 
based on the 10–20 electrode placement standard. MW2 collects the electrical neural activ-
ities from the scalp when electrodes conduct voltage usually at microvolt level, next the 
microvolt signals fed to amplifiers which amplify the signal thousand times and then digi-
tize the signal for further processing. For transforming signals from thinkgear chipset to 
LabVIEW, Bluetooth dongle is being used, MW2 can make Bluetooth communication at 
different rates, for instance, 115,200, 57,600, 9600, 2400, and 1200 bps. Moreover, two 
formats of data streams can be used, file packets and 5 V raw EEG data. In this work, we 
have used 9600 bits per second rate for transmission and 5 V raw EEG data stream since 
these configurations have negligible communication noise. In LabVIEW, the raw data from 
MW2 was received by using subVIs supported by the NI LabVIEW compatible NeuroSky 
driver. This library consists of communication protocols that permit the execution of the 
following procedures. The secure On/off MW2 connections, the initial setting of Bluetooth 

N = 2
k
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link, and the evolution of EEG wave quality. We calculated mean, standard deviation, and 
variance through time analysis and PSD values were calculated by spectral analysis based 
on Fast Fourier Transform. Supporting information Figure S1 shows the block diagram of 
LabVIEW program, the procedure begins by viewing the EEG collected data in the Lab-
VIEW. EEG collected data obtained from MW2 typically consist of very low-frequency 
ranges and with low amplitudes. Analyzing steps include the detection of various kinds of 
interference noises that are mixed with EEG signals due to the number of reasons, includ-
ing external electrical interference, occurred in the recording system, leads & electrodes 
distorting the neural electrical pulses, the subject’s eye blinking, muscle movement, breath-
ing and heart rate, etc. Various filters are available in LABVIEW to filter out the signals 
and to get the desired frequency and amplitude response. The second-order band-pass was 
used to remove high-frequency artefact, the threshold values were set to ± 150 μV. The pro-
cessed EEG signals were free of ocular artifacts and other noises. Supporting information 
Figure S2 shows another 2nd order bandpass filter with upper and lower cut-off frequen-
cies to acquire PSD values of different waves. The details are as follows: Gamma waves 
(30–100 Hz), Beta waves (13–30 Hz), Alpha waves (8 -12 Hz), Theta waves (4–7 Hz), and 
Delta waves (0.5—4 Hz). All these mentioned waves show different mental states of mind 
that make it easier to detect brain disorders [35, 36]. Single-tone measurement was used 
for each frequency band in terms of frequency and amplitude and FOR loop was used in 
execution for N no. of time.

We performed all the experiments presented in the paper with healthy 6 subjects and 
all subjects were free from any health problems. The age range was 23–26 years with an 
average age of 24.5 years, consisting of 3 males and 3 females chosen on a voluntary basis. 
Participants’ health state, mental state, and hearing ability were normal. Moreover, the 
participants had not undergone any education specific to EEG studies. All subjects signed 
the formal consent form after receiving instructions about the aims and procedures of the 
experiment.

4 � Results and Discussion

In order to facilitate the management of mental health and psychological treatment effects, 
the aim of this research study was to successfully identify and observe whether the subject 
is focused or relaxed by simple EEG signal detection. At this present time, a standard EEG 
signal database on a relaxed and focused state is not developed for reference purposes. 
This research work used minimal EEG channels of MW2 devices, as shown in Fig. 1. We 
choose MW2 because it is non-invasive, portable, small, and user-friendly with low power 
consumption. The MW2 recorded and digitised small EEG signals generated by neural 
activity are then transferred to the LabVIEW via Bluetooth wirelessly to facilitate mobility. 
The left side of Fig. 1 shows the design of the MW2, consisting of eight main parts, on–off 
switch, internal thinking gear chipset, ear clip, adjustable headband, battery area, adjust-
able ear arm, sensor arm, and sensor tip [37]. The sampling frequency was 512 Hz for the 
transmission of raw EEG signals. The MW2 uses ThinkGear AM chip innovations to col-
lect, process and transmit EEG signals to LabVIEW.

Since all areas of the cortex are capable of generating neural activity. Through in-depth 
assessment, brain scientists have identified a number of standard locations for the collec-
tion of EEG signals. The standard system is known as the 10–20 international electrode 
positioning technique (10–20 method), which includes attaching multiple electrodes on the 
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cortex. While this method enables the assessment of variations in the EEG signal to be 
comprehensive, it is inconvenient and impractical to apply this technique to subjects due to 
complexity and discomfort, particularly in focus and relaxation monitoring studies.

In addition, mental states, human emotions, and degrees of focus are handled by the 
frontal cerebral cortex, the tracing of neural activities generated in this scalp region is a 
feasible and effective technique for assessing whether the subject is in a relaxed or focused 
state. Consider Fig. 1, which shows the standard placement of dry electrodes of MW2 by 
10–20 electrodes. The active electrode in the 10–20 standard records the EEG signals at 
the front polar lobe position 1 (fp1), the position of the electrode at the left position from 
the midline, while the position of the left earlobe electrode position A1 was selected as the 
reference and time position 4 (T4) for the ground point. Furthermore, due to the overall 
similarities between Fp1 and Fp2 signals, the MW2 device designer placed the electrode at 
Fp1, which is analogous to the physical configuration normally employed for head phones. 
Dry electrodes are generally susceptible to surrounding factors (e.g. subject’s eye blink-
ing, muscle movement, breathing, and artefacts of the heart rate), therefore, noise is pre-
sent in the captured signals. Though the electrode in the MW2 is dry, it is cost-effective 
and trouble free to wear and can therefore be widely used for various applications. The 
work therefore assessed the viability of MW2 headset to distinguish between relaxed and 
focused states on the basis of EEG data. Figure 1B gives an overview of the experimental 
procedures. EEG data was processed using LabVIEW, and an FFT technique was used to 
change the EEG signal to the frequency domain. The experimental details are shown in SI 
Figures S1 and S2 and described in detail under Methodology section.

The EEG signals were recorded for 200 s and then divided into 50 equal parts (each part 
of 4 s). We selected one part of a signal out of those 50 equal parts which represent a simi-
lar spectrum as that of the entire signal and named as focused or relaxed state signals. As 
currently standard EEG signal databases on the focused and relaxed state are not available 
for reference. Generating such signals correctly was a challenging task. We have developed 
an appropriate environment and acquired the requiring EEG signals from the participants.

Fig. 1   a The MW2 device and the application technique, fp1 electrodes, is placed based on 10–20 electrode 
positioning standard. The MW2 headset is non-invasive, portable, small and user-friendly with low power 
consumption b The experimental procedure block diagram
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Signals were captured in a quiet lab, participants were asked to sit comfortably on a 
couch. Before the signal was recorded, the participants were given 10 min to calm down 
and settle. Non-definitive EEG signals containing many artefacts were discarded. In addi-
tion, apart from capturing their EEG signals, all facial expressions and associated envi-
ronmental noises at the time of the study were also documented to allow post-study 
processing.

We recorded the focused sample when the subject was solving a mathematical quiz 
with open eyes. The signal cut off points were set as − 120 to 120 uV. Figure 2 depicts the 
focused state EEG signals in the temporal domain. The voltage values ranged from − 15 to 
57 µV and the mean value of the EEG voltage was 15.330 µV. Figure 3 shows the relaxed 
state sample EEG signal, recorded when the subject was in a relaxed state, in a quiet lab 
listening to a slow music track without blinking and other artefacts.

The signal represented in the time domain has voltage values ranging from − 28 to 
41 µV having an average value of 20.23 µV. Characteristics of both samples were different 
such as the maximum amplitude was higher for the focused sample than the relaxed sam-
ple, and spectrum power was also higher in a focused state than the relaxed state sample. 

Fig. 2   Signals obtained when the 
subject was in a focused state

Fig. 3   Signals obtained when the 
subject was in a relaxed state
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Both focused and relaxed sample signals were converted to the frequency domain based on 
the FFT technique, Fig. 4 shows the frequency spectrum of both samples.

Figure 4 shows that signal components in the focused sample have more power than in 
the relaxed sample due to the presence of gamma waves commonly used in the range of 35 
to 75 Hz. Brain wave parameters are shown in Table 1. Gamma waves show the highest 
levels of consciousness responsible for different sensory processes. Gamma waves of both 
concentrated and relaxed states are depicted in Figs. 2 and 3, respectively. The degree of 
Gamma waves observed in a focused state is higher than the relaxed sample due to the less 
strain on the mind. If a person is calm, but awake state of mind, alpha waves are detected 
[38].

Figures 2 and 3 depict alpha waves for focused and relaxed samples, respectively. We 
traced the higher alpha activity rate in a relaxed state sample due to the consequences of 
having fewer neural activities. Greater EEG alpha wave activities are often related to a 
higher degree of relaxation, however, during stress conditions alpha wave activities are 
reduced [39]. Figure 5 shows the average PSD values in dB of alpha waves under focused 
state and relaxed state signal, the value of alpha wave of relaxed state was nearly twice the 
focused state value. These findings were consistent with the published literature.

Figure 5 shows average PSD values in dB of both focused state and relaxed states EEG 
signals. The slowest of all brain waves, but the strongest among all is known as delta 
waves, these waves are stronger when a subject is enjoying a dreamless state of sleep, this 
state also known as state where healing and rejuvenation are stimulated. Delta waves are 
described by a very low frequency of up to 5 Hertz and a magnitude value of greater than 
110  µV. Both samples are very feeble compared with the nominal values of magnitude. 
Figures 2 and 3 also show the divergence between delta waves.

Beta waves indicate the mode of intense relaxation that occurs more frequently when 
the subject is dreaming in the sleep, or in the state of hypnosis. Research has shown a 

Fig. 4   The spectrum of 
frequency components of the 
focused and relaxed state EEG 
signal

Table 1   EEG waves summary Wave Frequency Magnitude Human mental stage

Delta (0.1–4) Hz (100–200) µV Deep dreamless sleep
Theta (4–8) Hz higher than 30 µV Fantasy, dreaming
Alpha (8–13) Hz (30–50) µV or Higher Relaxed, not drowsy
Beta (13–30) Hz (2–20) µV or higher Alertness, thinking
Gamma (40–80) Hz (3–5) µV or higher Higher mental activity
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positive link between beta waves and creativity, memory and psychological well-being. 
Figures 2 and 3 represent beta waves for focused and relaxed states. Figure 5 shows the 
average PSD values in dB beta waves of both the focused state and the relaxed state sig-
nal, incidentally, the PSD value of the focused state signal is 1.5 times higher than the 
relaxed state signal.

Next, we study the blink detection ability of MW2, we perform two experiments, and 
signal acquisition conditions were identical in each experiment. In the first experiment, 
we ask the subject to blink intentionally, and in the second experiment, we ask the sub-
ject to blink involuntarily. We ask the subject between signal which contains blink and 
signal which does not. In the first experiment, each trial lasts for 3.5 s and signals are 
sampled every 10 ms. In each trial, the authors instructed the subject to blink two times. 
30 trials comprised one session. The authors carried out experiments for 8 sessions. 
From the EEG signal, we found that blink produces a large positive peak followed by a 
large negative peak. Also, it has been observed that when a user blinks intentionally, the 
amplitude is relatively larger from blinks that occur involuntarily. Figure 6 shows the 
signal which contains involuntary and intentional blinking. The authors played a sound 
at the start and end of each trial to specify the beginning and end of a trial in both the 
experiments. Once the start sound was  played, the user started blinking, it is evident 
that with intentional blinks large positive and negative deflection occurs.

Fig. 5   Average PSD values in dB 
of both focused state and relaxed 
states EEG signals

Fig. 6   Comparison of invol-
untary blink and intentional 
blinking



3708	 A. Ali et al.

1 3

5 � Conclusion

In this study, we have developed a passive EEG BCI technique for tracking a person’s 
focused and relaxed mental states for tracing mental health and psychological treat-
ment effects. We used a low-cost, portable, small size, user-friendly, single-channel 
MW2 device to measure EEG signals. We have developed two scenarios for assessing 
a focused and relaxed state of mind. The recorded raw signals were pre-processed to 
remove the artifacts. Different bandpass filters were applied to EEG signals to break the 
signals into gamma, beta, theta, alpha, and delta waves using LabVIEW. Average power 
and mean amplitude measurements were employed for the spectral analysis in Lab-
VIEW. We have investigated the parameters like relative voltages, relative powers in the 
frequency domain, and power spectral density (PSD) of focused and relaxed states. The 
results from the comparisons based on these parameters validate our research objective. 
We found that the mean values of focused and relaxed EEG signals were 30.23 µV and 
15.330  µV. Likewise, the average PSD value of beta waves of the focused state EEG 
signal was also 1.5 times higher than the relaxed state signal. In addition to this, we 
have also studied the blink detection ability of MW2 and it is observed that when a 
user blinks intentionally, the amplitude is relatively larger from blinks that occur invol-
untarily. Although, we can further justify our hypothesis by investigating some more 
parameters yet our results are valid and satisfy the research questions. Our study can 
be used for checking mental health wellness, by training the mind to rapidly enter a 
relaxed state. By using the proposed technique, students and teachers can evaluate focus 
while teaching, thereby facilitating both to improve their performances. Moreover, the 
technique can be employed for the BCIs and neurofeedback applications. However, this 
MW2 is not recommended for clinical applications.

In the future, we will try to carry out a scientific investigation with blind subjects and 
compare the different features with normal people. For improved results, more participants 
with increased time under different stimuli would be employed for the next analysis. Spe-
cifically, the post-COVID-19 era of facilitating long-distance online learning is another 
inspiration for future studies. Since classroom interaction between teachers and students is 
not possible with online teaching. The challenge of evaluating student knowledge in online 
teaching is higher than classroom teaching. Hence, we intend to start looking deeply at the 
connection between EEG signals, focus, and learning.
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