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Abstract
This paper analyzes a large-scale dataset of real-world Wi-Fi operating networks, collected 
from more than 9,000 access points (APs) for 1 year. The APs are distributed among more 
than 1,200 educational centers in the context of a nation-wide one-to-one computing pro-
gram, being most of them primary and secondary schools. The data corresponds to RSSI 
measurements between APs used to build the conflict graphs for each school Wi-Fi net-
work. We propose a simple embedding for the Wi-Fi network conflict graphs based on 
classical graph features, which proves to be useful to analyze the behavior of the wire-
less networks, showing a high discrimination power among the different school networks. 
Moreover, we discuss some practical applications of the embedding. In particular, it ena-
bles to study the Wi-Fi network dynamics at each school, analyzing the conflict graphs 
temporal variations through clustering techniques. The presented methodology allows us to 
successfully separate the most stable scenarios from those with more significant variability, 
which therefore require more technical resources to optimize the network. Besides, we also 
compared the behaviour of the Wi-Fi networks of the different schools, which enable us 
to reuse the optimal configuration found for one school in all those sites that have similar 
conflict graph patterns.

Keywords IEEE 802.11 · Wi-Fi · RSSI · Conflict graph

1 Introduction

In recent years, the evolution of wireless communication technologies has substan-
tially changed our lives. In this sense, the IEEE 802.11 standard’s progress has had a 
huge impact on people’s connectivity habits. Today, Wi-Fi carries more than half of the 
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Internet’s traffic, according to the Wi-Fi Alliance [1]. No matter where we are, whether it is 
in the office, at home, in the shopping center, in the hospital or the bar, having this wireless 
access has become essential (and even more so with the pandemic due to the Covid-19). 
This increasing relevance also implies more significant challenges for any network infra-
structure, such as availability and quality of experience.

Another aspect that has been increasing, linked to wireless networks’ deployment, is the 
possibility of collecting massive amounts of data from the operational networks. Nowa-
days, every major Wi-Fi vendor offers solutions that enable a broad set of possible ways to 
collect a huge amount of data about the network operation. Many possibilities are available 
for each network layer, ranging from radio frequency (RF) and air utilization metrics at 
the physical layer, up to traffic analysis and user’s device characteristics at the application 
layer. However, regardless of what marketing people may say [2], the available commercial 
solutions have not yet fully exploited this data. Although wireless networks (as many other 
areas) are also surfing the wave of the current hype of artificial intelligence and machine 
learning [3–5], much effort is still needed to convert the vast amounts of data available into 
useful information.

We believe this work is a step towards that goal, taking advantage of the abundance of 
data from Wi-Fi networks, and presenting novel ways to extract useful information from 
the data. We use a large dataset collected in an educational context, from the nation-wide 
Wi-Fi schools networks in Uruguay. A full school year with hourly RSSI measurements 
of more than 9,000 access points (APs) distributed in more than 1,200 educational cent-
ers [6], compose the raw data used to build the conflict graphs that model the interfer-
ence between APs in the real-world operational Wi-Fi networks. Then, we base on network 
analysis tools and machine learning to study the graphs’ temporal and spatial variations. 
In particular, we focus the study on the 2.4 GHz band, where less spectrum is available 
with only three 20 MHz non-overlapping channels. Thus, the interference between nodes 
is much more relevant in this frequency band, for which our dataset has more than 70,000 
neighbouring AP pairs.

Solid mathematical models have been developed for graph analysis, which correspond 
to the area known as network science [7], recently popularized by social networks data 
analytics. In this work, we address whether it is possible to find a suitable embedding for 
the conflict graph of a Wi-Fi network in order to characterize the interference dynamics. 
We propose an efficient embedding based on standard features, such as centrality measures 
and other well-known graphs properties detailed in Sect.  4. We show that the proposed 
graph embedding is simple and useful to analyze the wireless network behaviour, obtaining 
a high level of discrimination power among the different school’s Wi-Fi networks. Fur-
thermore, the proposed graph embedding based on classical features enables us to study 
the graphs variations through clustering algorithms. Several clustering methods were com-
pared to choose the most appropriate one to analyze the collected data from the different 
wireless networks.

Next, we analyze the graph time series’ temporal variations for each school Wi-Fi net-
work. In this case, the results were relatively stable for most of the schools, with more than 
90% with only two or three temporal modes, associated with the number of clusters found 
on each graph time series. The number of temporal modes and the differences observed 
between them allows us to identify those schools that deserve more attention and require 
more technical resources. In addition, we look for common patterns between the graphs of 
the different schools, doing the clustering with the aggregated graph features of each time 
series. This methodology allows finding schools with similar Wi-Fi network conditions, 
making it possible to replicate the optimal solutions and configurations found in one site to 
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all other similar schools. This procedure avoids doing field surveys and RF analysis at each 
particular location, a costly task in terms of human resources.

The remainder of the article is structured as follows. The next section reviews previ-
ous works that have used conflict graph models in 802.11-based networks. In Sect. 3 the 
dataset collection process is described, while Sect. 4 introduces the selected graph features 
and presents an exploratory analysis to show how the data looks. In Sect. 5 we evaluate the 
discrimination power of the graph features selected, while Sect. 6 focuses on the selection 
of the clustering algorithm. Finally, the further analysis carried out with the complete data-
set is presented in Sects. 7, and  8 concludes the paper with the main insights and the next 
steps to continue with this research line.

2  Related Work

Random graphs models have been extensively used in the past to analyze and design wire-
less networks  [8]. Next, we highlight previous works that have been done using conflict 
graphs in 802.11-based networks. The conflict graph is a popular tool to model the inter-
ference among different wireless links. It is commonly used for contention-based access 
networks (i.e., like 802.11 networks), to indicate which wireless links interfere with 
each other, and hence, cannot be active simultaneously. It is also useful to model situa-
tions when links do operate simultaneously, in which case the conflict model (typically 
a weighted graph for this case) indicates how much one link affects the other when both 
operate simultaneously.

Since the advent of wireless multi-hop networks, such as Wireless Mesh Networks 
(WMNs) [9] and Vehicular Ad-Hoc Networks (VANETs) [10], one of the problems which 
received the most attention was channel assignment [11]. Thus, the different interfering 
models considered are typically expressed through the corresponding conflict graph [12]. 
For example, WMNs with nodes with multiple radios were considered [13, 14], while dis-
tributed conflict graphs at each network interface were proposed [15] for cognitive net-
works. More recently, [16] additionally included co-location interference in the model. 
Weighted conflict graphs were also introduced to take into account partially overlapping 
channels [17] or to add the link rate information to the graph [18]. We can also find in the 
recent literature machine learning algorithms to solve channel assignment [19], including 
methods based on deep reinforcement learning [20].

Many other problems have been addressed based on conflict graphs models, such as 
routing in multirate WMNs [21] and the evaluation of routing metrics [22], energy-efficient 
rate adaptation [23], VoIP performance [24] and association optimization [25] in WLANs, 
admission control, bandwidth sharing and QoS guarantees [26–29]. This interference 
model [30] also proved to be useful for performance analysis and capacity estimation [31, 
32], enabling to calculate the throughput of each link as a function of the WLANs conflict 
graph [33].

Most of today high-end WLAN solutions are based on network controllers, which 
among many tasks, are responsible for Radio Resource Management (RRM). The central 
controllers typically collect data from all the APs, which are used to construct and peri-
odically update a conflict graph, where the APs constitute the graph’s nodes. Based on 
the conflict graph, the controller jointly generates optimal channel assignments and power 
control levels for the APs [34]. Besides, this feature allowed us to collect large amounts 
of data, enabling to analyze the graph evolution during the time and compare the graphs 



1794 G. Capdehourat et al.

1 3

between different networks. To the best of our knowledge, no previous works have dealt 
with large datasets’ analysis, corresponding to the conflict graphs of real-world Wi-Fi net-
works and its evolution over time. In [35], the authors addressed problems related to the 
construction of the conflict graphs using measurement-calibrated propagation models in 
order to avoid the need for detailed signal measurements (see later in Sect.  3 the detail 
about what Cisco does [36]). On the other hand, a different approach was presented in [37], 
using a conflict graph embedding, which represents the wireless nodes with low-dimen-
sional vectors while preserving their conflict relationships. Although these works are based 
on network measurements, they are focused on the conflict graph building process, but not 
in analyzing the resulting graphs.

With the increasing availability of data from real-world operational networks, we 
believe that more research efforts should be dedicated to finding proper ways to exploit this 
data for network optimization and management purposes. Wi-Fi solution providers have 
been looking for analytical tools to include in their products, but no significant improve-
ments have been presented. Our work focuses directly on narrowing this gap, seeking to 
combine machine learning and network analysis tools to extract valuable information from 
a large dataset of interference measurements in Wi-Fi networks.

3  Dataset Description and Conflict Graph Construction

In order to build the dataset, RSSI measurements were gathered from the different school 
Wi-Fi networks managed by Plan Ceibal [38]. This organization is in charge of the imple-
mentation of a nation-wide one-to-one computing program in Uruguay. Thus, one of its 
most relevant responsibilities is to provide Wi-Fi Internet access at all educational centers 
throughout the country. This makes it one of the nation’s largest Internet providers, with a 
total number of devices connecting to Plan Ceibal’s networks comparable to the number of 
mobile network operators’ subscribers.

It is important to note that most of the Plan Ceibal’s Wi-Fi networks correspond to 
indoor scenarios at public primary and secondary schools. These educational centers are 
located in an enormous variety of buildings, ranging from centennial constructions with 
several stories and hundreds of students to small rural schools with just a few tens. This 
fact is illustrated in Fig. 1, which shows the histogram of the number of APs per building 
(i.e., per school Wi-Fi network). As we can see, each building is typically covered on aver-
age by 5 or 6 APs, although approximately 20% of the buildings required more than 10 
APs.

Most of the Plan Ceibal’s networks are based on high-end Wi-Fi solutions, which allows 
relatively complete and continuous monitoring of the network’s state, which we leverage 
in this study. In particular, the vast majority of access points currently installed correspond 
to a Cisco solution, managed by two Cisco Flex 7500 Wireless LAN Controllers (WLCs), 
each of them supporting up to 6000 APs. The complete list of AP models and their most 
important parameters are detailed in Table  1. All of them are configured with 20  MHz 
channels in 2.4 GHz and 40 MHz in the 5 GHz band (using only non-overlapping channels 
in both).

One of the things managed by the WLCs manage are radio resources, by means of the 
Cisco RRM’s proprietary algorithms. For this purpose, each AP in the network periodically 
sends a so-called NDP (Neighbor Discovery Protocol) packet on every channel and band 
possible. The NDP packets are broadcast messages transmitted at the maximum allowed 
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power for the channel/band, at the lowest supported data rate and using a single radio chain 
(meaning no beamforming is applied in their transmission). By default, an NDP packet 
is sent over all channels every 180 s. The AP goes off-channel roughly every 16 seconds 
to send an NDP packet over the 11 channels in the 2.4 GHz band, and every 8 s for the 
22 channels in the 5 GHz band. All received NDP packets, and the corresponding RSSI 
(expressed in dBm and with a resolution of 1 dBm) and channel are forwarded to the WLC. 
These values are averaged by the WLC over 15 minutes (the so-called pruning interval), 
corresponding to 5 measurements per neighbor.

A data collection system was set up, which sends SNMP queries to the WLCs so as 
to gather the information corresponding to all the APs. In particular, RSSI measurements 
were collected, which indicate how each AP hears all other APs in the network, for both 
frequency bands. The timescale was chosen in order to minimize the effect on the opera-
tional network. A typical sequence of RSSI measurements is shown in Fig. 2, where the 
different time-series correspond to how one particular AP is seen from all its neighbours in 
the 2.4 GHz band. The period is restricted to the school year (from March to December), 
and missing data (e.g. note the small gap in mid-April) is mostly due to holidays (when the 
equipment might be turned off at schools). Some missing measurements could also be due 
to problems in the connection between the data collection system and the WLCs. This data 
is not stored by either the APs or the WLCs, so they should be gathered live or lost.

The resulting dataset corresponds to RSSI measurements, which indicate how strongly 
each AP listens to its neighbors over the different schools’ Wi-Fi networks. We will con-
centrate only on the 2.4 GHz band measurements, the more crowded one (not only because 

Fig. 1  Number of buildings/
networks with a given number 
of APs

Table 1  AP models and how 
many are present in the complete 
network

AP model 
(Cisco 
Aironet)

Number of APs 802.11 Standard (2.4 GHz/5 GHz)

2702I 5098 802.11n/802.11ac-Wave 1
1702I 2681 802.11n/802.11ac-Wave 1
1832I 862 802.11n/802.11ac-Wave 2
2602I 759 802.11n/802.11n
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of 802.11 but also by Bluetooth, Zigbee, etc.) and with less spectrum available, which 
makes the conflict graph much more relevant than for 5 GHz. So, in order to construct the 
corresponding conflict graphs, we consider each AP as a node. Then, each node will have 
an incoming edge for each AP that it hears, and the corresponding weight will be the power 
received (i.e., the RSSI values). This way, we end up with one directed graph for each 
school at each timestamp.

It is worth to mention that we are not taking into account the operation channel of each 
AP to build the conflict graphs. That is to say, the graphs considered this way indicate the 
potential interference they may produce to each other if they are on the same channel. As 
we will see in the next section, we will take into account an RSSI threshold value to prune 
the graphs, removing all those edges that are below a certain power level, assuming that 
these APs do not affect each other.

4  Graph Features and Exploratory Data Analysis

In order to study the graphs variations, a notion of distance (or similarity) between graphs 
is needed. Several approaches are available for this purpose, including distances based 
on global structures, which are strongly related to the notion of graph isomorphism [39], 
and relaxations of these ideas, such as graph-kernel based techniques, where the idea is 
that two vertices are considered similar if their neighborhoods are similar (e.g. Weisfeiler-
Lehman algorithm  [40]). A simpler alternative is to base the distance between graphs in a 
predefined set of features. Characterizing the graph by these features allows us to consider 
the similarity between graphs as the corresponding similarity between the feature sets. For 
instance, two graphs are considered similar if the euclidean distance in ℝd for a vector of d 
chosen features is small. In the next subsection, we introduce the different metrics extracted 
from the graph structure to analyze the Wi-Fi networks conflict graphs. Finally, we end this 
section presenting an exploratory analysis to describe the resulting graph features dataset.

4.1  Graphs Features Computation

While many graph features were initially inspired by social network analysis, nowa-
days they are widely used in several different areas (see chapter 7 of  [41] for a detailed 

Fig. 2  A typical sequence of RSSI measurements showing how one AP is heard from all its neighbours in 
the 2.4 GHz
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presentation). In this study, we will rely on them to analyze the conflict graphs resulting 
from Wi-Fi networks data, since they allow a clear interpretation of the results based on 
their definitions. To do so, we have to compute for each graph the corresponding set of 
selected features, for which we used the NetworkX Python library [42]. Different preproc-
essing steps were carried out before computing the features with the corresponding Net-
workX functions. First, we discard all the edges with an RSSI value below a minimum of 
-80 dBm, considered as the Clear Channel Assessment (CCA) threshold for APs [43]. In 
this way, edges between all the neighbouring APs that do not affect each other are removed. 
Then, we compute the following features:

Number of edges It corresponds to the number of links (i.e., ordered AP pairs) with 
RSSI values above − 80 dBm. When symmetry holds (which is not always the case [6]), 
there would be two edges for each pair of APs that see each other above the threshold.

In-degree centrality It is the average over the incoming degree centrality values for each 
node, which is defined as the average over all the incoming edges of the node. These val-
ues correspond for each AP to the average RSSI of all the APs heard above -80 dBm. It is 
worth to note that this average over an entire graph is almost the same for the incoming 
degree than for the outgoing degree, so we select only the incoming values in this case. In 
addition to the mean value, we also include the standard deviation of the incoming degrees 
in each graph’s feature vector.

Another preprocessing was needed for the rest of the features, as the edge weights, in 
that case, must resemble a distance measure. Thus, we have to convert the RSSI values 
(which are in dBm) into a distance metric between APs, which is done using Eq. (1), where 
wij corresponds to the resulting distance between APi and APj , i.e., the i,  j entry of the 
graph adjacency matrix.

Then, we compute the remaining selected features:
Betweenness centrality It is the average value of the shortest-path betweenness central-

ity for each node. The betweenness centrality of a node i is defined to be the number of 
shortest paths that pass through i,

where ni
st
 takes the value 1 if the node i belongs to the shortest path between s and t and gst 

is the number of such paths. If both ni
st
 and gst are zero we set ni

st
∕gst = 0 . The shortest path 

in a weighted graph is defined as the path that minimizes the sum of the edge weights over 
the path.

Page rank It is the average value of the page rank algorithm values for each node, where 
each node has a score proportional to the sum of its neighbors’ scores. The importance of 
its neighbors then increases the importance of a node in the graph. The measure is called 
Page Rank since Google uses it as a central part of its web ranking technology. In matrix 
terms, it is calculated as follows:

where A is the adjacency matrix, D is a diagonal matrix with Dii = max{dout
i
, 1} , being 

dout
i

 the number of outgoing edges of node i, and � = (1, 1,…) . The equation has a free 

(1)wij = 10
−RSSIij∕10.

xi =
∑

st

ni
st

gst
,

x = D(D − �A)−1�,
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parameter � that must be chosen a priori. In practical cases for directed graphs it is usually 
roughly of order 1 (the Google search engine uses � = 0.85).

Clustering coefficient It is the average over the clustering coefficient values for each 
node, which quantifies the transitivity level of the graph. That is, if node i is connected 
with node j and node j is connected with node k, how likely is that node i is connected with 
node k. For undirected binary graphs, it is defined as the fraction of paths of length two 
in the graph that are closed (triangles). The clustering coefficient varies between 0 and 1, 
with C = 1 indicating perfect transitivity, and C = 0 for graphs with no closed paths such as 
trees. The previous definition can be generalized to weighted graphs by considering a func-
tion of the edge weights of the triangles instead of its number, i.e. that the value for node i 
is defined as:

where di is the number of neighbours of node i and ŵ is the weight w normalized over the 
maximum weight in the graph. In NetworkX the function f corresponds to the geometric 
average of the subgraphs edge weights. Moreover, directed (and weighted) graphs can be 
also considered, dividing by dtot

i
(dtot

i
− 1) − 2d↔

i
 where dtot

i
= din

i
+ dout

i
 and d↔

i
= A2

ii
.

For undirected and binary graphs, we can also calculate the chromatic and independ-
ence numbers. A colouring of such a graph is defined as labeling the nodes with colours 
such that no two nodes sharing the same edge have the same colour. In our case, it requires 
to previously convert the graph into an undirected binary graph. The converted graph will 
have an edge between nodes u and v if at least one of the edges (u, v) or (v, u) is present in 
the original directed graph. Then, the two resulting features are detailed next:

Maximum independent set An independent set of a graph is a set of nodes that do not 
share any edge between them. The computation of an independent set of maximum size is 
an NP-hard problem and this maximum size is referred to as the independence number. We 
approximate the maximum independent set size taking the maximum value over 10 runs of 
the NetworkX algorithm  [44] which finds a maximal independent set.

Chromatic number It is the smallest number of colors needed to colour a graph, and 
its computation is also an NP-hard problem. A classical colouring method is to define an 
order of the graph nodes and then assign to the node i an available color not used by its 
smallest neighbours in the defined order, adding a new colour if needed. The quality of 
the colouring depends on the chosen strategy of nodes ordering. It may be used merely 
random ordering (usually known as greedy algorithms) or variants of degree dependent 
ordering (start first with the largest/smallest degree, for instance) or much-complicated 
strategies [45]. Another way to colour a graph is to assign the same colour to nodes that 
belong to an independent set of the graph. In our case we computed the chromatic number 
by means of the NetworkX greedy coloring algorithm using the largest first strategy.

Each of the selected features has a possible interpretation in the context of conflict 
graphs corresponding to the APs of a Wi-Fi network. For example, all the centrality meas-
ures, beyond their differences, seek to reflect how centric each node is and how much influ-
ence it has on other neighbouring nodes. In the context of a Wi-Fi network, this implies 
that an AP with large centrality values is likely to be related to areas of more significant 
interference with its neighboring APs. On the other hand, the maximal independent set and 
the chromatic number are related to critical issues, such as channel assignment and trans-
mission power control, and in particular know how many channels are required to avoid 
interference between APs.

Ci =
1

di(di − 1)

∑

j,k

f (ŵjiŵikŵkj),
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4.2  Exploratory Analysis

Once we have computed all the features for the different graphs, we have also filtered some 
schools with few measurements (due to missing data during the collection process). Two 
conditions were imposed to get to the cured dataset for the analysis. The first one is to 
ensure that each school has the same number of APs for all the graphs. This may not occur, 
as some APs may have been removed or added during the year. In that case, what we do 
is keep for each school only the corresponding graphs with the number of APs with more 
measurements. Then, we set a minimum of 3600 graphs for each school (i.e., different 
timestamps), which corresponds to at least 150 full days during the year, with 24 measure-
ments per day taken each hour. The resulting dataset has information from 1249 differ-
ent educational centers, and the number of measurements for each of them is distributed 
according to Fig. 3.

Next, we present an exploratory analysis of the dataset. To begin with, Fig. 4 shows 
the relation between the number of APs, i.e. the graph nodes, and the number of edges. 
We can see that the relationship between them seems linear, which we verify with 
Fig.  5, looking at the convergence of the ratio between edges and nodes (reaching a 
value close to four). Please recall that the graph is directed, so 4 additional edges per 

Fig. 3  Number of graphs (i.e. 
different timestamps) for each 
school

Fig. 4  Relation between the 
number of APs (graph nodes) 
and the number of edges
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AP means that typically an AP has at least two neighbours on average. The curves of 
the 5% and 95% quantiles show that the dispersion is large, and variations of more than 
20% with respect to the average are not rare. Such variability is a relevant property for 
our purposes, as we seek to find significant differences or common patterns between the 
graphs of the different schools. Furthermore, Fig. 6 shows the average in-degree central-
ity for the different number of APs per school. As we can see, there is no clear correla-
tion between them, with an average value that remains stable when the number of nodes 
reaches five, but again with large variations around it. This property enables to fairly 
compare graphs from different schools with different number of APs, as their influence 
in the selected features is less relevant.

We extend the correlation analysis between the selected features, which is summa-
rized in the correlation matrix shown in Fig. 7. As we can see, most of the features do 
not have a high correlation between each other, which avoids to have too much redun-
dant information in the features vector. The highest correlation values correspond to the 
influence of the number of edges on other graph features, such as page rank, the maxi-
mum independent set and the chromatic number. Fig. 8 shows with more detail the cor-
relation between the in-degree and betweenness centrality, where it becomes clear that 
they are not much related with each other.

Fig. 5  Ratio between the number 
of edges and the number of APs 
(graph nodes)

Fig. 6  Relation between the 
number of APs (graph nodes) 
and the mean in-degree centrality
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Finally, to end up with the data exploration and feature analysis, we present a PCA 
decomposition [46] to look further into each characteristic’s relevance. For this purpose, 
first, we applied standard normalization to the features (i.e., centering and scaling each of 

Fig. 7  Correlation matrix for the different graph features

Fig. 8  Relation between the mean in-degree and betweenness centrality
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them to zero mean and standard deviation one). Then, we did the PCA decomposition of 
the normalized features, resulting in the weights presented in Fig. 9 for the first two PCA 
components. It is worth noting that all the selected features have significant weights in at 
least one of the two main PCA components, which indicates that all of them are relevant to 
discriminate the graphs (we will go further into this in the next section). This observation 
is also consistent with the low correlation between the features previously observed. The 
PCA results have also shown that only with the first three components an 88% of the vari-
ance explained is reached, and almost 96% with five, which means that the school’s Wi-Fi 
graph space dimension is probably lower than the number of features considered.

5  Evaluation of the Discrimination Power of the Features

In this section, we evaluate the discrimination power of the selected features. Assessing 
this aspect is crucial to ensure the clustering methods’ proper performance later used in the 
analysis. For this purpose, a supervised learning problem was posed, considering the corre-
sponding school as the label for each graph. The underlying assumption is that the schools 
should have several similar graphs in the different timestamps. So, if the selected features 
are good enough to discriminate between the graphs, we should identify the schools based 
on their corresponding contention graphs. That is to say; it should be possible to solve the 
supervised classification problem with high accuracy. To determine if this is the case, we 
analyzed the resulting performance solving this problem for several standard classification 
algorithms.

Two different datasets were used, considering only the subset of schools with 10 Access 
Points (APs). The purpose of this is to tackle a more complex classification problem than 
considering all the schools in the dataset since the number of nodes for all the graphs in 
the selected subset is the same. Each dataset corresponds to the different periods taken 
into account. On the one hand, a one-month dataset (considering only October data), and 
on the other hand, the whole ten-month school year (from March to December). To avoid 
the schools with too much missing data (due to the data collection process described in 
Sect. 3), we discarded those with information for less than 100 days during the school year. 

Fig. 9  Features weigths for the 
1st and 2nd PCA components
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We also kept only the data for school days (i.e., from Monday to Friday). This way, we 
ended up with a subset of 69 schools with 10 APs (i.e., 69 different categories).

We followed a classical machine learning approach, randomly dividing the data into two 
sets: 80% for training and 20% for test. The data split was done in a stratified fashion to 
ensure a suitable data proportion for each school in the training and test sets. We applied a 
standard scaler for the normalization, which converts each feature to have a mean value of 
0 and a standard deviation of 1. We compared the results for six different algorithms from 
the standard machine learning Python package scikit-learn [47]. We used k = 3 for k-NN 
and C = 1.2 for support vector classifier (SVC) with RBF1 kernel (found via grid search for 
the October data). The standard parameters were used for the rest of the algorithms.

In Table 2, we present the results for the different classification methods with both data-
sets. They are ordered according to the performance with the larger dataset. As we can see, 
all the methods have better performance for the 1-month dataset, which was to be expected, 
since the variations for each school should be smaller for a shorter period. The best algo-
rithm reaches an accuracy of 80%, which is high, considering that the classification is 
between 69 different schools. Thus, the results verify that the selected features have a high 
discrimination power among graphs. This fact allows us to move forward to the clustering 
analysis, ensuring that the clusters found should be meaningful, at least according to the 
graphs’ similarities.

Finally, we further analyze two more questions about the results obtained. Concerning 
the accuracy, it is computed as the average for all the samples on each test dataset. That is 
to say; we have an average accuracy that mixes the results for the different schools. So the 
first question that arises is: Is the classification performance similar for all the schools? 
The answer is provided by Fig. 10, where we can see the accuracy for each school. As we 
can see, there are significant differences between schools, ranging from below 50% up to 
near 100%. The performance is above 65% for most of them, and just a few have a worse 
accuracy, close to 50%. This result is a preview of what we will see in the next section, 
with significant differences in the different school networks behaviour.

The other question we addressed is for the cases where the classification was incorrect: 
Are the misclassified graphs for a particular school always confused with the same other 
school? The intuition behind this question is that if two schools are similar, so should be 

Table 2  Accuracy for the 
different supervised classification 
algorithms

Classification algorithm Accuracy (%)

1-month data (Oct. 
2018)

10-month data 
(Mar.–Dec. 
2018)

Random forest 82.7 ± 3.1 79.9 ± 0.1
k-nearest neighbors 82.3 ± 3.4 79.0 ± 0.1
SVC (rbf) 80.9 ± 5.5 77.4 ± 0.1
Gradient boosting 81.3 ± 3.1 76.7 ± 0.1
Decision tree 75.0 ± 3.2 72.8 ± 0.2
SVC (linear) 80.1 ± 4.0 71.8 ± 0.1
Logistic regression 64.4 ± 6.7 59.6 ± 0.1

1 RBF: Radial basis function.
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their graphs. In this context, similar refers not only to the building architecture and the APs 
placement but also to the behavior and mobility of people inside each school. We have 
found that only two schools have more than 50% of the errors with the same other school, 
which is less than 3% of the schools in the dataset. If we consider at least 40% with the 
same other school, the number of cases climbs to 12 (which is still low, reaching just 17% 
of all the schools). Also, it is interesting to note that the effect observed is not reciprocal. 
That is to say, a large number of errors assigning school A graphs to school B do not imply 
that many graphs from school B are assigned to school A.

6  Clustering Algorithm Selection

After evaluating the discrimination power of the selected features, now we need to choose 
a clustering method from all the different options available to continue with the proposed 
dataset analysis. For this purpose, we defined a classification problem considering again as 
ground truth the corresponding school as the label for each graph. The difference this time 
is that we use a clustering algorithm, which is an unsupervised learning method, in order to 
solve the classification problem.

Next we explain the procedure followed to compare the different clustering algorithms. 
First, it is worth to mention that the two datasets used for this algorithm comparison were 
exactly the same as in the previous section. That is to say, the 1-month dataset (with Octo-
ber data) and the 10-month school year dataset (from March to December), both of them 
corresponding to the subset of 69 schools with 10 APs. For each dataset, we have run the 
different clustering algorithms, varying the number of clusters parameter (from 100 to 
1000), and using the standard values for the rest of the different parameters of each method. 
Thus, we ended up with different clustering results for each algorithm, and each of them 
corresponds to a certain label assignment for each graph of the datasets.

In order to be able to compare the algorithms classification performance with respect 
to a ground truth, we have used the cluster labels assigned by each method to map this 
resulting clusters with the different schools. To do so, we have assigned for each cluster 
label, the corresponding school with the largest number of graphs within each group (in 
case of ties we just select one school randomly). In this way, we have for each algorithm 

Fig. 10  Classification accuracy 
for each school (Mar.–Dec. 2018 
data)
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execution, the corresponding classification of the graphs indicating which school each one 
corresponds to.

Clustering methods can be classified according to what they are based on (see [48, 49] 
for references on classic and modern methods). We considered several different algorithms, 
such as hierarchical clustering or methods based on centroids (e.g. k-means), among oth-
ers. All of them are included in the scikit-learn Python library [47]. We compared the dif-
ferent algorithms, according to the classification performance obtained by each of them. 
Fig. 11 shows the results for the different algorithms for the one-month dataset correspond-
ing to October 2018. As we previously mentioned, we have varied the number of clusters 
parameter from 100 to 1000, obtaining different results for each clustering algorithm. For 
the case of the hierarchical agglomerative clustering, all the different linkage methods were 
tested (Ward, single, average and complete). Mini batch k-means and Birch are compu-
tationally efficient variants of k-means, while Spectral clustering enables the detection of 
non-convex clusters. The Gaussian mixture model is the most popular method based on a 
prior probability distribution. Finally, DBSCAN is a density-based method, which does not 
require the number of clusters as input. Thus, in order to cover a similar range than for the 
rest of the algorithms (i.e. from 100 to 1000), we have varied the DBSCAN � parameter 
accordingly. The default values were used for all the other parameters of each algorithm.

As we can see, the performance is significantly better for four algorithms: k-means, 
agglomerative hierarchical clustering using Ward linkage, Gaussian mixture model and 
Spectral clustering. It is worth to mention that the first two are computationally much less 
expensive than the last two. Moreover, Fig.  12 shows another comparison between the 
clustering algorithms results. In this case, we analyze which percentage of the schools in 
the dataset has at least one corresponding cluster (using the assignment method described 
previously, which is to assign to each cluster the school with more graphs within the clus-
ter). We can see that the methods that achieve larger school coverage with fewer number of 
clusters are the same that have a better classification performance.

Next, we repeated the same analysis with the ten-month dataset, but this time only for 
the most computationally efficient algorithms that had better results with the other dataset. 
As we can see in Fig. 13, the best results were obtained with the k-means clustering algo-
rithm, which systematically performs better than the other algorithms. We can also notice 
that the results for the whole school year dataset are slightly worse than for the 1-month 

Fig. 11  Performance comparison of the different clustering algorithms for the 1-month dataset (October 
2018)
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dataset. This result seems reasonable, since over a longer period of time it is expected that 
there will be more variations in the graphs, and therefore it will be more difficult to classify 
them according to the corresponding school. Thus, we require a greater number of clusters 
to achieve the same classification performance (please notice that in this case the number 
of clusters goes up to 2000 and not up to 1000 as before).

One of the drawbacks that k-means may have is its sensitivity to outliers. Thus, we also 
compared the performance of k-means with two robust clustering algorithms that tackle 
this issue: tk-means [50] and k-taucenters [51]. For both cases we used the available pack-
ages for the statistics software R [52]. The results for the one-month dataset are presented 
in Fig. 14. As we can see, k-means has almost the same results as k-taucenters, and both of 
them outperform tk-means when the number of clusters raises. Since robust algorithms are 
more computationally expensive than k-means, the results obtained do not justify their use 
in this case.

Based on these results we reach to the conclusion that the k-means algorithm is the 
best one for the analysis of the Wi-Fi conflict graphs generated from the RSSI measure-
ments. We believe that the better performance in these supervised tests implies a suitable 
modeling of the graph features’ space geometry. In addition, the selected method has low 

Fig. 12  School coverage of the different clustering algorithms for the 1-month dataset (October 2018)

Fig. 13  Performance comparison of the different clustering algorithms for the 10-month dataset (March-
December 2018)
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computational cost, making it more appropriate for analyzing large datasets, as in this case. 
In the next section, we will use the k-means clustering algorithm to analyze the temporal 
and spatial variations of the graphs corresponding to the schools Wi-Fi networks.

7  Clustering Analysis and Resulting Insights

Having chosen the most suitable clustering algorithm, we now go back to the complete 
dataset introduced in Sect. 3 for the analysis. Let us recall that the cured dataset is com-
posed by the different graphs, described by its features, of the 1249 schools that have data 
for at least 3600 different timestamps (i.e. 150 full days of 24 h). Next, we analyze this 
dataset in two different and complementary ways. First, we focus on the graphs’ temporal 
variations, in this case separately studying the particular dynamics of the Wi-Fi network 
at each location. Then, we look for the similarities between the networks of the different 
schools, searching for common patterns among them.

7.1  Analysis of Temporal Variations: When and How Often Does the Wi‑Fi 
Contention Graph of Each School Change?

First, we focus on the analysis of the temporal variations of each school graph. For this 
purpose, we use the selected clustering algorithm, k-means, to find out how many graphs 
clusters does each school have during the year. To do so, we run k-means independently 
for each school data and look for the most suitable number of clusters using two standard 
techniques, such as the Elbow method [53], combined with an automatic elbow detection 
method [54], and the Silhouette score [55], implemented in the scikit-learn Python library 
[47]. We integrate the results of both methods taking the minimum number of clusters 
between them. We base this selection in the criteria of choosing for each school the most 
simple model that suits the data.

In Fig.  15 we can see the resulting number of clusters for each school. Each cluster 
can be interpreted as a different temporal operation mode of each school Wi-Fi network, 
represented by its conflict graph. It is worth noting that most of the schools have a low 
number of temporal modes, which suggests a fairly stable Wi-Fi operation. Moreover, we 

Fig. 14  Performance comparison of k-means vs robust clustering algorithms for the 1-month dataset (Octo-
ber 2018)
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can see that schools with more than 3 APs, tend to have a larger number of clusters. Since 
there are only 3 non-overlapping 20 MHz channels in the 2.4 GHz band, schools with more 
than 3 APs have at least one overlapping channel in this band. This fact implies that at this 
point the radio resource management relevance increases, since the frequency channels and 
transmission powers must be adjusted in order to mitigate the effect of the unavoidable 
interference between APs.

Concerning the question about when do the operation modes changes happen, different 
time windows were studied, i.e. month, week, day and hour. As we can see in Fig. 16, most 
of the changes occur during school hours (8 am–5 pm), which are the busiest times in the 
buildings (i.e. teachers and students moving to and from classrooms). The change rate dur-
ing the weekends (see Fig. 17) is similar to that observed during the night and early morn-
ing hours the rest of the week. The peak hours in terms of changes in the network, almost 
double the change rate observed during the most stable operation moments.

Another relevant question that arises is how often do the operation mode changes occur. 
For this purpose, we analyze the distribution of the time between changes, which is shown 
in Fig. 18. It is worth to note that most of the changes (almost half of them) occur within 

Fig. 15  Number of clusters (tem-
poral modes) for each school

Fig. 16  Temporal mode change rate according to the hour of the day
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a time difference of one hour, which corresponds to consecutive measurements, as it is the 
data collection frequency. The graph clearly shows a heavy tail in the distribution, which 
means that a significant number of changes occur after many hours or even days of elapsed 
time since the last operation mode change. This fact is also reflected in Fig. 19, where sig-
nificant differences are found looking at the average elapsed time between changes for the 
different schools. This fact indicates that there are Wi-Fi networks of certain schools with 
long periods of very stable operation.

Finally, we concentrate on the larger group of schools with only two temporal modes, 
in order to dig into the average feature differences observed between the two modes. 
In Fig. 20 the boxplot for the different features is shown, where the relative differences 
are computed as 100 × (a − b)∕(a + b) , being a and b the average feature values for each 
mode, where the order is randomly chosen (so possible values are either positive or 
negative). The first thing we can notice is that page rank shows almost no differences 
between the two modes, so it is not useful to differentiate the temporal variations for 
the same school network. Other centrality measures, such as betweenness and clustering 
coefficient, showed significant differences between the modes. The average in-degree 
was another feature without much difference between the modes, in contrast with its 

Fig. 17  Temporal mode change rate according to the weekday

Fig. 18  Histogram of the time 
difference between mode changes
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variance which showed much larger differences. This is also reflected in the difference 
observed in the average number of edges for each mode, and also to a lesser extent in 
the maximum independent set and the chromatic number.

One question that arises looking at the differences between the two modes, is 
whether all cases really have two temporal modes or if some of them should be reduced 
to only one network operation mode. The results indicate that 28.4% of the schools have 
an average difference over all features below 5%, and the percentage raises to 58.9% 
if the threshold is 10%. If we consider the maximum relative difference between all 
the features, 30.2% are below 20% and 44.2% below 30%. Thus, a significant number 
of schools networks presented small variations of the conflict graph during the year, 
which could be interpreted as a single operation mode. Unfortunately, neither the elbow 
method nor the silhouette score are useful to evaluate the case of k = 1 . Thus, we used 
another metric called Gap Statistic [56] which allows us to evaluate the case of a single 
cluster. We analyzed the dataset of schools with 10 APs and for 51.5% of the cases the 
Gap Statistic indicated that k = 1 was the optimal number of clusters. This result is con-
sistent with the cases observed with small differences in the features between the two 
modes.

Fig. 19  Histogram of the average 
time between changes for each 
school

Fig. 20  Relative differences 
between average features for 
schools with two temporal modes 
(i.e. differences for each feature 
ranges from − 100 to 100%)
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One last observation to highlight, is the correlation between the number of temporal 
mode changes observed and the relative difference between the average features for each 
mode. The results showed no relation between both, which implies that knowing how 
changeable the RF environment of the Wi-Fi network is does not provide any informa-
tion on whether such variability is large or small. This fact is relevant when analyzing the 
network operation, because in many cases design and optimization decisions are based on 
field surveys that correspond to a single picture of the state of the network.

7.2  Analysis of the Spatial Variations: How Different are the Graphs of the Different 
Schools?

After the temporal analysis, now we would like to find out if there are common conflict 
graph patterns between the different schools. For this purpose, we take advantage of the 
previous clustering results and consider all the {school, temporal mode} pairs. For each 
of them we compute the aggregated features, taking the average over all the graphs that 
corresponds to each pair. Finally, we apply the k-means clustering algorithm to this novel 
dataset, composed by all the different temporal modes for each school. Another interesting 
thing to observe is whether the different temporal modes of the same school are grouped 
together by their similarity or not.

The k-means clustering of the 3139 {school, temporal mode} pairs resulted in a five-
group classification, according to the Elbow method, used to find out the proper k. Fig. 21 
summarizes the resulting clusters, according to the distribution of the number of APs 
within each class. As we can see, the number of APs has an influence on the grouping, 
mainly due to the average number of edges, included as one of the graph features. How-
ever, this parameter is not decisive in the result, since we also find many schools with the 
same or similar number of APs that fall into different classes.

Concerning the different temporal modes of the different schools, we have found that 
for schools with two or three temporal modes, most of them fall into the same clus-
ter, while for schools with more temporal modes, at least one temporal mode falls in 
a different cluster in the majority of cases. All the results are summarized in Table 3. 
It is worth to note that for schools with three or more temporal modes, in all cases 
they are divided into at most three of the clusters found. Being able to group the differ-
ent schools (actually more than 1200) only into a few classes has significant value for 

Fig. 21  Clustering results for 
the different {school, temporal 
mode} pairs
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network management. For example, it is possible to take advantage of these similarities 
and reuse configuration parameters for sites with similar conflict graph patterns.

Next, we look again at the differences observed for each of the selected graph fea-
tures. In this case, the variations correspond to different schools, and are shown in 
Fig. 22 with respect to the mean. That is to say, we compute the average of each feature 
over each school graph time series, and compare the value with the mean average for all 
schools. As we can see, now the variations are larger than the ones previously shown in 
Fig. 20, which is reasonable because it indicates that the differences between different 
schools are larger than the ones observed between the graph time series of each school. 
Moreover, we can notice that now the page rank feature also shows significant variabil-
ity, unlike what was observed for the time series of the same school.

Finally, we try to see if there is any correlation between the clusters found and the 
building characteristics of the schools. For this purpose we focused on the subset of 
schools with 10 APs, for which we had information regarding the number of floors in 
each building and the existence or not of prefabricated container classrooms (in some 
schools, additional classrooms have been added to increase the capacity, which are 
made with standard ship containers). Both attributes have shown a possible influence 
in the number of temporal modes of each school. While 72% of the schools with only 
one floor have two temporal modes, this percentage falls down to 65% for the schools 
with two or more floors. The presence of container classrooms seems to have even more 

Table 3  Distribution among clusters according to the number of temporal modes (all values correspond to 
the % of schools)

Number of temporal modes

2 3 4 5 6

Number of classes in which they are distributed 1 74 64 48 35 43
2 26 34 49 59 50
3 – 2 3 6 7

Fig. 22  Relative differences to 
the mean average feature values 
among the different schools 
(i.e. differences for each feature 
ranges from − 100 to 100%)
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influence, as 78% of the schools without them have only two temporal modes, while it is 
55% for the schools which do have container classrooms.

It seems that having more floors or container classrooms has an upward influence in 
the number of temporal modes, possibly explained by a more variable RF environment 
of those Wi-Fi networks. Although this is not conclusive, they are indications that some 
building characteristics could have influence in the variability observed in the temporal 
dynamics of the Wi-Fi networks in the different schools. Nevertheless, for practical pur-
poses it is enough to know which schools have similar Wi-Fi network conditions. This 
makes it possible to replicate the optimal solutions and configurations found in one site, 
to all those that are similar, avoiding the efforts involved in the field survey and analysis of 
each particular location.

7.3  Discussion on the Practical Implications

One of the most time consuming tasks involved in the design, deployment, optimization 
and maintenance of Wi-Fi networks, has to do with the field surveys and RF measurements 
analysis. It typically requires many hours working on site, in addition to the travel required 
and the subsequent data analysis. An in-site validation is essential for the initial deploy-
ment, when the location of the different APs is planned and the solution is evaluated once 
it is installed. Then, the workload for operation and maintenance depends mainly on how 
stable is the network operation.

The presented methodology proved to be useful for the analysis of Wi-Fi networks, 
which in addition allows to plan the most appropriate resource allocation for preventive 
maintenance. The results obtained based on the conflict graph features embedding, enable 
to detect the most problematic sites which correspond to a more dynamic RF environment. 
This is of great help for the network operation, providing key information to decide how to 
prioritize the allocation of technical resources to ensure the optimal network performance.

Another key point for the deployment of Wi-Fi networks is to adjust the most suitable 
configuration for each site. Typically, high-end solutions include several parameters related 
to the RF management, for example for tuning their proprietary algorithms for chan-
nel assignment or transmission power control. The graph clustering procedure presented 
makes it possible to group together different sites with similar conflict graph patterns. This 
resulting grouping of similar Wi-Fi networks allows to optimize the operation reusing the 
same parameters in those sites that are similar, avoiding the important workload required to 
fine tune this parameters for each site individually.

8  Conclusions and Future Work

In this paper, we analyze a large-scale dataset of real-world Wi-Fi operating networks, cor-
responding to all the primary and secondary schools throughout a country. For this pur-
pose, we use very well know mathematical tools, such as graph analysis and clustering 
algorithms. While these tools have been widely used to address a variety of wireless net-
work problems, we believe that they still have much to contribute when it comes to analyz-
ing the large volumes of data that can be collected and processed today from real-world 
operating networks. The biggest challenge is how to incorporate all the available data and 
turn it into useful information for the deployment, optimization and maintenance of wire-
less networks.
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We propose an efficient and useful graph embedding for Wi-Fi conflict graphs, based 
on classical graph features, which proved to have a high discrimination power among the 
different schools Wi-Fi networks. Furthermore, the proposed graph embedding enabled us 
to study the graphs variations by means of clustering algorithms. First, we focused on the 
temporal dynamics of each school Wi-Fi network, analyzing the different conflict graph 
time series. The results allow us to identify which schools are more stable and which ones 
are more variable, and thus deserve more attention, so more technical resources should be 
assigned to them. That is to say, the thoughest scenarios should be prioritized to do the 
most time consuming tasks such as field surveys and RF analysis. On the other hand, we 
have studied how to group together different schools with similar conflict graphs patterns, 
which makes it possible to avoid the efforts involved to do field surveys and RF analysis at 
each particular location and use the optimal configuration parameters found for one site in 
all other similar schools.

A relevant goal for future work would be to integrate the analysis developed through the 
conflict graphs for the automatic generation of optimal configurations. The development 
of self-configuration capabilities for Wi-Fi networks would further reduce the technical 
resources required for maintenance and operation. In addition, other ways to extract use-
ful information from conflict graphs could be explored, such as novel graph embeddings 
techniques and graph neural networks, which are showing promising results in other areas. 
This also opens the doors to the application of modern machine learning techniques, such 
as autoencoders and generative adversarial networks (GANs), not only for extracting graph 
embeddings, but also for simulation purposes, based on its ability to generate synthetic 
data from large real datasets.
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