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Abstract
Corona Virus Disease 19 (COVID-19) firstly spread in China since December 2019. Then, 
it spread at a high rate around the world. Therefore, rapid diagnosis of COVID-19  has 
become a very hot research topic. One of the possible diagnostic tools is to use a deep 
convolution neural network (DCNN) to classify patient images. Chest X-ray is one of the 
most widely-used imaging techniques for classifying COVID-19 cases. This paper presents 
a proposed wireless communication and classification system for X-ray images to detect 
COVID-19 cases. Different modulation techniques are compared to select the most reliable 
one with less required bandwidth. The proposed DCNN architecture consists of deep fea-
ture extraction and classification layers. Firstly, the proposed DCNN hyper-parameters are 
adjusted in the training phase. Then, the tuned hyper-parameters are utilized in the testing 
phase. These hyper-parameters are the optimization algorithm, the learning rate, the mini-
batch size and the number of epochs. From simulation results, the proposed scheme outper-
forms other related pre-trained networks. The performance metrics are accuracy, loss, con-
fusion matrix, sensitivity, precision, F

1
 score, specificity, Receiver Operating Characteristic 

(ROC) curve, and Area Under the Curve (AUC). The proposed scheme achieves a high 
accuracy of 97.8 %, a specificity of 98.5 %, and an AUC of 98.9 %.
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1 Introduction

COVID-19 is a respiratory disease that spreads with high frequency around the whole world 
[1]. The number of infected cases is daily increasing nearly in all countries according to the 
updated data of the World Health Organization (WHO) [2]. Fever, cough, shortness of breath, 
sore throat and headache are the most important symptoms of COVID-19 [3]. It transfers from 
person to another by spreading the droplet coughed or by touching the contaminated surfaces 
[4].

There are several ways for diagnosing COVID-19 such as blood PCR test [5], but it is 
expensive. Moreover, it is time-consuming, and it is not suitable due to the rapid spread of 
the disease. Another way is the COVID-19 detection from chest X-ray images [6, 7]. This is 
attributed to the fact that the corona virus affects the lung. Hence, the effects of the disease can 
be diagnosed using X-ray image examination by radiologists.

Additionally, different deep learning techniques are used to detect COVID-19 cases using 
X-ray images in less time with higher accuracy than that achieved with radiologists [8, 9]. 
Hence, early diagnosis, early case isolation and reduction of virus spreading can be achieved. 
The DCNN is an example of deep learning techniques. It depends on a gradient descent algo-
rithm during training until reaching the optimum solution [10]. There are several pre-trained 
CNNs such as Resnet18 [11], VGG-16 [12], GoogleNet [13], Xception [14], ResNet50 [15], 
DenseNet-121 [16], and Alexnet [17]. Also, deep transfer learning can be used to update 
weights to minimize the training time [18]. The concept of deep transfer learning comes from 
the fact that a deep learning network can be used with different input images for classification 
applications.

In this paper, a wireless system for COVID-19 detection from chest X-ray images is sug-
gested. In this system, the sensed X-ray images for the patients are compressed through a resiz-
ing strategy, and then modulated using a reliable digital modulation technique. At the receiver 
side, after the signal is demodulated and image pre-processing functions are performed, the 
deep features are extracted from the images using an efficient DCNN. Firstly, the system 
enters the training phase to adjust the proposed DCNN hyper-parameters. Thereafter, the test-
ing phase is applied with the tuned hyper-parameters. Extensive simulation experiments are 
implemented to study the proposed system performance. From the results, the proposed sys-
tem outperforms all compared related networks. The proposed classification scheme achieves 
a high accuracy of classification of 97.7 %, a sensitivity of 98.4 % and an AUC of 98.8 %. The 
main contributions of the paper can be summarized as follows:

• Introducing a wireless system for detecting COVID-19 cases from X-ray images based on 
DCNN.

• Suggesting a DCNN structure for deep feature extraction from X-ray images.
• Adjusting the hyper-parameters of the proposed DCNN model. Therefore, the best perfor-

mance of the system can be achieved.
• Testing different digital modulation techniques for X-ray image transmission through the 

wireless channel.
• Executing various experiments to compare the performance of the proposed system with 

those of other related works.

The rest of the paper is organized as follows. Section 2 illustrates the basic concepts of deep 
learning and deep transfer learning. The basic model of the proposed system is discussed in 
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Sect. 3. The performance metrics are introduced in Sect. 4. Simulation results are discussed in 
Sect. 5. Finally, conclusions are presented in Sect. 6.

2  Convolution Neural Network (CNN) Overview

Deep learning has been used in several medical applications such as brain tumor, skin 
lesion, iris defect, breast cancer and finally COVID-19 detection. By applying deep learn-
ing techniques, efficient, fast, safe, and accurate COVID-19 detection can be implemented. 
Deep learning networks consist of several layers to provide feature extraction and classifi-
cation of input images.

The CNN is considered as an important tool of deep learning that deals with images 
[18]. Frequently, it is used in several medical applications. The name CNN is attributed to 
applying convolution kernels in the input layer. The CNN structure consists of a stack of 
layers. The first layers are usually convolution layers that detect features such as edge and 
shape of the image. The output of the convolution layer yc is computed from the following 
relation [19],

where k refers to the input map, xci is the input of the convolution layer, wci is the corre-
sponding weight of the layer, b is the bias and f (.) is the activation function, which can be 
Rectifier Linear Unit (ReLU), Softmax or any other function. The ReLU activation provides 
faster training by taking only the positive values and removing the negative ones according 
to the following relation:

Then, pooling layer is used to reduce the number of  weights depending on the window 
size. Therefore, pooling layers perform a down-sampling operation on their inputs. Hence, 
the output of the pooling layer yp can be expressed as,

where down(.) represents the down-sampling function and xp is the input to the pooling 
layer. There are two types of pooling, which are max-pooling and average  pooling. The 
max-pooling gives the maximum values of the selected windows, while the average pool-
ing provides the average values of the windows.

Finally, the fully-connected (classification) layer calculates the likelihood of each class 
from the output features of the previous steps to classify the images. Therefore, the classifi-
cation layer has the same concepts of traditional neural networks.

It is worth mentioning that another Softmax activation layer is usually used at the end of 
the network after the fully-connected layer. Moreover, batch normalization can be applied 
after each convolution to accelerate the process for better training. Also, to reduce over-fit-
ting, dropout layers can be used, which drops some random selected neurons or randomly 
sets some weights to zero.

The concept of deep transfer learning depends on the utilization of the well-known pre-
designed networks for different classification categories [20]. A popular pre-trained net-
work is Alexnet, which was proposed in 2012 [17]. It has five convolution layers with two 

(1)yc = f

(

k
∑

i=1

xci ∗ wci + b

)

(2)ReLU(x) = max(0, x)

(3)yp = down
(

xp
)
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fully-connected layers. The VGG16 was discussed in 2014 [12]. It has more parameters and 
more deeper convolution filters than those of Alexnet. In VGG19 [21], the number of lay-
ers is 19 instead of 16 in the VGG16. The drawback of VGG networks is the slow training 
performance due to large weights. GoogleNet was presented in 2014 [13]. The depth of this 
network is 22 layers. The input to this network must be of size 224 × 224 . It was trained on 
the ImageNet dataset with an output of 1000 categories. It enhances the accuracy of classifica-
tion and recognition by using nine inception layers [22]. ResNet was discovered in 2015 [11, 
23]. It is a residual network that has different layers as in the ResNet18, 50, 101, 152 and 1202. 
It includes convolution, max-pooling and fully-connected layers. ResNet18 has two branches 
including residual connection with a feed-forward network. It contains 11 million parameters. 
DenseNet was applied in 2017 [16]. It depends on dense connections between CNN layers.

3  The Proposed System Architecture

In this section, the proposed system for COVID-19 detection is presented. It is based on a 
DCNN for image feature extraction as shown in Fig. 1. The transmitter consists of sensors, 
image compression and modulation. The receiver is composed of a  demodulation block, 
image processing, deep feature extraction using DCNN, and finally a classification layer for 
COVID-19 detection.

3.1  The Transmitter

At the transmitter side, firstly the X-ray image of the patient is produced by using the appropri-
ate sensors. Then, it is compressed through a resizing strategy into a size of 224 × 224 in order 
to reduce the transmission bandwidth. Finally, the compressed image need to be efficiently 
transmitted over the wireless channel at low Signal-to-Noise Ratios (SNRs). Different digi-
tal modulation techniques including Frequency-shift keying (FSK), Binary Phase Shift Key-
ing (BPSK), Quadrature Phase Shift Keying (QPSK), and Quadrature Amplitude Modulation 
(M-QAM) are compared  to select the most reliable one [24, 25]. For FSK modulation, the 
signal is transformed to binary zeros and ones as follows:

Fig. 1  The proposed wireless system architecture
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where w
0
 and w

1
 are the carrier frequencies assigned to the binary zeros and ones, respec-

tively. For the BPSK technique, the transmitted signal is represented with

where wc is the carrier frequency and Y is the binary bit, which is 0 or 1. The QPSK signal 
is represented as follows:

where I and Q are the binary bits for the I and Q channels of the input signal, respectively. 
For QAM, the transmitted signal can be considered with Eq. (7) [24]. The amplitudes of I 
and Q channels are determined according to the number of bits of the M-QAM constella-
tion as shown in Table 1.

3.2  The Receiver

The transmitted signal is contaminated with Additive White Gaussian Noise (AWGN). 
Therefore, the received signal is

where h(t) is the AWGN channel impulse response and n(t) is the receiver noise. At the 
receiver side, the received signal is firstly filtered by a Band-Pass Filter (BPF) with a suf-
ficient pass-band. Then, it is demodulated according to the applied modulation technique at 
the transmitter. The quality of the demodulation can be defined by the BER. The theoreti-
cal BER of M-QAM signal can be calculated by:

where M is the modulation size, erfc is the complementary error function and Eb

No

 is the 
energy-per-bit to noise power spectral density ratio. The theoretical BER for different mod-
ulation techniques over the AWGN channel is summarized in Table 2 [25].

(4)s
0
(t) = cos

(

w
0
t
)

(5)s
1
(t) = cos

(

w
1
t
)

(6)sBPSK(t) = cos
(

wct + � ⋅ Y
)

(7)sQPSK(t) =
1
√

2

�

I ⋅ cos
�

wct
�

+ Q ⋅ sin
�

wct
��

(8)r(t) = h(t) ∗ s(t) + n(t)

(9)BERM−QAM =

√

M − 1
√

Mlog
2

√

M
erfc

�

�

3log
2
M

2(M − 1)

�

Eb

No

Table 1  Constellations of 
M-QAM

Constellation Modulation size Number of bits (n)

QAM 4 2
16-QAM 16 4
64-QAM 64 6
M-QAM M log

2
M
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Afterwards, the demodulated image is prepared for the proposed pre-trained CNN 
model by removing the noise on the image. The noise is attributed to different sources in 
the transmission system. The Weiner filter is used for noise reduction.

Thereafter, deep features of the processed X-ray images are extracted by the proposed 
DCNN model. Previously, the DCNN model was trained (as will be discussed in the next sub-
section) to adjust its parameters. Then, the adapted parameters are utilized for the validation 
process. Finally, the Softmax classifier is implemented to detect the COVID-19 cases from the 
used X-ray images.

3.3  CNN Model Training

The proposed DCNN model is shown in Fig. 2. It consists of six convolution layers with batch 
normalization and ReLU activation function to give output features, three maximum pooling 
layers, a Global Average Pooling (GAP) layer, two fully-connected layers,  a Softmax layer, 
and an output classification layer. The parameter definitions of the proposed DCNN model are 
summarized in Table 3. 

The inputs are X-ray images that are collected by specialists. Samples of training X-ray 
images are shown in Fig. 3. The visual representations of some extracted features through the 
convolution layer using 32 filters are shown in Fig. 4. 

4  Performance Metrics

In order to study the proposed model performance, the most important performance metrics 
are selected including accuracy, loss, confusion matrix, sensitivity (recall), precision, F

1
 score, 

specificity and ROC curve.
The accuracy can be defined as the ratio between the true prediction cases and the total 

prediction cases. It can be written as:

where TN , TP , FN and FP are true negative, true positive, false negative and false positive, 
respectively. The true positive TP is the probability that the true case is COVID-19, and it 
is correctly detected as COVID-19 by the network. The false positive FP is the probability 
of false detection of normal cases as positive COVID-19 cases. The true negative TN is the 
probability of true detection of normal cases. Finally, the false negative FN is the probabil-
ity that the true case is COVID-19, and it is wrongly detected as a normal case.

(10)Accuracy =
TN + TP

TN + TP + FN + FP

Table 2  BER for different 
modulation techniques over 
AWGN channel

Scheme BER

FSK 1

2
erfc

√

Eb

2No

BPSK 1

2
erfc

√

Eb

No

QPSK 1

2
erfc

√

Eb

No

M-PSK 1

log
2
M
erfc

√

log
2
M

Eb

No

sin
(

�

M

)

64-QAM 7

24
erfc

√

18Eb

126No
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The loss or the error rate is a complement of accuracy. It can be calculated as follows:

The specificity is used to measure the ratio of negative cases that are correctly detected. It 
can be measured as follows:

The precision, as shown in Eq. 13, is defined as the ratio between the true positive cases 
and the total of true positive cases and false positive cases.

(11)Loss = 1 − Accuracy

(12)Specificity =
TN

TN + FP

Fig. 2  The proposed DCNN model

Table 3  Description of the proposed DCNN model

Name #Filters Filter size Stride Padding Weights Output

Input layer of size [224 224 3]
Conv_1 32 3 × 3 × 3 1 × 1 [1 1 1 1] 3 × 3 × 3 × 32 224 × 224 × 32

Batch normalization + ReLU
Max.Pool_1 – 2 × 2 2 × 2 [0 0 0 0] – 112 × 112 × 32

Conv_2 64 3 × 3 × 32 2 × 2 [1 1 1 1] 3 × 3 × 32 × 64 56 × 56 × 64

Batch normalization + ReLU
Max.Pool_2 – 2 × 2 3 × 3 [0 0 0 0] – 19 × 19 × 64

Batch normalization + ReLU
Conv_3 64 1 × 1 × 64 3 × 3 [0 0 0 0] 1 × 1 × 64 × 64 19 × 19 × 64

Batch normalization + ReLU
Addition_1 – – – – – 19 × 19 × 64

Conv_4 256 3 × 3 × 64 1 × 1 [1 1 1 1] 3 × 3 × 64 × 256 19 × 19 × 256

Batch normalization + ReLU
Conv_5 256 5 × 5 × 32 2 × 2 [1 1 1 1] 5 × 5 × 32 × 256 56 × 56 × 256

Batch normalization + ReLU
Max.Pool_3 – 5 × 5 3 × 3 [1 1 1 1] – 19 × 19 × 256

Addition_2 – – – – – 19 × 19 × 256

Conv_6 512 3 × 3 × 256 2 × 2 [1 1 1 1] 3 × 3 × 256 × 512 10 × 10 × 512

Batch normalization + ReLU
GAP – 10 × 10 1 × 1 [0 0 0 0] – 1 × 1 × 512

Two fully-connected layers 2 × 512

SoftMax layer
Classification output layer 2
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The sensitivity (or Recall) is used to measure the ratio of true positive cases that are cor-
rectly classified. It is calculated as follows:

Moreover, the network performance can be evaluated with F
1
 score, which depends on the 

values of both precision and recall as shown.

(13)Precision =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)F
1
score =

2 × Precision × Recall

Precision + Recall

Fig. 3  Examples of COVID-19 
and Non-COVID chest X-ray 
images

Fig. 4  Visual representations of output features through the first convolution layer with 32 filters
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Additionally, ROC curve can be used to measure the network performance. It describes the 
relation between true positive rate (sensitivity) and false positive rate (specificity). Further-
more, the confusion matrix is another measurement tool for the network performance. It 
contains information about TN , TP , FN and FP values.

5  Simulation Analysis

Matlab 2019b is used to train and test the proposed model. The training is performed on a 
CPU with Windows 10 operating system with properties of Intel core i7 @1.99 GHz pro-
cessor and 8 GRAM.

The input data for the proposed system is chosen as chest X-ray images for the detec-
tion of COVID-19 cases. For the proposed system, different digital modulation techniques 
are compared including FSK, BPSK, QPSK, 8-PSK, 16-PSK, 32-PSK, 4-QAM, 16-QAM, 
and 64-QAM. The quality of demodulation can be defined by the BER. As shown in Fig. 5, 
to achieve  a BER = 10

−4 , the required Eb∕No can be estimated as illustrated in Table 4. 
Therefore, the best performance can be obtained by using either BPSK, QPSK or QAM. 
Hence, QPSK or QAM is chosen for bandwidth requirements.

Thereafter, image processing is performed to adjust the size of each demodulated 
chest X-ray image to be 224 × 224 × 3 . For the deep feature extraction process, the pro-
posed CNN model is firstly trained to adjust its parameters, and it is used to extract the 
required features for the classification process. The dataset used for training and testing 
processes is available at [26]. It contains 219 COVID-19 positive cases and 2686 Non-
COVID cases. Randomly, 219 Non-COVID X-ray images are selected for training and 
validation processes. The prepared dataset is divided into 70 % for training and 30 % for 
validation.

In the training phase, the CNN hyper-parameters are adjusted according to the forward 
and the backward steps until reaching the minimum error. These hyper-parameters are the 

(16)=
2TP

2TP + FN + FP

Fig. 5  E
b
∕N

o
 vs. BER for 

various digital modulation tech-
niques over AWGN channel
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optimization algorithm (SGDM, Adam, and RMS Prop), the LR (0.001 and 0.0001), the 
number of epochs (30, 40 and 50) and the Mini-Batch (MB) size (16, 32 and 64). In the 
testing phase, all tuned hyper-parameters are utilized. Then, the extracted features for any 
new demodulated X-ray image are classified using the Softmax layer. Hence, the output 
decision of COVID-19 or Non-COVID is determined.

Tables 5, 6, and 7 represent the performance results of the proposed CNN model using 
30, 40, and 50 epochs, respectively. Furthermore, Figs. 6, 7, and 8 introduce both the accu-
racy and loss for each case.

The summary of the performance metrics through the three epochs is illustrated in 
Fig. 9. It is clear that the proposed network using 50 epochs achieves the best performance. 
It attains an accuracy of 97.7 %, a precision of 97.0 %, a sensitivity of 98.4 % and an F

1
 

score of 97.7 %. Hence, the optimization algorithm is selected to be the SGDM. The MB 
size is 16 and the LR is 0.0001.

The performance of the proposed CNN model is compared with those of ResNet18, 
GoogleNet, and DenseNet CNNs. The optimum hyper-parameters are chosen. The batch 
size is 16, the number of epochs is 50, the starting learning rate is 0.0001, and the optimi-
zation algorithm is SGDM. As investigated in Figs. 10 and 11, the proposed CNN model 
achieves the highest accuracy and less loss compared with those of other pre-trained mod-
els. The accuracy depends on the values of true positive cases and true negative cases. The 
high accuracy and the low loss results ensure the power of the model to correctly distin-
guish between COVID-19 and the non-COVID cases. 

Furthermore, the ROC curves are shown in Fig. 12. The ROC curve describes the rela-
tionship between true positive rate (sensitivity) and false positive rate (specificity). It can 
be used for AUC calculations. The AUC is 98.8  % for the proposed model, which out-
performs other pre-trained networks. Therefore, ResNet18 has a superior performance by 
only 0.1% difference. This small degradation is due to the high false positive rate of the 
proposed model.

Finally, Table  8 introduces a comparison between the proposed CNN model and the 
state-of-the-art methodologies. From the  results, the superiority of the proposed CNN 
model can be proved in COVID-19 detection with high accuracy. 

Table 4  E
b
∕N

o
 for various 

digital modulation techniques at 
BER = 10

−4

Modulation Technique E
b
∕N

o
 (dB)

BPSK, QPSK and 4-QAM 8.4
FSK 11.4
8-PSK 11.6
16-QAM 12.2
16-PSK 16
64-QAM 16.5
32-PSK 21
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Table 5  Performance of the proposed CNN for 30 epochs

Optimization MB Size LR Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score 
(%)

Adam 16 0.001 93.1 91.4 96.9 89.4 93.4
0.0001 93.9 91.4 96.6 90.9 94.1

32 0.001 94.6 92.7 96.9 92.4 94.8
0.0001 95.4 94.1 96.9 93.9 95.5

64 0.001 87.9 89.0 86.4 89.4 87.7
0.0001 90.2 94.9 84.8 95.4 89. 6

RMS Prop 16 0.001 90.1 94.9 84.8 95.4 89.6
0.0001 91.6 93.6 89.3 93.9 91.4

32 0.001 83.4 75.6 98.4 86.18 85.5
0.0001 86.4 92.8 78.8 93.9 85.2

64 0.001 84.2 89.5 77.2 90.9 82.9
0.0001 89.4 98.1 80.3 98.4 88.3

SGDM 16 0.001 89.3 85.1 95.4 83.3 90.0
0.0001 90.9 92.1 89.4 92.4 90.7

32 0.001 91.7 96.6 86.3 96.9 91.2
0.0001 93.9 95.3 92.4 95.5 93.8

64 0.001 87.8 91.6 83.3 92.4 87.3
0.0001 85.6 96.1 74.2 96.9 83.8

Table 6  Performance of the proposed CNN for 40 epochs 

Optimization MB Size LR Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score 
(%)

Adam 16 0.001 92.4 91.2 93.9 90.9 92.5
0.0001 93.2 90.1 96.9 89.3 93.4

32 0.001 90.2 89.5 90.9 89.3 90.2
0.0001 93.9 91.4 96.9 90.9 94.1

64 0.001 85.4 85.4 85.2 90.5 87.9
0.0001 91.6 96.6 86.3 96.9 91.2

RMS Prop 16 0.001 85.5 85.4 90.4 85.8 87.9
0.0001 88.9 87.5 88.5 87.9 87.9

32 0.001 90.9 90.9 90.9 90.9 90.9
0.0001 93.8 96.7 90.9 96.9 93.7

64 0.001 80.6 80.0 82.3 80.3 80.9
0.0001 85.8 84.8 80.2 84.9 82.5

SGDM 16 0.001 90.2 86.7 95.2 87.3 90.8
0.0001 91.7 92.3 90.9 92.4 91.6

32 0.001 94.3 94.0 95.4 93.9 94.7
0.0001 95.5 96.8 93.9 96.9 95.4

64 0.001 87.0 83.8 91.9 84.0 87.7
0.0001 89.3 93.3 84.9 93.9 88.9
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Table 7  Performance of the proposed CNN for 50 epochs 

Optimization MB Size LR Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score 
(%)

Adam 16 0.001 91.6 92.3 90.9 92.4 91.6
0.0001 93.7 91.4 96.9 90.9 94.1

32 0.001 89.4 90.6 87.8 90.9 89.2
0.0001 91.7 95.0 87.8 95.4 91.3

64 0.001 90.1 87.3 93.9 86.4 90.5
0.0001 92.4 93.7 90.9 93.9 92.3

RMS Prop 16 0.001 90.3 86.8 91.1 95.2 90.8
0.0001 92.5 91.1 93.8 90.9 92.5

32 0.001 93.2 90.2 96.1 94.8 87.8
0.0001 94.7 92.7 96.9 92.4 94.8

64 0.001 89.3 86.1 93.9 84.8 89.9
0.0001 92.4 92.4 92.4 92.4 92.4

SGDM 16 0.001 95.6 94.1 96.9 93.9 95.5
0.0001 97.8 98.4 97.0 98.5 97.7

32 0.001 94.6 94.0 95.5 93.9 94.7
0.0001 96.8 95.2 98.2 95.4 96.9

64 0.001 90.9 90.9 90.9 90.9 90.9
0.0001 92.4 91.1 93.9 90.9 92.5
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Fig. 6  Accuracy vs. iterations and loss vs. iterations of the proposed CNN using Adam optimization algo-
rithm, where max. epochs = 30, MB size = 32, and LR = 0.0001
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Fig. 7  Accuracy vs. iterations and loss vs. iterations of the proposed CNN using SGDM optimization algo-
rithm, where max. epochs = 40, MB size = 32, and LR = 0.0001
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Fig. 8  Accuracy vs. iterations and loss vs. iterations of the proposed CNN using SGDM optimization algo-
rithm, where max. epochs = 50, MB size = 16, and LR = 0.0001

Fig. 9  Metric comparison for 
different numbers of epochs = 
30, 40, and 50



1558 W. A. Shalaby et al.

1 3

Fig. 10  Accuracy comparison

Fig. 11  Loss comparison
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Fig. 12  ROC curves

Table 8  Comparison with related work

Methodology Precision (%) Specificity (%) Accuracy (%) AUC (%) F
1
 score (%) Sensitivity (%)

[27] 80.5 N/A N/A 91.4 N/A N/A
[28] 98.2 N/A 92.2 86.7 99.6 N/A
[29] 96.0 N/A 70.7 N/A 95.2 N/A
[30] 98.2 N/A 92.2 N/A 99.6 N/A
[31] 90.7 N/A 91.1 83.5 95.2 N/A
[32] 90.7 N/A 83.3 87.9 N/A N/A
[33] 90.0 N/A 96.0 N/A 96.0 N/A
[34] 94.4 N/A 96.1 N/A 95.7 97.0
InceptionV3 91.2 91.3 92.2 89.4 87.6 90.4
SqueezeNet 89.6 89.2 85.4 90.7 89.0 86.5
MobileNet 92.4 92.3 92.1 94.5 90.8 89.5
VGG16 97.4 97.5 94.7 97.7 94.5 90.9
DenseNet 93.1 92.9 93.9 97.9 95.5 92.4
ResNet 96.2 96.4 96.1 99.9 96.9 96.0
GoogleNet 94.5 94.3 92.2 95.6 95.1 94.0
The proposed 

CNN
98.4 98.5 97.8 98.9 97.7 97.0
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6  Conclusion

Fast detection of COVID-19 has become an urgent demand. In this paper, an efficient wire-
less system based on DCNN for COVID-19 diagnosis has been introduced. For the wire-
less transmission, the QPSK modulation has been chosen due to its high reliability among 
different modulation techniques. The DCNN architecture is divided into feature extraction 
and classification sub-blocks. It consists of six convolution, three max-pooling, one aver-
age pooling, two fully-connected and Softmax layers. X-ray images with dimensions of 
224 × 224 × 3 have been used. Firstly, the proposed model has been trained to adjust its 
hyper-parameters. Hence, the SGDM optimization algorithm has been selected with an LR 
of 0.0001,  an MB size of 16 and 50 epochs. Then, the tuned parameters have been utilized 
for the testing phase to classify the demodulated X-ray images. From simulation results, 
the proposed model has provided superior performance, when compared with other power-
ful related networks. It has achieved a high accuracy of 97.7 % , a sensitivity of 98.4 % and 
an AUC of 98.8 %.

References

 1. Singhal, T. (2020). A review of coronavirus disease-2019 (covid-19). The Indian Journal of Pediatrics, 
87(4), 1–6.

 2. Available at: https:// www. who. int/ dg/ speec hes/ detail/ who- direc tor- gener al-s- openi ng- remar ks- at- the- 
media- briefi ng- on- covid- 19---4- may- 2020.

 3. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et  al. (2020). A novel coronavirus from 
patients with pneumonia in china, 2019. New England Journal of Medicine, 382(8), 727–733. https:// 
doi. org/ 10. 1056/ nejmo a2001 017

 4. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et  al. (2020). Clinical features of patients 
infected with 2019 novel coronavirus in wuhan, china. The Lancet, 395(10223), 497–506.

 5. Available at: https:// www. theve rge. com/ 2020/3/ 17/ 21184 015/ coron avirus- testi ng- pcr- diagn ostic- point- 
of- care- cdc- techo nology.

 6. Kroft, L. J., van der Velden, L., Girón, I. H., Roelofs, J. J., de Roos, A., & Geleijns, J. (2019). Added 
value of ultra-low-dose computed tomography, dose equivalent to chest X-ray radiography, for diag-
nosing chest pathology. Journal of Thoracic Imaging, 34(3), 179.

 7. Available at: https:// github. com/ ieee8 023/ covid- chest xray- datas et.
 8. Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. 

(2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1.
 9. Chen, X.-W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 

514–525.
 10. Singh, K., Gupta, G., Vig, L., Shroff, G., & Agarwal, P. (2017). Deep convolutional neural networks 

for pairwise causality. arXiv preprint arXiv: 1701. 00597.
 11. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
 12. Liu, S., & Deng, W. (2015). Very deep convolutional neural network based image classification 

using small training sample size. In 2015 3rd IAPR Asian conference on pattern recognition (ACPR), 
pp. 730–734, IEEE.

 13. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabi-
novich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1–9.

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---4-may-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---4-may-2020
https://doi.org/10.1056/nejmoa2001017
https://doi.org/10.1056/nejmoa2001017
https://www.theverge.com/2020/3/17/21184015/coronavirus-testing-pcr-diagnostic-point-of-care-cdc-techonology
https://www.theverge.com/2020/3/17/21184015/coronavirus-testing-pcr-diagnostic-point-of-care-cdc-techonology
https://github.com/ieee8023/covid-chestxray-dataset
http://arxiv.org/abs/1701.00597


1561COVID‑19 Classification Based on Deep Convolution Neural Network…

1 3

 14. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of 
the IEEE conference on computer vision and pattern recognition, pp. 1251–1258.

 15. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A.A. (2017). Inception-v4, inception-resnet and the 
impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.

 16. Wang, C., Zhao, Z., Ren, Q., Xu, Y., & Yu, Y. (2019). Dense u-net based on patch-based learning for 
retinal vessel segmentation. Entropy, 21(2), 168.

 17. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional 
neural networks. In Advances in neural information processing systems, pp. 1097–1105.

 18. George, D., Shen, H., & Huerta, E. (2017). Deep transfer learning: A new deep learning glitch classifi-
cation method for advanced ligo. arXiv preprint arXiv: 1706. 07446.

 19. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., et al. (2019). A state-
of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292.

 20. Long, M., Zhu, H., Wang, J., & Jordan, M.I. (2017). Deep transfer learning with joint adaptation 
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, 
pp. 2208–2217, JMLR. org.

 21. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv: 1409. 1556.

 22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 2818–2826.

 23. Akiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Training resnet-50 on ima-
genet in 15 minutes. arXiv preprint arXiv: 1711. 04325.

 24. Harada, H., & Prasad, R. (2002). Simulation and software radio for mobile communications. Artech 
House.

 25. Proakis, J., Salehi, M. (2008). Digital communications. Boston: McGraw Hill.
 26. Available at: https:// www. kaggle. com/ tawsi furra hman/ covid 19- radio graphy- datab ase.
 27. Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detect-

ing covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and 
resnet50v2. Informatics in Medicine Unlocked, 19, 100360.

 28. Swapnarekha, H., Behera, H. S., Nayak, J., & Naik, B. (2020). Role of intelligent computing in 
covid-19 prognosis: A state-of-the-art review. Chaos Solitons Fractals, 138, 109947.

 29. Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020) Covid-19 screening on chest x-ray images 
using deep learning based anomaly detection. arXiv preprint arXiv: 2003. 12338.

 30. Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., Ji, W., Bernheim, A., & 
Siegel, E. (2020). Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial 
results for automated detection and patient monitoring using deep learning ct image analysis. arXiv 
preprint arXiv: 2003. 05037.

 31. Zheng, C., Deng, X., Fu, X., Zhou, Q., Feng, J., Ma, H., Liu, W., & Wang, X. (2020). Deep learn-
ing-based detection for covid-19 from chest ct using weak label. MedRxiv.

 32. Shi, F., Xia, L., Shan, F., Wu, D., Wei, Y., Yuan, H., Jiang, H., Gao, Y., Sui, H., & Shen, D. (2020). 
Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware 
classification. arXiv preprint arXiv: 2003. 09860.

 33. Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., et al. (2020). Using artificial intelligence to 
detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the-
diagnostic accuracy. Radiology, 296(2), E65–E71. https:// doi. org/ 10. 1148/ radiol. 20202 00905

 34. Saad, W., Shalaby, W. A., Shokair, M., El-Samie, F. A., Dessouky, M., & Abdellatef, E. (2021). 
Covid-19 classification using deep feature concatenation technique. Journal of Ambient Intelligence 
and Humanized Computing. https:// doi. org/ 10. 1007/ s12652- 021- 02967-7.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1706.07446
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.04325
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
http://arxiv.org/abs/2003.12338
http://arxiv.org/abs/2003.05037
http://arxiv.org/abs/2003.09860
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1007/s12652-021-02967-7


1562 W. A. Shalaby et al.

1 3

Wafaa A. Shalaby received her B.Sc. and M.Sc. degrees in electronics 
and electrical communications engineering from the Faculty of Elec-
tronic Engineering, Menoufia University, Egypt, in 2010 and 2016. 
Currently, she is a demonstrator at the Department of Electronics and 
Electrical Communications Engineering, and she is  working towards 
the Ph.D. degree at the Faculty of Electronic Engineering, Menoufia 
University, Egypt. Her current research areas of interest include image 
processing and deep learning in communications engineering.

Waleed Saad has received his BSc (Hons), M.Sc. and Ph.D. degrees 
from the Faculty of Electronic Engineering, Menoufia University, 
Menouf, Egypt, in 2004, 2008 and 2013, respectively. He joined the 
teaching staff of the Department of Electronics and Electrical Commu-
nications of the same faculty since 2014. In 2005 and 2008, he worked 
as a demonstrator and assistant lecturer in the same faculty, 
respectively. 

Mona Shokair received the B.E. and M.E. degrees in electronics engi-
neering from Menoufia University, Menoufia, Egypt, in 1993 and 
1997, respectively. She received the Ph.D. degree  from Kyushu Uni-
versity, Japan, 2005. She is   a professor at the Faculty of Electronic 
Engineering, Menoufia University. She received the VTS chapter IEEE 
award from Japan in 2003. Now, she is working in OFDM system, and 
cognitive radio.



1563COVID‑19 Classification Based on Deep Convolution Neural Network…

1 3

Fathi E. Abd El‑Samie received the B.Sc.(Hons.), M.Sc., and Ph.D. 
degrees from Menoufia University, Menouf, Egypt, in 1998, 2001, and 
2005, respectively,. Since 2005, he has been a Teaching Staff Member 
with the Department of Electronics and Electrical Communications, 
Faculty of Electronic Engineering, Menoufia University. His current 
research areas of interest include image enhancement, image restora-
tion, image interpolation, super resolution reconstruction of images, 
data hiding, multimedia communications, medical image processing, 
optical signal processing, and digital communications.

Moawad I. Dessouky received the B.Sc. (Honors) and M.Sc. degrees 
from the Faculty of Electronic Engineering, Menoufia University, 
Menouf, Egypt, in 1976 and 1981, respectively, and the Ph.D. from 
McMaster University, Canada, in 1986. In 1986, he joined the teaching 
staff of the Department of Electronics and Electrical Communications, 
Faculty of Electronic Engineering, Menoufia University, Menouf, 
Egypt. He has received the most cited paper award from Digital Signal 
Processing journal for 2008.


	COVID-19 Classification Based on Deep Convolution Neural Network Over a Wireless Network
	Abstract
	1 Introduction
	2 Convolution Neural Network (CNN) Overview
	3 The Proposed System Architecture
	3.1 The Transmitter
	3.2 The Receiver
	3.3 CNN Model Training

	4 Performance Metrics
	5 Simulation Analysis
	6 Conclusion
	References




