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Abstract
A network health monitoring system focuses on the quantification of the network’s health 
by taking into account various security flaws, leaks, and vulnerabilities. A plethora of pro-
priety tools and patents are available for network health quantification. However, there is 
a paucity of available research and literature in this field. Thus,  in this study, we present 
an architectural design of a network health monitoring system. The design focuses on 
the quantification of the network health of each end-user as well as the entire network. 
The network health score for each end-user is quantified by identifying (1) illicit egress-
ingress traffic, (2) anomalous fingerprints, and (3) system-network vulnerabilities based on 
the NVD-CVSS (National Vulnerability Database, Common Vulnerability Severity Score) 
standards. An overall network-health score is produced, along with a prevention and recov-
ery mechanism that is triggered upon the detection of an anomaly. The proposed system is 
implemented in a local area network and has demonstrated to protect the network against 
various threats successfully. The study is concluded by comparing the proposed tool with 
the popular propriety tools available in the field. The results outline that the proposed sys-
tem garners features of open-source tools and enriches them by introducing a state-of-the-
art architecture coupled with multiple novel features like exhaustive identification of vul-
nerability and detection of network aberrations using timers.
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1  Introduction

Network-based applications and services are subject to multiple vulnerabilities, 
and these vulnerabilities can be exploited for malicious access. Network administrators 
use various tools to safeguard the network from security threats. Intrusion detection/pre-
vention systems (IDS/IPS) have proven to be an effective solution. As the name implies, 
these systems emphasize the real-time identification of threats as well as issuing a warn-
ing against the potential threats. Several such solutions have been proposed in the litera-
ture so far. Besides, several proprietary tools are available for this purpose. However, 
common drawbacks of these systems are (1) tunable meta-parameters, (2) no provision 
for the quantification of network health, and (3) limited or no insight into its working 
and architecture, i.e., especially relevant for propriety tools.

IDS/IPS provides the  provision for tuning meta-parameters to minimize human 
supervision and detect false positives. However, this limits the effectiveness of these 
systems in detecting granular network patterns. The authors describe the importance of 
such granular patterns, followed by utilizing them to identify anomalous fingerprints, 
in  their previous work [23]. None of the existing open-source solutions provides the 
mechanism for assessing and maintaining  the overall network health, whereas none of 
the propriety tools provides an insight into their working and the quantification of net-
work health.

Thus, in this work, we present the architecture of an open-source network health 
monitoring system. To the best of our knowledge, in the literature, limited consideration 
has been given to creating a network health monitoring system from scratch. This sug-
gests a monopoly of propriety tools in this field. Here, we emphasize building an open-
source network health monitoring system by utilizing novel anomalous fingerprinting 
identification techniques described by the authors in the previous work [23], as well as 
open-source tools and libraries. We achieve this by highlighting the research aspects of 
monitoring architecture, anomaly detection, and vulnerability identification. This would 
further aid researchers in realizing advanced network health monitoring systems.

The quantification of network health takes into account the health of each device (or 
end-user, henceforth) in the network. Figure 1 illustrates the focus areas for the quanti-
fication of the health of each end-user. Applications and services (active and passive), 
along with network traffic, are monitored to quantify the health of end-users in a net-
work. An unhealthy end-user serves as a potential threat to the overall network’s health, 
whereas a healthy user adds up to the network’s health. The system quantifies network 
health by utilizing four core modules, namely Ingress and Egress Traffic Monitoring, 
Vulnerability Detection in end systems, and network fingerprint analysis. The design 
of the system has the potential to prevent a multitude of threats like port infiltration, 
malicious egress and ingress traffic, exposure to phishing websites, Denial-of-Service 
attacks, unpatched or vulnerable services/applications, congestion control, URL saniti-
zation, presence of bot or botnet, and a fragile firewall.

Quantification of network health can serve as a pragmatic way to validate the effec-
tiveness of new security patches and systems applied for protection. Existing works in 
network protection lack the empirical indices and hence, are unable to facilitate the esti-
mation of the relative risk of adding (or removing) new applications, users, or services 
to (or from) the network. However, this can be achieved through  the real-time quanti-
fication of network health. In this work, several indices have been developed to reflect 
malicious ingress-egress traffic, anomalous fingerprints, and vulnerabilities. A unique 
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feature of the proposed approach is that defense mechanisms are adaptive to the type of 
vulnerability and timeliness of traffic (real-time or non-real-time transactions) for mini-
mal overheads.

In addition to network health quantification, the proposed work has contributed to 
the existing state-of-art in several ways. To the best of our knowledge, it is the first net-
work security model aggregating well-established vulnerability scanning tools and data 
sources like the National Vulnerability Database (NVD), Common Vulnerability Sever-
ity Score (CVSS), and Open Vulnerability and Assessment Language (OVAL) to detect 
signatures of malicious communication. The system employs a combination of active 
and passive network scanning for different transactional data. For real-time transactions, 
passive scanning is used due to its virtue of negligible system overhead and the intro-
duction of no additional traffic in the link, whereas for periodic and anomalous transac-
tions, active scanning is used for its virtue of precise and targeted results. Additionally, 
the layered architecture of the Vulnerability Detector System (VDS) is another chief 
contribution to this study.

Summarization of novelties introduced in the proposed tool are as follows:

Fig. 1   Area of focus of various modules
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1.	 The design and implementation of the system (and its various modules) for the quan-
tification of network health while delineating the architecture and research aspects 
related to it. As part of it, several empirical indices to ensure network security has been 
developed.

2.	 Aggregating the data sources, such as NVD, Common, CVSS, and OVAL, for compre-
hensive detection of vulnerability signatures.

3.	 The use of benign numbers, such as Round Trip Time (RTT), for anomaly detection and 
fingerprinting.

4.	 The mechanism to detect Type-A (system-based) and Type-B (network-based) vulner-
abilities using a combination of open-source tools such as OVALDi and Nessus.

5.	 Overcoming the bottleneck, i.e., high time consumption to scan Type-A vulnerabilities, 
by exploiting the overlap between Type-A and Type-B vulnerabilities.

The details of the study, its implementation, related works, and the results are organized 
in the rest of the paper in nine sections. Section 2 discusses some existing network security 
approaches. Section 3 highlights the aspects of the current study in light of related works. 
Sects. 4, 5, and 6 discuss the architecture and implementation results of various modules 
from the perspective of the network administrator and end-users. Section 7 discusses the 
quantification of network health by combing the results from each module. The network 
health score of a local area network is quantified, followed by delineating vulnerabilities 
captured by each module. A comparison of the proposed tool with other propriety tools is 
drawn in Sect. 8. Section 9 presents the conclusion of the study.

2 � Related Work

Several patents have coined the idea and architecture of a Network Health Monitoring Sys-
tem [2, 25, 38, 51], while there are limited literature and open source tools. Thus, due to the 
unavailability of network health quantification approaches, we study existing approaches of 
IDSs, Network Fingerprinting, and Traffic Filtering, as well as vulnerability taxonomies 
and databases, to develop a deeper understanding of the state-of-the-art in these areas.

2.1 � Intrusion Detection Systems

Two highly relevant works in this domain are Denning [15] and Staniford-Chen et al. [44]. 
IDSs are classified based on information sources such as host or network-based IDS. A 
host-based IDS analyzes events, such as process identifiers and system calls, mainly related 
to OS information, whereas a network-based IDS analyzes network-related such as traffic 
volume, service ports, and protocols.

Host-based IDS [8, 10, 27, 29, 49] and network-based IDS [17, 20, 28] have been stud-
ied well in the literature. Further, IDS can also be classified as signature-based and anom-
aly-based detectors [20, 47].

Al-Jarrah and Arafat [4]used neural network-based pattern recognition to identify and 
classify host sweep and port scan attacks. Host sweep attacks were detected based on a 
malicious combination of IP source address, destination address, destination port, and pro-
tocol type. For the port scan, a neural network has been trained to identify the combina-
tions of source, destination, SYN, ACK, FIN, and other TCP Flags. Wang et al. [52] pre-
sented a survey concerning the application of big data analysis techniques for analyzing 
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considerable network data to create improved IDS. Rodas and To [41] presented a scalable 
framework for managing authentication logs from various IPS in the network.

2.2 � Network Fingerprinting and Traffic Filtering

Network-based anomalies can be detected by active and passive network fingerprinting [42, 
43]. Shu and Lee [42, 43] discussed in detail active and passive fingerprinting methods 
along with tools associated with them. Active fingerprinting approaches are more effective 
as a predefined set of inputs is used. Active fingerprinting is subject to additional overhead 
because they tend to introduce additional traffic in the network, whereas the output of pas-
sive fingerprinting is based upon stealth observation of all the input/output traces in the 
network [24]. Probabilistic active and passive approaches for fingerprinting were applied 
by Arkin and Yarochkin [5] and Beverly [6] for efficiency. OS fingerprinting is essential to 
determine the OSs being used in a network. This knowledge aids us in determining a list of 
plausible vulnerabilities associated with a particular OS.

From the end-user’s perspective, malicious egress traffic occurs in the form of phishing 
and malware-hosted websites. They aim to obtain sensitive information by deceiving the 
end-users. Phishing detection at the individual packet level has been addressed by Afroz 
and Greenstadt [1], Blum et al. [7], Mohammad et al. [31], Parno et al. [36], Rajalingam 
et al. [40]. Afroz and Greenstadt [1] described three types of phishing detection, namely 
content-based, non-content-based, and visual similarity-based.

A visual similarity-based model is developed by Chen el al. [11] that uses screenshots 
of web pages as input to detect phishing websites. Images are described by using Con-
trast Context Histogram (CCH), followed by a k-mean algorithm, to cluster the nearest key 
points. Zilberman et al. [54] described various deployment strategies for scrubbing centers 
for egress traffic filtering. Dyer et al. [18] developed the first programmable traffic obfusca-
tion system named ‘Marionette’. This system is capable of filtering encrypted traffic.

2.3 � Vulnerability Taxonomies and Databases

Igure and Williams [26] wrote about taxonomies of attacks and vulnerabilities that exist in 
computer systems and networks. We follow their proposed taxonomy to design the VDS. 
It includes analysis of attack impact, attack features, and exploitabilities that might be 
exploited. Corral et al. [14] proposed an automated vulnerability detection mechanism for a 
local network of hosts, servers, and applications running in them. The authors proposed to 
use existing network security tools for various steps of vulnerability analysis. This included 
Nessus- and Nmap-based service identification, IDS Response, general and specific vulner-
abilities. A consensus system that automatically does security testing by embedding these 
tools was developed. Our solution approach is similar, but more exhaustive.

Gawron et  al. [21] proposed creating a local vulnerability database by combining 
the NVD database, as well as OVAL definitions, to yield more meaningful and accurate 
results. The authors defined a logical representation of pre- and post-vulnerability condi-
tions. A use case of browser vulnerabilities has been provided. Vu et al. [50] proposed a 
more detailed and dynamic approach to vulnerability analysis. They have pointed out that 
apart from the inherent working of vulnerability or exploit, the environment in which that 
vulnerability could trigger, and its changing characteristics could also be considered in vul-
nerability analysis. We extend these approaches to profiling vulnerabilities.
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Qu et al. [39] first gave the concept of quantifying network vulnerabilities by computing 
individual host and communication link vulnerability index and aggregating it to the net-
work vulnerability index. The paper also provided the idea of using the index value as a 
threshold for triggering recovery methods to let the network survive even in the case of 
an  attack. It is complex to envision the combined effect of all vulnerabilities present in 
the system and preconditions that may lead to the exploitation of one or more vulnerabili-
ties. Gawron et al. [21] gave a solution to visually present the vulnerabilities in terms of 
the attack graph by taking an example of vulnerabilities present in a browser app. In this 
work, we have proposed a hybrid IDS that works both at the host and network levels. To 
the best of our knowledge, an IDS that can quantify the network health is not available in 
the literature or as an open-source product.

3 � The Current Study

Network health is a qualitative term that has been quantified in this study. Sound network 
health emphasizes the safety of each device from internal and external threats while pri-
oritizing the safety of the network as a whole. Applications and services are secured by 
developing a layered architecture of modules around them. These modules aim to pre-
vent and identify: illicit egress-ingress traffic, network-system vulnerabilities, along with 
anomalous fingerprints across active/passive services. Moreover, a recovery mechanism is 
designed to ensure sound network health when the prevention fails.

The prevention mechanism chiefly employs either or combination of two techniques, 
one, memorization, and second, anomaly detection. Memorization is a determinis-
tic approach that works by accruing signatures against the existing vulnerabilities. Any 
potential match to that signature is considered a definite vulnerability. For instance, using 
Google’s safe website lookup to filter benign websites is a memorization technique that 
uses Google’s collection of signatures for benign websites. Along with Google’s website 
lookup, the system also employs signatures from popular vulnerability databases, i.e., 
NVD and OVAL.

Anomaly detection is a probabilistic technique that flags the end-users based on anoma-
lous behavior. For instance, it involves conducting probabilistic classification of any previ-
ously unseen website into benign, suspected, and illicit on the fly. This classification is 
usually based upon the learning derived from the previously collected signatures. In addi-
tion to machine learning classifiers, factors like port scanning, RTTs have been utilized for 
anomalous fingerprint detection.

Upon the  identification of the  threat, the network goes into recovery mode. Recovery 
can be triggered by one or more modules depending upon the nature of the risk. External 
threats are blacklisted and blocked based upon the severity of the threat. However, internal 
threats are quarantined from the network until further sanity checks.

The architecture of the system is composed of five modules, as illustrated in Fig. 2. Net-
work health monitoring modules have been designed for end-users as well as a network 
administrator. Each of these modules contributes to the quantification of network health. 
Table 1 expounds on the uniqueness of the proposed system’s architecture when compared 
with similar open-source tools and libraries. It is evident from Table 1 that our tool garners 
various existing features of these open-source tools and enriches them by introducing state-
of-the-art architecture coupled with multiple novel features like exhaustive identification of 
vulnerability, detection of network aberrations using timers, etc.
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4 � Architecture

The network-health monitoring and recovery system has been implemented as parallel 
modules for end-users and the network administrator. Figure 2 details the architecture of 
the system in brief. Egress and ingress traffic at each end device is monitored. Egress traf-
fic is forwarded to the Real-time Personal Egress Traffic Monitoring System (RPETMS), 
while ingress traffic is forwarded to the Real-time Personal Ingress Traffic Monitoring Sys-
tem (RPITMS). Results of these modules are aggregated at the network administrator’s 
level for pattern detection and identification.

At the network administrator level, all malicious egress traffic is mapped into the Real-
time Aggregated Egress Traffic Monitoring System (RAETMS), and Vulnerability Detec-
tor System (VDS) is consequentially triggered for an exhaustive identification of vulner-
abilities. The system also includes a Network Fingerprinting Analyzer (NFA) module that 
focuses on the detection of OS-specific anomalies.

The modules are proactive and work towards intrusion prevention to minimize 
downtime. The anomaly scores are presented on the administrator’s dashboard for 
highly objective network health monitoring. Long-term scores can be used to plan the 

Fig. 2   Data-flow of the proposed network health monitoring system
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procurement and installation of the additional security infrastructure. The core code of 
all the modules is publically available at GitHub repository newtein/network_monitor-
ing [34].

5 � Architecture of Modules for End‑Users

The architecture for end-users comprises RPETMS and RPITMS modules installed on 
their devices. These modules focus on passive monitoring and receive input from a python-
based packet sniffer.

5.1 � Real‑time Personal Egress Traffic Monitoring (RPETMS)

Browsing phishing websites or malware-hosted websites can deceive end-users into divulg-
ing their sensitive information or infecting their system with malware. Considering these 
threats, all outgoing traffic to phishing or malware-hosted websites is considered illicit 
egress traffic.

Further,  the egress traffic is classified into benign, suspected (suspected-illicit), and 
illicit. This classification is achieved by implementing a twofold process. First, the egress 
traffic is filtered using Google’s safe browsing lookup, and second, a machine learning 
model is used to further validate the filtered traffic. Google’s safe browsing lookup is a 
blacklist of suspected phishing, malware, and unwanted software pages by Google [22]. If 
a website is present in the Google Safe Browsing lookup, then it is categorized as illicit. 
Otherwise, it is categorized as non-illicit.

There is a fair chance of encountering a new malicious or phishing website that is not 
yet present in Google’s lookup. Thus, the features of all non-illicit websites are further 
tested using a machine learning model. A binary classification model is trained on the UCI 
Phishing Website dataset [32, 33] to classify the traffic into benign and suspected-illicit. 
The classification model is trained using the standard random forest supervised machine 
learning algorithm implemented in the python-based sci-kit-learn library [37]. The features 
used in the machine learning model can be classified into three categories: URL-based fea-
tures, Site reputation-based features, and host-based features.

URL-based features include site information that can be observed from the URL of a 
website. It has been observed that URLs containing the IP address, @, long URLs, and 
prefix-suffix generally land on sites with malicious intent. Site reputation-based features 
include global PageRank and country PageRank obtained from Amazon’s Alexa.com [3]. 
Benign sites have higher PageRank than illicit ones. Host-based features are backed by the 
empirical observation that the minimum span of a benign domain is 6 months, and illicit 
websites are registered for a shorter span than this. On the fly extraction of these features is 
a time-consuming process, which increases the latency. Thus, there is a scope for optimiza-
tion in the process.

Therefore, as the outcome of this two-phase verification, the egress traffic is categorized 
into benign, suspected, and illicit with a score of 0, 1, and 2, respectively. Table 2 deline-
ates the strategy to (1) compute the User Anomaly Score (UAS) and (2) categorize egress 
traffic into Benign, Suspected, or Illicit. These individual UAS are aggregated at the net-
work administrator’s device.
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5.1.1 � Recovery

Whenever traffic with a UAS value of 1 is detected from egress monitoring, a twofold 
preventive mechanism is invoked. Firstly, a warning against illicit traffic is generated 
to inform the end-user about malicious activity. It is done to enlighten the end-user of 
its activity if it is a voluntary activity or end-users device is an unintentional part of 
a botnet. The end-user is prompted with a choice of further action that includes one 
of three options: (1) temporarily block the illicit host, (2) execute botnet detection and 
prevention check, and (3) continue browsing. Secondly, this activity lodges an alert to 
the network administrator. This alert is lodged in the form of a warning flag against the 
end-user.

Fig. 3   Real-time Personal Egress Traffic Monitoring Graph for an end-user

Fig. 4   Prompt (a), (b), and (c) received by end-user 172.16.103.217 at points A, B, and C, respectively of 
Fig. 3

Table 2   Categorization of egress 
traffic

a 0 depicts benign, and 1 depicts a malicious site

Prediction by 
the predictive 
modela

Google safe 
browsing 
lookupa

Resultant user 
anomaly score 
(UAS)

Categorization

0 0 0 Benign
1 0 1 Suspected
0/1 1 2 Illicit
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When a packet with UAS of 2 is detected, then this packet is immediately dropped while 
temporarily filtering further packets from the illicit source. Moreover, a warning-flag is 
generated against the end-user to the network administrator. An example of the implemen-
tation of this module is illustrated in Figs. 3 and 4.

Network simulation of the RPETM module for an end-user machine with IP address 
172.16.103.217 is illustrated in Fig. 3. At points A and C, the end-user had encountered a 
suspected packet (UAS equals 1) and was required to take further action. The subsequent 
prompt is displayed in Fig. 4a and c, respectively. Similarly, at point B, the end-user had 
encountered an illicit packet (UAS equals 2). The packet was blocked instantaneously, and 
its acknowledgment is shown in Fig. 4b. At each of points A, B, and C, a warning flag is 
lodged with the network administrator. At point C, when the 3rd warning flag is raised 
against the same end-user, VDS is invoked.

5.2 � Real‑time Personal Ingress Traffic Monitoring System (RPITMS)

The module primarily focuses on protecting the end-users from scanning attacks launched 
using active port scanners like Nmap. Each ingress packet is monitored for distinct control 
flags combination in real-time. Scanning tools probe end-user with a distinct combination 
of packets and analyze their response to remotely identify sensitive information such as 
open ports, operating systems, active services, etc. The signature of traces used in these 
scans is pre-determined from Nmap. These signatures were then reverse engineered to 
detect the scan type. Further action is determined on the basis of the severity of the identi-
fied scan type (Table 3).

The objective of this module is to detect, block, and report fingerprinting events. We 
have employed a trust-based three-way TCP handshake to detect illicit network scanning 
or fingerprinting activity. As a result, the source IP address of a packet is categorized as 
trusted or untrusted IP. When a TCP handshake is being initiated from the end-user to the 
server, then the server’s IP address will be considered as a Trusted IP, whereas when the 
server initiated the connection, then the server’s IP will be regarded as an Untrusted IP.

The payload of packets from untrusted IPs is monitored for a malicious combination of 
control flags. Table 3 details various Nmap scans and flag combinations associated with 
them. For instance, -A is a combination of the port scan, operating system scan, and ver-
sion scan [30]. This scan type provides sensitive device-specific information that can be 
used to initiate further attacks.

5.2.1 � Recovery

The detection of malicious control flag combination in an ingress packet implies a scan-
ning attempt. This results in the execution of a twofold preventive mechanism. First, the 
response of the end-user corresponding to the scan is blocked. This devoid sharing sensi-
tive information about the end-user with the attacker. Second, the event is also reported to 
the  network administrator. Although port scanning can be remotely initiated, it requires 
the attacker to be on the same local network as the end-user. When the network adminis-
trator detects frequent reports of such scans from multiple IP addresses to the same end-
user, then the admin issues an instantaneous but temporary block of that end-user, as this 
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indicates a DDoS attack underway. This implies downtime to a particular end-user but 
ensures the overall network health.

6 � Architecture of Modules for the Network Administrator

The architecture for end-users comprises three modules: RAETMS, NFA, and VDS. These 
aggregator modules are installed on the network administrator’s device.

6.1 � Real‑time Aggregated Egress Traffic Monitoring System (RAETMS)

The module is an aggregated apparatus of the  end-user module RPETMS (discussed in 
Sect. 5.1). The UASs across all the end-users are collected from RPETMS. Notably, the 
UAS for an end-user is reported to RAETMS only after the detection of illicit egress traffic 
on the end-user’s device. A periodic Mean Anomaly Score (MAS) is calculated in every 
60 s. For n end-users, UAS and the number of times UAS is reported (Instances) are aggre-
gated in time t. Thus, the MAS for ith end-user can be calculated by Eq. (1),

where ‘t’ is the monitoring period. A global parameter Aggregated Anomaly Threshold 
(AAT) is defined for the overall network. It acts as a threshold for MAS, and upon breach-
ing this threshold, the end-user is considered vulnerable to the network. Figure 5 delineates 
the flowchart of RAETMS.

6.1.1 � Recovery

When MAS of the end-user crosses AAT at any instance, then a threefold preventive mech-
anism is invoked. First, the network instantaneously blocks further packets from the illicit 
source. Second, the VDS is invoked against the end-user. Third, a warning is issued to the 
end-user describing the nature of the illicit activity. In addition, a warning flag against the 
end-user is lodged with the network administrator. An example of the implementation of 

(1)Mean Anomaly Score =

∑t

0
UAS[i]

∑t

0
Instances[i]

,

Fig. 5   Flowchart of the real-time aggregated egress traffic monitoring system
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this module with and without threefold preventive measures is illustrated in Figs. 6 and 7, 
respectively.

Figure  6 illustrates the MAS of 13 end-users, obtained by RAETMS in a network 
simulation over a window of about 4.5 h, without any prevention mechanism. Figure 7 
shows a similar network simulation with a threefold prevention mechanism using AAT 
as 0.25. The low value of AAT has been kept to keep false negatives at the minimum. 
Notably, most threats would be successfully detected and remedied at the end-user’s 
level by RPETMS.

Fig. 6   Mean anomaly score of the  network computed by the  real-time egress traffic monitoring system 
without any preventive mechanism

Fig. 7   Mean anomaly score of the  network computed by the  real-time egress traffic monitoring system 
with a threshold-based preventive mechanism
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Figure  7 shows the observed simulation of RAETMS with a threefold preventive 
mechanism at AAT(0.25). This mechanism is invoked at points A, B, C, D, E, and F. 
The peaks previously observed in Fig.  6 were successfully remedied at the threshold. 
Whenever a high MAS is detected, the VDS is simultaneously invoked to determine the 
underlying cause of the anomalous behavior.

6.2 � Network Fingerprint Analyzer

It produces an active fingerprint of the network and is invoked periodically in 4 h. It uti-
lizes ‘-A’ command of the Nmap to conduct active fingerprinting. It includes a version scan 
(-sV), an operating system scan (-O), a scripting engine scan (-sC), along with traceroute 
details. These traceroute details include RTT and the number of hops [30]. The output of 
Nmap, recorded in  the XML format, is parsed and divided into 4 logical categories, as 
depicted in Table 4. The purpose of the module is to produce network statistics while iden-
tifying anomalous fingerprints in the network. The end-users with anomalous fingerprints 
are further scanned using the VDS.

Network statistics include the number of active hosts, OSs, and active services in the 
network. The module primarily focuses on three anomalous fingerprints. First, unusually 
high RTT while establishing a connection to an end-user. Second, the presence of unfil-
tered ports that indicate a fragile-firewall. And third, the presence of vulnerable or outdated 
services. In addition, the module is extended for the prediction of IP-ID sequences and 
network traffic using correlations among RTTs [23].

6.2.1 � Recovery

The recovery mechanism is adaptive to the type of anomaly identified. Firstly, an end-user 
with usually high RTT is temporarily quarantined from the network. Secondly, the pres-
ence of unfiltered ports is remedied by blocking those ports until the end-user revamps 
its firewall. And finally, an update service alert is produced to the end-users with outdated 
services. It is followed by quarantining the end-user until the issue persists. Besides, in all 
the cases, the VDS is invoked for the end-user.

Table 4   Logical categorization of the Nmap scan output

T1: Basic Information T2: Unfiltered Port Infor-
mation

T3: OS Information T4: Traceroute Information

MAC address MAC address MAC address MAC address
IPv4 address Port Number Operating System Number of Hops
Scan Start Time and End 

Time
Protocol OS-Family Round Trip Time (RTT)

Number of Filtered Ports 
and Unfiltered Ports

State (Open/Close) Vendor Time to Live (TTL)

Vendor Running Service Name 
and Version
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6.3 � Vulnerability Detector System (VDS)

The VDS aims at scoring an end-user device based upon system and software vulnerabili-
ties present. We have divided vulnerabilities into four categories, namely Type A, Type 
B, Type A.B, and Type A + B (Table  6). The VDS is triggered alongside the detection 
of various anomalies in the network, as illustrated in Fig.  8. An Anomaly Flag (AF) is 
raised whenever an anomaly is identified. The anomaly occurs in the system in three forms: 
Anomalous Egress Traffic (AT), Anomalous Fingerprinting (AF), and Third Warning Flag 
(3WF).

An anomalous system state can represent the presence of vulnerabilities in the system 
software and services. However, all of these are not equally damaging. Common Vulner-
ability Scoring System (CVSS) v3.0 standard defines the severity of vulnerabilities from 
Low to Critical according to the risks associated with them [13]. The National Vulnerabil-
ity Database (NVD) [9, 35] is the repository of vulnerability management data represented 
using the Security Content Automation Protocol (SCAP). The NVD provides CVSS ’base 
scores’, which represent the inherent risk associated with each vulnerability.

6.3.1 � Identification of Type‑A Vulnerabilities

The Type-A vulnerabilities can be identified by assessing the local device and executing 
tools like OVALDi. The OVALDi (Open Vulnerability and Assessment Language Inter-
preter definitions) is a command-line tool. OVAL definitions help to determine the pres-
ence of vulnerabilities or configuration issues on the system [21]. We have parsed the XML 
output of OVAL and divided it into two logical schemas, as shown in Table 5a. The CVE-
ID obtained from the output is mapped to the NVD to obtain the  corresponding CVSS 
Score and Risk Factor (Table 6).

Fig. 8   Conditions for invoking the vulnerability detector system
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6.3.2 � Identification of Type‑B Vulnerabilities

The Type-B vulnerabilities of active services can be remotely discovered by using network 
scanning tools like Nmap, Nessus, etc. The Type B vulnerability score is calculated from 
the Nessus Basic Scan for vulnerability exploits on the open ports. These vulnerability tests 
are written in the NASL (Nessus Attack Scripting Language), which is a scripting language 
optimized for the custom network interaction [16]. The results obtained from the scan were 
divided into two logical schemas, as described in Table 5b. The Type B vulnerability score 
is very crucial as it is associated with active services that are either idly listening to con-
nection or communicating over the network through ports [46].

The vulnerabilities of Type-A nature are present in the end user’s device in the form of 
vulnerable or outdated software, services, or applications. These can only be compromised 
by directly accessing the target device. In contrast, the Type-B vulnerabilities are subject to 
services or applications communicating over the network. These can be remotely exploited, 
which makes patching these vulnerabilities crucial. Further, the Type A.B vulnerabilities 
(the intersection of Type A and Type B vulnerabilities) are essential as they define the most 
prominent and easily compromisable active vulnerabilities in a system. Lastly, the Type 
A + B (the union of Type A and Type B vulnerabilities) defines an exhaustive set of vulner-
abilities. The VDS analyzes vulnerabilities of Type A, B, A.B (most prominent), and A + B 
(exhaustive). Notably, Type B and Type A.B vulnerabilities can be remotely exploited.

6.3.2.1  Recovery  The recovery steps are driven by results derived from the analysis of 
detected vulnerabilities. Firstly, when Type B and Type A.B scores are in the medium-risk 
range, then the vulnerable services of the end-user are blocked by the network administra-
tor. This command is referred to as the Quarantine Service(s). Secondly, when Type B and 
A.B scores indicate high-risk, then the user is temporarily blocked from the network until it 
follows a set of recovery measures. These measures are collected from the Nessus and Oval 
Community. This command is referred to as the Quarantine User.

7 � Network Health Score

Results of the proposed network health monitoring and recovery system were observed on 
a semi-controlled network of 20 end-users and one network administrator. Here, a semi-
controlled network implies that although an end-user is free to install or use any service, 

Table 5   (a) Logical schema designed from OVAL scan output (b) logical schema designed from NESSUS 
basic scan output

(a) Logical schemas from the OVAL scan output (b) Logical schema from the NESSUS scan output

Basic details Vulnerability specific details Basic details Vulnerability specific details

MAC address CVE ID MAC address CVE ID
OS name and version CVSS score (Obtained by 

mapping CVE ID to NVD)
OS name and version CVSS score and risk factor

Scan start time Risk factor (Low, Medium, 
etc.)

Scan start time Port and protocol

Scan end time Vulnerability class and title Scan end time Service, version, and synopsis
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application, or environment, the consequence is determined by the network administrator. 
Figure  9 shows the network administrator’s dashboard, which comprises seven labeled 
components.

The first component is a 4-hourly RTT variation graph, and the 2nd component is a 
real-time aggregated usage graph observed from RAETMS (also see Fig. 7). For clarity, 
only IPs with significant activities are shown. The 3rd component shows the correspond-
ing VDS action table (also see Figs. 10, 12). Components 4, 5, and 6 represent network 
scanning block notices from the RPITMS, a Service-Port frequency meter, and an OS-
Frequency meter, respectively. Finally, Component-7 portrays the filtered/unfiltered ratio 
graph observed at every 4th hour.

7.1 � Quantification of network health

The vulnerabilities detected by each module are represented by a terminal score or overall 
health score for each end-user. It reflects the health of an end-user at any instance.

The real-time weighted egress traffic score or α is calculated for an end-user by Eq. (2),

(2)� =
4 ∗ (No. of Illicit Packets) + 1 ∗ (No. of Suspected Packets),

5

Fig. 9   Network Administrator’s Dashboard of the proposed system with labeled components

Fig. 10   Vulnerability detector system action table
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where the number of illicit and suspected-illicit packets is calculated by RAETMS.
To integrate the effect of the NFA module, an anomalous fingerprinting score or β is 

calculated for each end-user at periodic intervals by Eq. (3),

where G is derived from Eq. (4).

In Eq.  (3), E[RTT(User)] is the expected value or mean of end-user’s RTT collected 
over a period of time and E[RTT(Network)] is the expected value of the network’s RTT. 
The term RTT(User)

E[RTT(User)]
 will reflect the anomalous variation of end-user from its own expected 

behavior (normal behavior), while the term RTT(User)

E[RTT(Network)]
 corresponds to an anomalous vari-

ation of the end-user from the network.
The weighted vulnerability score or � is produced by VDS for each user by Eq. (5).

The number of scanning attempts or � , makes that the target end-user more vulnerable,

The terminal score corresponding to each end-user is calculated by a weighted summa-
tion of scores of individual modules.

These empirical weights are calculated after a series of network-simulation experiments. 
A high terminal score corresponds to the high vulnerability of the end-user. The observed 
terminal score of the end-users is depicted in Fig.  11. Furthermore, an overall-network 

(3)� =
10 ∗ (Number of Unfiltered Ports) + 10 ∗ [G − 1]

20
,

(4)G =

(

max

(

RTT(User)

E[RTT(User)]
,

RTT(User)

E[RTT(Network)]

))

(5)

� =
4 ∗ (Type A.B Score + Type B Score) + 1 ∗ (Type A Score + Type A + B Score)

5

(6)� = No. of scanning attempts against user.

(7)Terminal Vulnerability Score =
� + � + 2 ∗ � + 2 ∗ �

6

Fig. 11   Observed terminal score of the hosts
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score is produced by the expectation value, i.e., the mean of terminal-score of all active 
end-users by the Eq. (8).

Points A, B, and C in Fig.  11 correspond to the same end-user with IPv4 address 
‘172.16.98.86’. The actions taken by the VDS for this end-user are summarized in Fig. 12. 
Point D represents end-user ‘10.89.248.52’ at 22:10:43; and the VDS has resulted in no-
action due to the low-risk factor of detected vulnerabilities. Point F represents the end-
user ‘172.16.99.204’ at 23:16:32; and the VDS has resulted in Quarantine User due to 
high Type B and Type A.B scores. The aforementioned data is also depicted in the VDS 
Action Table in Fig.  10 (also see component-3 of Fig.  9). At Point E, for the end-users 
172.16.102.59 and 172.16.105.59, a finite port ratio is detected (Eq. 9, Component 7, and 

(8)Overall network health score = E
[

Terminal Score of all active end users
]

Fig. 12   VDS Stimulation for end-user 172.16.98.86 at points A, B, and C of Fig. 7
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Fig. 9). The VDS resulted in Quarantine Service(s) due to a medium risk of Type B and 
Type A.B vulnerabilities.

7.2 � Hosts with Anomalous Egress Traffic

Real-time Egress Traffic for the end-user ‘172.16.103.217’ is depicted in Fig. 3. At points 
A (18:38:28), B (19:20:14), and C (21:13:52), VDS is invoked as a part of the  threefold 
preventive and recovery mechanism. At all these points, the VDS has resulted in the Quar-
antine Service(s), i.e., vulnerable services running at that instant are blocked.

The egress traffic is monitored at the end-user level and is further aggregated at the 
administrator level, as shown in Fig. 3. At points, A, B, C, D, and F of Fig. 7, malicious 
egress traffic is detected, and AAT is kept at 0.25. As a part of the threefold preventive 
mechanism of RAETMS, all packets from the host of malicious traffic are temporar-
ily blocked, a warning flag is raised, and the further action is determined by the VDS 
(Figs. 11, 12).

In Fig.  12, Points A, B, and C correspond to the end-user with IPv4 address 
‘172.16.98.86’. At point A (18:31:03), the VDS results in quarantine service due to the 
presence of Type B and A.B vulnerabilities. The first warning flag is raised against the 
end-user to the network administrator. The identified vulnerabilities are CVE-2004-2761 
and CVE-2016-2182. These vulnerabilities are of medium and critical nature, respectively. 
At point B (18:33:03), no action is taken by the VDS due to low Type B and A.B scores, 
but the second warning flag is raised. At point C (22:10:03), Type B and Type A.B lie in 
the high-risk factor zone, and the third earning flag is raised. As a consequence of the 3rd 
warning flag, the end-user is quarantined. This is also evident by comparing the traffic after 
Point C in Figs. 6 and 7, respectively.

7.3 � Hosts with Anomalous Ingress Traffic

Component-4 of Fig. 9 represents malicious ingress traffic in the network. This is a conse-
quence of -A and -O Nmap scans. As a part of the twofold preventive mechanism, response 
from the end-user is blocked so that no information will be shared and the source IP of the 
scan is detected. This IP address is automatically blocked by adding it to the IP table black-
list by using the command,

where 172.16.54.72 is the IP addresses to be blocked. Thus, any foreseeable packets from 
this IP would be dropped by the system. This is a temporary block determined by the net-
work administrator.

7.4 � Hosts with Anomalous Fingerprint

The NFA module performs the active fingerprinting. We have primarily focused on three 
components of an anomalous fingerprint: anomalous RTT, filtered to unfiltered port ratio 
or presence of unfiltered ports, and the presence of vulnerable services in the network.

Figure 13a, b depicts 4-h mean RTT variation and daily RTT variation in the network, 
respectively. These RTT variations are also a part of the network administrator’s dashboard 

ipTables − A INPUT − s 172.16.54.72 − j DROP,
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depicted by the 1st component of Fig. 9. The RTT depicts the duration between sending a 
request (an SYN packet) and receiving the response (an ACK packet). A high RTT indi-
cates congestion in the network. The RTT of every end-user is monitored, and the mean 
RTT is displayed to the network administrator. When the RTT of a user increases signifi-
cantly from other users in the network, then as a deliberate and preventive step against the 
congestion, the end-user is temporarily blocked, and the VDS is invoked.

At Point-E of Fig. 7, the end-user with IP address ‘172.16.68.31’ resulted in a sudden 
increase in the RTT. As a preventive measure, the VDS is triggered by the NFA (AF). The 
VDS resulted in a high Type B and Type A.B scores. Thus, the end-user is quarantined 
(also see the second row of Fig. 10).

When filtered to unfiltered port ratio is finite or unfiltered ports are not zero, then as part 
of the preventive mechanism, the VDS is triggered (see point E, Fig. 11, Eq. 9). The 7th 
component of Fig. 9 outlines the graph of filtered to unfiltered-port ratio.

The network statistics are recorded in components 5 and 6 of Fig. 9. Component-6 is 
used to broadly monitor services and their frequency that are running in the network. When 
a vulnerable service is detected, then it is blocked as a preventive measure, while compo-
nent-5 provides the OS statistics of the hosts in the network.

8 � Comparison with the Contemporary Tools

The preceding sections have widely discussed the exhaustive architecture of the proposed 
system. In addition, several examples were outlined to test the performance of the modules. 
Table 7 delineates the empirical statistics observed by executing the system for an arbitrary 
end-user. It clearly illustrates that the system stands out in comparison with the OVALDi 
and Nessus. The proposed system focuses on an in-depth classification of identified vulner-
abilities, followed by quantifying network health using scores gathered from each module. 

(9)Anomalous ⇒
Number of Filtered Port

Number of Unfiltered Ports
≠ ∞(infinity)

Fig. 13   a 4-h Variation b Daily RTT variation
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In addition to the preventive mechanism of each module, the proposed system is equipped 
with an integrated mechanism for recovery.

In addition to the open-source tools like OVALDI and NESSUS, we aim to extend the 
comparison to popular propriety tools in the network security arena. Cisco offers a proprie-
tary closed-source network health monitoring tool [12]. It captures network health through 
real-time monitoring of devices in the network. It determines the health by focusing on 
the availability, performance, and capacity of the devices. Any detected issue is classified 
as ‘Chronic’, ‘Critical’, or ‘Service affecting Issue’. The health ratings are computed by 
adjusting these issues into an empirical formula, which yields a risk index. A complemen-
tary health index is derived from the risk index. The average of the health indices across 
all the issues provide a final overall health rating for the network. Notably, the empirical 
formula and specifics of the working of this proprietary tool are largely unbeknownst to the 
research community. The primary focus of the tool is to keep the network up and running. 
This virtue makes it a good fit for data centers and controlled environments where maxi-
mum yield is the necessity.

On the contrary, the proposed system derives network health from the health of each 
end-user. It quarantines the end-user when the end-user becomes a threat to the network. 
Thus, the availability, performance, and capacity of the network for each end-user is not 
the goal of our system. The proposed  system aims to ensure the network’s security in a 
semi-controlled environment where the end-users are free to install/access various kinds 
of services. This virtue of our tool makes it a good fit for the corporate and academic 
environment.

Although our tool has established novelty on several parameters, it did not explore 
some of the widely implemented and popular features of the network security tools due to 
the limited bandwidth available for our research. Some of these features are listed below.

8.1 � Ability to Monitor a Wide Range of Devices

Tools, such as SolarWinds NPM (Network Performance Monitor)  [53] and Nagios Core 
[19], are known for monitoring a wide range of devices such as mobiles, printers, scanners, 
etc. along with personal computers. Both of these tools come with a proprietary license, 
and it becomes costly with the integration of additional features. For example, many fea-
tures are not available on a free version of Nagios. The features such as wizards or interac-
tive dashboards are available on Nagios XI, which has a proprietary license, whereas our 
system is focused on monitoring personal computers only.

8.2 � Customized Alerts

Nagios sends alerts whenever a critical infrastructure component fails and recovers, 
thereby providing administrators with a  notice of important events. These alerts can be 
delivered via email, SMS, or custom script. This is an essential development from Nagios 
as Nagios cannot manage the network but monitor the network. In addition to monitoring, 
a typical network management system manages the accounting, configuration, and security 
aspects of the network. Although our system invokes a wide range of recovery mechanisms 
whenever an illicit activity is identified, currently, our system has no provision for provid-
ing alerts via email or SMS.
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8.3 � Collection of hardware data

Zabbix is a free FOSS software [48]. It focuses on collecting network and hardware data 
to provide comprehensive reporting. The hardware data comprises the CPU, memory, and 
disk metrics. While our system is focused on collecting data from the network, it aims to 
quantify the health of each end-user and the network.

8.4 � Firewalls Management

Panorama is a tool that manages all the firewalls [45] irrespective of where they are: at 
the perimeter, in a data center, or the cloud. Adding new firewalls or combing firewalls to 
Panorama is easy. It can push a lot of the configuration and settings so that the end-user 
does not have to do it manually. While our decentralized system manages a single firewall 
that is implemented uniformly over the network, there is a scope of firewall enhancement 
in our system on the lines of Panorama.

8.5 � Customizable Visualizations

SolarWinds NPM is famous for presenting customizable dashboards for the network 
administrator. It provides detailed reports and graphs derived from the analytical data, 
whereas our system provides a limited dashboard to the network administrator. The dash-
board of our system is chiefly focused on presenting the network administrator with the 
Network Health Score, i.e., a definitive score derived from multiple modules. Besides, the 
dashboard comprises visualizations from each module.

To sum up, our focus is not to provide a popular network monitoring system but to 
broaden the foundation for the research community. Throughout our research and literature 
survey, we have noticed a lacuna in the literature related to Network ‘Health’ Monitor-
ing Systems. On the contrary, there exist multiple propriety tools and patents. Hence, this 
work is a step forward to quantify health of the network while highlighting all the research 
aspects relating to it.

9 � Conclusion

The study proposed an architecture for the network health monitoring system. The quanti-
fication of network health is performed by accounting for three kinds of network security 
threats: malicious web-traffic (egress-ingress), computer vulnerabilities (network-system), 
and anomalous device fingerprints. The proposed system is implemented for end-users 
as well as the network administrator. The system comprises five modules: two modules 
installed on the end-user devices and three modules installed on the network administrator 
device. All the modules are equipped with the prevention, detection, and recovery mecha-
nisms. As a part of each module, several empirical indices have been developed to profile 
an end-user. Then,  indices from each module are combined to reflect the overall health 
of an end-user. The expected value of health of each end-user corresponds to the over-
all network health. Results of implementation of this system on a local-area network have 
indicated that the proposed system is useful in curbing attacks and objectively depicts the 
security status of the network at any time.
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