Skip to main content

Advertisement

Log in

Security and Reliability Analysis of Relay Selection in Cognitive Relay Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Improving security and reliability is a main concern in many wireless transmission systems. In this paper, we explore the security and reliability in cognitive relay networks with an eavesdropper and multiple relays where the decode-and-forward (DF) protocol is considered. We propose a novel cognitive relay selection to improve the security and reliability of the considered system. The most important contribution is that we obtain the cumulative distribution functions (CDFs) of the channels from the selected relay to the destination and to the eavesdropper, respectively, which makes other related theoretical research possible. Furthermore, based on the proposed relay selection criterion, we derive the accurate closed-form outage probability and intercept probability of the considered system. At last, simulation results verify the correctness of our derivations. Interestingly, although the relay selection is based on the relay-destination channel and the relay-eavesdropper channel, it can be seen from the theoretical results that the reliability performance is completely irrelevant to the relay-eavesdropper channel’s statistical characteristics, whereas the security performance is entirely independent of statistical characteristics of the relay-destination channel. In addition, the security performance is always improved with the increasing number of relays, but the reliability performance is not proportional to the number of relays any more when the number of relays reaches a certain value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  MATH  Google Scholar 

  2. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  3. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  4. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  6. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.

    Article  Google Scholar 

  7. Li, E., Wang, X., Dong, Y., & Li, Y. (2016). Research on the \(N\)th-best relay selection with outdated feedback in selection cooperation systems. Wireless Personal Communications, 89(1), 45–59.

    Google Scholar 

  8. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.

    Article  Google Scholar 

  9. Li, E. Y., & Yang, S. Z. (2012). Simple relay selection criterion for general two-way opportunistic relaying networks. Electronics Letters, 48(14), 881–882.

    Article  Google Scholar 

  10. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  11. Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.

    Article  Google Scholar 

  12. Letaief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  13. Zhong, B., & Zhang, Z. (2016). Opportunistic two-way full-duplex relay selection in underlay cognitive networks. IEEE Systems Journal, 64(10), 1–10.

    Google Scholar 

  14. Yang, H., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  15. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  16. Li, D. (2016). Amplify-and-forward relay sharing for both primary and cognitive users. IEEE Transactions on Vehicular Technology, 65(4), 2796–2801.

    Article  Google Scholar 

  17. Li, Q., & Varshney, P. K. (2017). Resource allocation and outage analysis for an adaptive cognitive two-way relay network. IEEE Transactions on Wireless Communications, 16(7), 4727–4737.

    Article  Google Scholar 

  18. Leung-Yan-Cheong, S., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai, L., & Gamal, H. E. (2008). The relay-eavesdropper channel: Cooperation for secrecy. IEEE Transactions on Information Theory, 54(9), 4005–4019.

    Article  MathSciNet  MATH  Google Scholar 

  20. Krikidis, I. (2010). Opportunistic relay selection for cooperative networks with secrecy constraints. IET Communications, 4(15), 1787–1791.

    Article  Google Scholar 

  21. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.

    Article  Google Scholar 

  22. Chen, J., Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay networks. IEEE Transactions on Information Forensics and Security, 7(1), 310–320.

    Article  Google Scholar 

  23. Hoang, T. M., Duong, T. Q., Vo, N.-S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177.

    Article  Google Scholar 

  24. Chu, S.-I. (2019). Secrecy analysis of modify-and-forward relaying with relay selection. IEEE Transactions on Information Theory, 68(2), 1796–1809.

    Google Scholar 

  25. Feng, Y., Yan, S., Liu, C., Yang, Z., & Yang, N. (2019). Two-stage relay selection for enhancing physical layer security in non-orthogonal multiple access. IEEE Transactions on Information Forensics and Security, 14(6), 1670–1683.

    Article  Google Scholar 

  26. Lei, H., Yang, Z., Paik, K.-H., Ansari, I. S., Guo, Y., Pan, G., & Alouini, M.-S. (2019). Secrecy outage analysis for cooperative NOMA systems with relay selection schemes. IEEE Transactions on Communications, 67(9), 6282–6298.

    Article  Google Scholar 

  27. Wang, Z., & Peng, Z. (2019). Secrecy performance analysis of relay selection in cooperative NOMA systems. IEEE Access, 7, 86274–86287.

    Article  Google Scholar 

  28. Li, J., Han, S., Tai, X., Gao, C., & Zhang, Q. (2020). Physical layer security enhancement for satellite communication among similar channels: Relay selection and power allocation. IEEE Systems Journal, 14(1), 433–444.

    Article  Google Scholar 

  29. Wang, Y., Yin, H., Yang, W., Zhang, T., Shen, Y., & Zhu, H. (2020). Secure wireless powered cooperative communication networks with finite energy storage. IEEE Transactions on Vehicular Technology, 69(1), 1008–1022.

    Article  Google Scholar 

  30. Zhang, G., Gao, Y., Luo, H., Wang, S., Guo, M., & Sha, N. (2020). Security performance analysis for best relay selection in energy-harvesting cooperative communication networks. IEEE Access, 8, 26–36.

    Article  Google Scholar 

  31. Mabrouk, A., Tourki, K., Shafie, A. . El., & Al-Dhahir, N. (2020). Relay-selection refinement scheme for secrecy in untrusted RF-EH relay systems with adaptive transmission under outdated CSI. IEEE Transactions on Green Communications and Networking, 4(2), 423–432.

    Article  Google Scholar 

  32. Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letter, 4(1), 46–49.

    Article  Google Scholar 

  33. Ding, X., Song, T., Zou, Y., & Chen, X. (2016). Relay selection for secrecy improvement in cognitive amplify-and-forward relay networks against multiple eavesdroppers. IET Communications, 10(15), 2043–2053.

    Article  Google Scholar 

  34. Zou, Y., Champagne, B., Zhu, W. P., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228.

    Article  Google Scholar 

  35. Xu, X., Yang, W., & Cai, Y. (2017). Opportunistic relay selection improves reliability-reliability tradeoff and security-reliability tradeoff in random cognitive radio networks. IET Communications, 11(3), 335–343.

    Article  Google Scholar 

  36. Yan, P., Zou, Y., Ding, X., & Zhu, J. (2020). Energy-aware relay selection improves security-reliability tradeoff in energy harvesting cooperative cognitive radio systems. IEEE Transactions on Vehicular Technology, 69(5), 5115–5128.

    Article  Google Scholar 

  37. Cao, Z., Ji, X., Wang, J., Zhang, S., Ji, Y., & Wang, J. (2019). Security-reliability tradeoff analysis for underlay cognitive two-way relay networks. IEEE Transactions on Wireless Communications, 18(12), 6030–6042.

    Article  Google Scholar 

  38. Ji, B., Li, Y., Cao, D., Li, C., Mumtaz, S., & Wang, D. (2020). Secrecy performance analysis of UAV assisted relay transmission for cognitive network with energy harvesting. IEEE Transactions on Vehicular Technology, 69(7), 7404–7415.

    Article  Google Scholar 

Download references

Acknowledgements

he authors would like to thank the editors and the anonymous reviewers for their constructive comments and suggestions, which helped to improve the quality of this paper. This work was supported by Shandong Provincial Natural Science Foundation, China under Grant Nos. ZR2018MF002 and ZR2020MF001, Teaching & Research Program under Grant No. F2018-052-3, National Undergraduate Innovation and Entrepreneurship Training Program under Grant No. S202010429191, National Natural Science Foundation of China under Grant No. 61701272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enyu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

When \(j \ge 1\), the result of \(G\left( {z,j} \right)\) is derived as follows:

$$\begin{aligned} G\left( {z,j} \right)&= \int _z^{ + \infty } {\frac{1}{{{t^{j +1}}}}{e^{ - t}}dt} = \int _z^{ + \infty } {\frac{{{e^{ - t}}}}{{-j}}d{t^{ - j}}} = \frac{{{e^{ - z}}{z^{ - j}}}}{j} -\frac{1}{j}\int _z^{ + \infty } {{t^{ - j}}{e^{ - t}}dt} \nonumber \\&= \frac{{{e^{ - z}}{z^{ - j}}}}{j} + \frac{{{{\left( { - 1} \right) }^1}{e^{ - z}}{z^{ - j + 1}}}}{{j\left( {j - 1} \right) }} +\frac{1}{{j\left( {j - 1} \right) }}\int _z^{ + \infty } {{t^{ - j +1}}{e^{ - t}}dt} \nonumber \\&= \sum \limits _{k = 0}^{j - 1} {\frac{{{{\left( { - 1} \right) }^k}{e^{ - z}}{z^{k - j}}}}{{j\left( {j - 1} \right) \cdots \left( {j - k} \right) }}} + \frac{{{{\left( { - 1} \right) }^j}}}{{j!}}{{\mathrm{E}}_1}\left( z \right) . \end{aligned}$$
(37)

Appendix 2

Let \({\gamma _k} = {{{\gamma _{kD}}} /{{\gamma _{kE}}}}\), the PDF \({\gamma _{{k^{\mathrm{*}}}D}}\) can be obtained by

$$\begin{aligned} {f_{{\gamma _{{k^{*}}D}}}}\left( x \right) = \int _0^{ + \infty } {\frac{{{f_{{\gamma _{kD}},{\gamma _k}}} \left( {x,z} \right) }}{{{f_{{\gamma _k}}}\left( z \right) }} {f_{{\gamma _{{k^{*}}}}}}\left( z \right) } dz. \end{aligned}$$
(38)

The CDF of \({\gamma _k}\) can be expressed as

$$\begin{aligned} {F_{{\gamma _k}}}\left( z \right) = \int _0^\infty {\frac{1}{{{{\bar{\gamma } }_{RE}}}}{e^{ - \frac{y}{{{{\bar{\gamma } }_{RE}}}}}}\left( {1 - {e^{ - \frac{{zy}}{{{{\bar{\gamma } }_{RD}}}}}}} \right) } dy = 1 - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} +{{\bar{\gamma } }_{RE}}z}}. \end{aligned}$$
(39)

By taking the derivative of (39), we have

$$\begin{aligned} {f_{{\gamma _k}}}\left( z \right) = \frac{{{{\bar{\gamma } }_{RD}} {{\bar{\gamma } }_{RE}}}}{{{{\left( {{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z} \right) }^2}}}. \end{aligned}$$
(40)

According to (7), we can also get the CDF of \({\gamma _{{k^*}}} =\mathop {\max }\limits _{k \in {\mathbf{D}}} \left\{ {{{{\gamma _{kD}}} / {{\gamma _{kE}}}}} \right\}\) as

$$\begin{aligned} {F_{{\gamma _{{k^*}}}}}\left( z \right)&=\Pr \left\{ {\mathop {\max }\limits _{k \in {\mathbf{D}}, \left| {\mathbf{D}} \right| = K} \left\{ {\frac{{{\gamma _{kD}}}}{{{\gamma _{kE}}}}} \right\}< z} \right\} \nonumber \\&= \prod \limits _{k \in {\mathbf{D}},\left| {\mathbf{D}} \right| = K} {\Pr \left\{ {\frac{{{\gamma _{kD}}}}{{{\gamma _{kE}}}} < z} \right\} } = {\left( {1 - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}} \right) ^K}. \end{aligned}$$
(41)

Taking the derivative of (41), we obtain the corresponding PDF of \({\gamma _{{k^*}}}\) as follows:

$$\begin{aligned} {f_{{\gamma _{{k^*}}}}}\left( z \right) = K{\left( {1 - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}} \right) ^{K - 1}} \frac{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}{{{{\left( {{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z} \right) }^2}}}. \end{aligned}$$
(42)

Thus, the joint CDF \({F_{{\gamma _{kD}},{\gamma _k}}}\left( {x,z} \right)\) is derived as

$$\begin{aligned} {F_{{\gamma _{kD}},{\gamma _k}}}\left( {x,z} \right)&= \Pr \left\{ {{\gamma _{kD}}< x,{\gamma _k}< z} \right\} \nonumber \\&= \Pr \left\{ {{\gamma _{kD}}< x,{\gamma _{kE}} > \frac{x}{z}} \right\} + \Pr \left\{ {{\gamma _{kE}}< \frac{x}{z},{\gamma _{kD}} < z{\gamma _{kE}}} \right\} \nonumber \\&= \int _{\frac{x}{z}}^\infty {\frac{1}{{{{\bar{\gamma } }_{RE}}}} {e^{ - \frac{y}{{{{\bar{\gamma } }_{RE}}}}}} \left( {1 - {e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}}}}}} \right) } dy + \int _0^{\frac{x}{z}} {\frac{1}{{{{\bar{\gamma } }_{RE}}}} {e^{ - \frac{y}{{{{\bar{\gamma } }_{RE}}}}}}\left( {1 - {e^{ - \frac{{zy}}{{{{\bar{\gamma } }_{RD}}}}}}} \right) } dy\nonumber \\&= \frac{{z{{\bar{\gamma } }_{RE}}}}{{{{\bar{\gamma } }_{RD}} + z{{\bar{\gamma } }_{RE}}}} \left( {1 - {e^{ - \frac{{{{\bar{\gamma } }_{RD}} + z{{\bar{\gamma } }_{RE}}}}{{{{\bar{\gamma } }_{RD}} {{\bar{\gamma } }_{RE}}}}\frac{x}{z}}}} \right) . \end{aligned}$$
(43)

Therefore, after taking the derivative of (43), we get the joint PDF \({f_{{\gamma _{kD}},{\gamma _k}}}\left( {x,z} \right)\) as follows:

$$\begin{aligned} {f_{{\gamma _{kD}},{\gamma _k}}}\left( {x,z} \right) =\frac{{{\partial ^2}{F_{{\gamma _{kD}},{\gamma _k}}} \left( {x,z} \right) }}{{\partial x\partial z}} =\frac{x}{{{z^2}{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}} {e^{ - \frac{x}{{z{{\bar{\gamma } }_{RE}}}}}}{e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}}}}}. \end{aligned}$$
(44)

By substituting (40), (42) and (44) into (38), we get

$$\begin{aligned} {f_{{\gamma _{{k^*}D}}}}\left( x \right)&= \int _0^{ + \infty } {\frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}{z^2}}} {e^{ - \frac{{{{\bar{\gamma } }_{RD}} + z{{\bar{\gamma } }_{RE}}}}{{{{\bar{\gamma } }_{RE}}{{\bar{\gamma } }_{RD}}z}}x}}K{{\left( {1 - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}} \right) }^{K - 1}}} dz\nonumber \\&= K{e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}}}}}\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m}\int _0^{ + \infty } {{{\left( {\frac{{{{\bar{\gamma } }_{RD}}t}}{{{{\bar{\gamma } }_{RD}}t + {{\bar{\gamma } }_{RE}}}}} \right) }^m}\frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}{e^{ - \frac{x}{{{{\bar{\gamma } }_{RE}}}}t}}} dt} \nonumber \\&= K\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m}\int _{{{\bar{\gamma } }_{RE}}}^{ + \infty } {{{\left( {1 - \frac{{{{\bar{\gamma } }_{RE}}}}{z}} \right) }^m}\frac{x}{{\bar{\gamma }_{RD}^2{{\bar{\gamma } }_{RE}}}}{e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}z}}} dz} \nonumber \\&= K\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m}\int _{{{\bar{\gamma } }_{RE}}}^{ + \infty } {\sum \limits _{j = 0}^m {\left( {\begin{array}{c} m\\ j \end{array}} \right) {{\left( { - {{\bar{\gamma } }_{RE}}} \right) }^j}} \frac{x}{{\bar{\gamma }_{RD}^2{{\bar{\gamma } }_{RE}}{z^j}}}{e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}z}}} dz}. \end{aligned}$$
(45)

The final closed-form result of \({f_{{\gamma _{{k^{*}}D}}}} \left( x\right)\) is not used in the subsequent derivation process, so we needn’t give the final closed-form expression of \({f_{{\gamma _{{k^{*}}D}}}}\left( x\right)\).

Substituting (40), (42) and (44) into (38), meanwhile, we integrate the PDF of \(\gamma _{{k^{*}}D}\), then the final result of the CDF of \(\gamma _{{k^{*}}D}\) is derived as (46).

$$\begin{aligned} {F_{{\gamma _{{k^{*}}D}}}}\left( x \right)&= \int _0^x {\int _0^{ + \infty } {\frac{t}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}{z^2}}}{e^{ - \frac{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}{{{{\bar{\gamma } }_{RE}}{{\bar{\gamma } }_{RD}}z}}t}}K{{\left( {1 - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}} \right) }^{K - 1}}} } dzdt\nonumber \\&= Kx\int _0^{ + \infty } {\left[ {\frac{{{{\bar{\gamma } }_{RD}}}}{{{{\left( {{{\bar{\gamma } }_{RD}}t + x} \right) }^2}}}\left( {1 - {e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}}}}}{e^{ - t}}} \right) - \frac{1}{{{{\bar{\gamma } }_{RD}}t +x}}{e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}}}}}{e^{ - t}}} \right] {{\left( {\frac{x}{{{{\bar{\gamma } }_{RD}}t + x}}} \right) }^{K - 1}}dt} \nonumber \\&= K{x^K}\int _x^{ + \infty } {\frac{1}{{{z^{K + 1}}}}dz} - K{\left( {\frac{x}{{{{\bar{\gamma } }_{RD}}}}} \right) ^K}\int _{\frac{x}{{{{\bar{\gamma } }_{RD}}}}}^{ + \infty } {\left( {\frac{1}{{{t^{K + 1}}}}{e^{ - t}} + \frac{1}{{{t^K}}}{e^{ - t}}} \right) dt} \nonumber \\&= 1 - K{\left( {\frac{x}{{{{\bar{\gamma } }_{RD}}}}} \right) ^K} \left[ {G\left( {\frac{x}{{{{\bar{\gamma } }_{RD}}}},K} \right) + G\left( {\frac{x}{{{{\bar{\gamma } }_{RD}}}},K - 1} \right) }\right] . \end{aligned}$$
(46)

Appendix 3

The joint CDF \({F_{{\gamma _{kE}},{\gamma _k}}}\left( {x,z} \right)\) is derived as

$$\begin{aligned} {F_{{\gamma _{kE}},{\gamma _k}}}\left( {x,z} \right)&= \Pr \left\{ {{\gamma _{kE}}< x,{\gamma _k} < z} \right\} \nonumber \\&= \frac{{z{{\bar{\gamma } }_{RE}}}}{{{{\bar{\gamma } }_{RD}} +z{{\bar{\gamma }}_{RE}}}} - {e^{ - \frac{y}{{{{\bar{\gamma } }_{RE}}}}}} + \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} +z{{\bar{\gamma }}_{RE}}}}{e^{ - \frac{{{{\bar{\gamma } }_{RD}} + z{{\bar{\gamma }}_{RE}}}}{{{{\bar{\gamma } }_{RD}} {{\bar{\gamma }}_{RE}}}}x}} \end{aligned}$$
(47)

Therefore, after taking the derivative of (47), we get the joint PDF \({f_{{\gamma _{kE}},{\gamma _k}}}\left( {x,z} \right)\) as

$$\begin{aligned} {f_{{\gamma _{kE}},{\gamma _k}}}\left( {x,z} \right) =\frac{{{\partial ^2}{F_{{\gamma _{kE}},{\gamma _k}}} \left( {x,z} \right) }}{{\partial x\partial z}} =\frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}} {e^{ - \frac{x}{{{{\bar{\gamma } }_{RE}}}}}} {e^{ - \frac{{zx}}{{{{\bar{\gamma } }_{RD}}}}}}. \end{aligned}$$
(48)

Therefore, the expression of \({f_{{\gamma _{{k^{*}}E}}}}(x)\) is derived as

$$\begin{aligned} {f_{{\gamma _{{k^{*}}E}}}}\left( x \right)&= \int _0^{ + \infty } {\frac{{{f_{{\gamma _{kE}},{\gamma _k}}}\left( {x,z} \right) }}{{{f_{{\gamma _k}}}\left( z \right) }} {f_{{\gamma _{{k^{*}}}}}}\left( z \right) } dz\nonumber \\&= \frac{{Kx}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}} {e^{ - \frac{x}{{{{\bar{\gamma } }_{RE}}}}}}\int _0^{ + \infty } {{e^{ -\frac{{zx}}{{{{\bar{\gamma } }_{RD}}}}}}\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}} \right) }^m}} } dz\nonumber \\&= \frac{K}{{{{\bar{\gamma } }_{RE}}}}\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{x}{{{{\bar{\gamma } }_{RE}}}}} \right) }^m}\int _{\frac{x}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {\frac{{{e^{ - t}}}}{{{t^m}}}} } dt. \end{aligned}$$
(49)

The CDF of \({\gamma _{{k^{*}}E}}\) can be derived as (50).

$$\begin{aligned} {F_{{\gamma _{{k^{*}}E}}}}\left( x \right)&= \int _0^x {\int _0^{ + \infty } {\frac{{Kt}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}{e^{ - \frac{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}t}}{{\left( {1 - \frac{{{{\bar{\gamma } }_{RD}}}}{{{{\bar{\gamma } }_{RD}} + {{\bar{\gamma } }_{RE}}z}}} \right) }^{K - 1}}} } dzdt\nonumber \\&= K\sum \limits _{k = 0}^{K - 1} \left( {\begin{array}{c} {K - 1}\\ k \end{array}} \right) {{\left( { - \frac{x}{{{{\bar{\gamma } }_{RE}}}}} \right) }^{k + 1}}\nonumber \\&\quad \left( {\frac{{ - 1}}{{k + 1}} {{\left( {\frac{{{{\bar{\gamma } }_{RE}}}}{x}} \right) }^{k + 1}} +\int _{\frac{x}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {\frac{{{e^{- z}}}}{{{z^{k + 2}}}}dz} + \int _{\frac{x}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {\frac{{{e^{ - z}}}}{{{z^{k + 1}}}}dz}}\right) \nonumber \\&= 1 + K\sum \limits _{k = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ k \end{array}} \right) {{\left( { - \frac{x}{{{{\bar{\gamma } }_{RE}}}}} \right) }^{k + 1}}\left[ {G\left( {\frac{x}{{{{\bar{\gamma } }_{RE}}}},k + 1} \right) + G\left( {\frac{x}{{{{\bar{\gamma } }_{RE}}}},k} \right) } \right] }. \end{aligned}$$
(50)

Appendix 4

$$\begin{aligned} H\left( {z,a,j} \right)&= \int _z^{ + \infty } {\frac{1}{{\left( {1 + at} \right) {t^{j + 1}}}}{e^{ - t}}} dt\nonumber \\&= \sum \limits _{i = 0}^j {{{\left( { - a} \right) }^i} \int _z^{ + \infty } {\frac{1}{{{t^{j + 1 - i}}}}{e^{ - t}}} dt} + {\left( { - a} \right) ^{j + 1}}\int _z^{ + \infty } {\frac{1}{{1 + at}}{e^{ - t}}} dt\nonumber \\&= \sum \limits _{i = 0}^{j - 1} {{{\left( { - a} \right) }^i}G \left( {z,j - i} \right) } + {\left( { - a} \right) ^j} \left[ {{{\mathrm{E}}_1}\left( z \right) - {e^{\frac{1}{a}}}{{\mathrm{E}}_1} \left( {\frac{{1 + az}}{a}} \right) } \right] . \end{aligned}$$
(51)

Appendix 5

By using of (45), the term \(\Pr \left\{ {\frac{{{\gamma _{{k^*}D}}}}{{{\gamma _{PD}} + 1}} < T} \right\}\) can be derived as follows:

$$\begin{aligned} \Pr \left\{ {\frac{{{\gamma _{{k^*}D}}}}{{{\gamma _{PD}} + 1}} < T}\right\}&= \int _0^{ + \infty } {{f_{{\gamma _{{k^{*}}D}}}} \left( x \right) \Pr \left\{ {{\gamma _{PD}} > \frac{x}{T} - 1} \right\} } dx\nonumber \\&=\int _T^{ + \infty } {{f_{{\gamma _{{k^{*}}D}}}} \left( x \right) {e^{ - \frac{1}{{{{\bar{\gamma } }_{PD}}}} \left( {\frac{x}{T} - 1} \right) }}} dx + {F_{{\gamma _{{k^{*}}D}}}} \left( T \right) , \end{aligned}$$
(52)

where

$$\begin{aligned}&\int _T^{ + \infty } {{f_{{\gamma _{{k^{*}}D}}}}\left( x \right) {e^{- \frac{1}{{{{\bar{\gamma } }_{PD}}}}\left( {\frac{x}{T} - 1} \right) }}} dx\nonumber \\&\quad = \int _T^{ + \infty } {K\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m} \int _{{{\bar{\gamma } }_{RE}}}^{ + \infty } {\sum \limits _{j = 0}^m}}} \nonumber \\&\qquad \left( {\begin{array}{c} m\\ j \end{array}} \right) {\left( { - {{\bar{\gamma } }_{RE}}} \right) ^j}\frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}\frac{1}{{{z^j}}} {e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}z}}dz {e^{ - \frac{1}{{{{\bar{\gamma } }_{PD}}}} \left( {\frac{x}{T} - 1} \right) }}dx\nonumber \\&\quad = \frac{{KT}}{{{{\bar{\gamma } }_{RD}}}} \sum \limits _{m = 0}^{K - 1}\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m} \int _{{{\bar{\gamma } }_{RE}}}^{ + \infty } \sum \limits _{j = 0}^m\nonumber \\&\qquad \left[ \left( {\begin{array}{c} m\\ j \end{array}} \right) {\left( - {{\bar{\gamma } }_{RE}}\right) }^j \frac{1}{{{z^j}}}\frac{{{{\bar{\gamma }}_{PD}}T}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}} +{{\bar{\gamma } }_{PD}}Tz}}\left( {1 + \frac{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}{{\bar{\gamma }}_{PD}}}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}} +{{\bar{\gamma } }_{PD}}Tz}}} \right) {e^{ -\frac{{Tz}}{{{{\bar{\gamma } }_{RD}} {{\bar{\gamma } }_{RE}}}}}}\right] dz\nonumber \\&\quad = \frac{{KT}}{{{{\bar{\gamma } }_{RD}}}} \sum \limits _{m = 1}^{K - 1}\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m} \sum \limits _{j = 1}^m{\left( {\begin{array}{c} m\\ j \end{array}} \right) {{\left( { - \frac{T}{{{{\bar{\gamma } }_{RD}}}}} \right) }^j}}\nonumber \\&\qquad \left[ \int _{\frac{T}{{{{\bar{\gamma } }_{RD}}}}}^{ + \infty } {\frac{{{{\bar{\gamma } }_{PD}}}}{{\left( {1 + {{\bar{\gamma } }_{PD}}t} \right) {t^j}}}{e^{ - t}}dt} - \int _{\frac{T}{{{{\bar{\gamma } }_{RD}}}}}^{ + \infty } {\frac{1}{{{t^j}}}{e^{ - t}}d\frac{{{{\bar{\gamma } }_{PD}}}}{{1 + {{\bar{\gamma } }_{PD}}t}}} \right] \nonumber \\&\quad = \frac{{K{{\bar{\gamma } }_{PD}}T}}{{{{\bar{\gamma } }_{RD}} +{{\bar{\gamma } }_{PD}}T}}{e^{ - \frac{T}{{{{\bar{\gamma } }_{RD}}}}}} - \frac{{K{{\bar{\gamma } }_{PD}}T}}{{{{\bar{\gamma } }_{RD}}}}\nonumber \\&\qquad \times \sum \limits _{m = 1}^{K - 1} \left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m} \sum \limits _{j = 1}^m{\left( {\begin{array}{c} m\\ j \end{array}} \right) {\left( -\frac{T}{{{{\bar{\gamma } }_{RD}}}}\right) ^j}} \int _{\frac{T}{{{{\bar{\gamma } }_{RD}}}}}^{ + \infty } \frac{j}{{\left( {1 + {{\bar{\gamma } }_{PD}}t} \right) {t^{j + 1}}}}{e^{ - t}}dt \nonumber \\&\quad = \frac{{K{{\bar{\gamma } }_{PD}}T}}{{{{\bar{\gamma } }_{RD}} +{{\bar{\gamma } }_{PD}}T}}{e^{ - \frac{T}{{{{\bar{\gamma } }_{RD}}}}}} - \frac{{K{{\bar{\gamma } }_{PD}}T}}{{{{\bar{\gamma } }_{RD}}}} \nonumber \\&\qquad \times \sum \limits _{m = 1}^{K - 1}\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - 1} \right) }^m} \sum \limits _{j = 1}^m \left( {\begin{array}{c} m\\ j \end{array}} \right) {\left( -\frac{T}{{{{\bar{\gamma } }_{RD}}}} \right) }^{j} jH\left( {\frac{T}{{{{\bar{\gamma }}_{RD}}}}, {{\bar{\gamma } }_{PD}},j} \right) . \end{aligned}$$
(53)

Appendix 6

By using of (49), the term \(\Pr \left\{ {\frac{{{\gamma _{{k^*}E}}}}{{{\gamma _{PE}} + 1}} > T} \right\}\) can be derived as follows:

$$\begin{aligned}&\Pr \left\{ {\frac{{\gamma _{{k^*}E}^{{\alpha _R}}}}{{{\gamma _{PE}} + 1}} > T} \right\} = \int _0^{ + \infty } {{f_{{\gamma _{{k^{*}}E}}}}\left( x \right) \Pr \left\{ {{\gamma _{PE}} < \frac{x}{T} - 1} \right\} } dx\nonumber \\&\quad = {\mathrm{1}} - {F_{{\gamma _{{k^{*}}E}}}}\left( T \right) \nonumber \\&\qquad -\int _T^{ + \infty } {\frac{{Kx}}{{{{\bar{\gamma }}_{RD}} {{\bar{\gamma } }_{RE}}}}\int _{{{\bar{\gamma } }_{RD}}}^{ + \infty } {\sum \limits _{m = 0}^{K - 1}{\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{{{{\bar{\gamma } }_{RD}}}}{t}} \right) }^m}\frac{1}{{{{\bar{\gamma } }_{RE}}}} {e^{ - \frac{x}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}t}}}} dt{e^{ - \frac{1}{{{{\bar{\gamma } }_{PE}}}}\left( {\frac{x}{T} - 1} \right) }}} dx\nonumber \\&\quad = {\mathrm{1}} - {F_{{\gamma _{{k^{*}}E}}}}\left( T \right) -\frac{{KT}}{{{{\bar{\gamma } }_{RE}}}} \nonumber \\&\qquad \times \int _{{{\bar{\gamma } }_{RD}}}^{ + \infty } {\sum \limits _{m = 0}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{{{{\bar{\gamma } }_{RD}}}}{t}} \right) }^m}\frac{{{{\bar{\gamma } }_{PE}}T}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}} + {{\bar{\gamma } }_{PE}}Tt}} \left( {1 + \frac{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}} {{\bar{\gamma } }_{PE}}}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}} + {{\bar{\gamma } }_{PE}}Tt}}} \right) {e^{ - \frac{{Tt}}{{{{\bar{\gamma } }_{RD}}{{\bar{\gamma } }_{RE}}}}}}}} dt\nonumber \\&\quad = {\mathrm{1}} - {F_{{\gamma _{{k^{*}}E}}}}\left( T \right) - \frac{{KT}}{{{{\bar{\gamma } }_{RE}}}} \left( {\int _{\frac{T}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {\frac{{{{\bar{\gamma } }_{PE}}}}{{1 + {{\bar{\gamma } }_{PE}}z}} {e^{- z}}dz} - \int _{\frac{T}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {{e^{ - z}}d\frac{{{{\bar{\gamma } }_{PE}}}}{{1 + {{\bar{\gamma }}_{PE}}z}}} } \right) \nonumber \\&\qquad -\frac{{KT}}{{{{\bar{\gamma } }_{RE}}}} \sum \limits _{m = 1}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{T}{{{{\bar{\gamma } }_{RE}}}}} \right) }^m}\left[ {\int _{\frac{T}{{{{\bar{\gamma } }_{RE}}}}}^{ +\infty } {\frac{{{{\bar{\gamma } }_{PE}}}}{{\left( {1 + {{\bar{\gamma } }_{PE}}z} \right) {z^m}}}{e^{ - z}}dz} -\int _{\frac{T}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {\frac{1}{{{z^m}}}{e^{ - z}}d\frac{{{{\bar{\gamma } }_{PE}}}}{{1 + {{\bar{\gamma } }_{PE}}z}}} } \right] } \nonumber \\&\quad = {\mathrm{1}} - {F_{{\gamma _{{k^{*}}E}}}}\left( T \right) +\frac{{KT}}{{{{\bar{\gamma } }_{RE}}}}\sum \limits _{m = 1}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{T}{{{{\bar{\gamma } }_{RE}}}}} \right) }^m}\int _{\frac{T}{{{{\bar{\gamma } }_{RE}}}}}^{ + \infty } {\frac{{m{{\bar{\gamma } }_{PE}}}}{{\left( {1 + {{\bar{\gamma }}_{PE}}z} \right) {z^{m + 1}}}} {e^{ - z}}dz} } \nonumber \\&\quad = {\mathrm{1}} - {F_{{\gamma _{{k^{*}}E}}}}\left( T \right) + \frac{{K{{\bar{\gamma } }_{PE}}T}}{{{{\bar{\gamma }}_{RE}}}} \sum \limits _{m = 1}^{K - 1} {\left( {\begin{array}{c} {K - 1}\\ m \end{array}} \right) {{\left( { - \frac{T}{{{{\bar{\gamma } }_{RE}}}}} \right) }^m}mH\left( {\frac{T}{{{{\bar{\gamma }}_{RE}}}}, {{\bar{\gamma } }_{PE}},m} \right) }. \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Ma, L., Hao, S. et al. Security and Reliability Analysis of Relay Selection in Cognitive Relay Networks. Wireless Pers Commun 123, 3103–3125 (2022). https://doi.org/10.1007/s11277-021-09279-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09279-1

Keywords

Navigation