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Abstract
Compressive sensing (CS) provides a potential platform for acquiring slow and sequential 
data, as in magnetic resonance (MR) imaging. However, CS requires high computational 
time for reconstructing MR images from sparse k-space data, which restricts its usage for 
high speed online reconstruction and wireless communications. Another major challenge is 
removal of Rician noise from magnitude MR images which changes the image character-
istics, and thus affects the clinical usefulness. The work carried out so far predominantly 
models MRI noise as a Gaussian type. The use of advanced noise models primarily Rician 
type in CS paradigm is less explored. In this work, we develop a novel framework to recon-
struct MR images with high speed and visual quality from noisy sparse k-space data. The 
proposed algorithm employs a convolutional neural network (CNN) to denoise MR images 
corrupted with Rician noise. To extract local features, the algorithm exploits signal similar-
ities by processing similar patches as a group. An imperative reduction in the run time has 
been achieved as the CNN has been trained on a GPU with Convolutional Architecture for 
Fast Feature Embedding framework making it suitable for online reconstruction. The CNN 
based reconstruction also eliminates the necessity of optimization and prediction of noise 
level while denoising, which is the major advantage over existing state-of-the-art-tech-
niques. Analytical experiments have been carried out with various undersampling schemes 
and the experimental results demonstrate high accuracy and consistent peak signal to noise 
ratio even at 20-fold undersampling. High undersampling rates provide scope for wireless 
transmission of k-space data and high speed reconstruction provides applicability of our 
algorithm for remote health monitoring.
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1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality which 
is widely utilized for scanning physiological changes in tissues and organs of the human 
body. It is used particularly because it can produce high-quality 3D images. Diffusion-
weighted MRI (DWMRI) and diffusion tensor MRI (DT-MRI) generates contrast, whereas 
functional MRI (fMRI) measures changes in blood flow and oxygen levels to evaluate the 
brain activity. These MRI techniques are widely utilized across the globe for investiga-
tion of brain tissues. They exploit the fine disparity inherent between the tissues to provide 
medical images with high spatial resolution. Despite the high resolution, there are certain 
limitations associated with MR medical imaging like high processing and relaxation time, 
high slew rate and slow acquisition [1–3]. Moreover, MR images are highly influenced 
by the noise from different sources at the time of acquisition, which leads to distortion 
and unpredictable scanning. This noise and distortion can directly affect the acquisition 
time, spatial resolution and signal-to-noise ratio (SNR) thereby unbalancing the acquisi-
tion mechanism, and hence poses a major challenge for MRI modalities [4]. Denoising MR 
images is a pre-requisite for attaining higher image quality. Lately, researchers have worked 
on decreasing the acquisition time, noise and distortion present in the MR images.

Compressive sensing (CS) addresses the problem of slow acquisition which is inherent 
with MR imaging. This is done by reconstructing high quality images from few k-space 
measurements that are far below the Nyquist Rate [1, 2]. In 2007, Lustig et al. presented 
compressed sensing magnetic resonance imaging (CSMRI) technique by considering vari-
ous undersampling schemes [1]. Dictionary learning for MRI (DLMRI) provided an effec-
tive solution to recover MR images from sparse k-space data [2], but had a drawback of 
high computational time.

CS achieves high quality of MR image reconstruction by utilizing the transform domain 
sparsity in the encoded MR acquisitions and thereby adapting non-linear reconstruction. 
Despite the numerous advantages of CS, there are various issues that need to be sorted, 
such as high reconstruction time, optimization of sampling trajectories, efficient sparse 
transforms which are incoherent with sampling operators to achieve clinical reconstruction 
quality.

Extended version of non local means filter for denoising fully sampled 3D MR images 
corrupted with Rician noise was implemented in [5]. A regularized sensitivity encoding 
for Fast MRI (SENSE) [6] reconstruction technique reduced the artifacts present in MR 
images. An analysis of MR reconstruction methods using a priori information inherent in 
the compressed sensed MR images has been presented in [7, 8]. Gaussian mixture model in 
[9], reconstructs signal from noisy sparse measurements. Traditional CS recovery approach 
demands high computational time, instigates the researcher to explore usage of GPUs for 
recovering sparse signals. In [10], noise in MR image has been reduced with the high speed 
GPU acceleration based on trilateral filter. In [11], a brain MR image reconstruction based 
on sparse representation, gradient information and non-symmetry anti-packing model was 
introduced to minimize the reconstruction loss and computation time.

Although various techniques prevails for denoising the MR images, the work carried 
so far chiefly models MRI noise as a Gaussian type. Based on our knowledge, regard-
ing the use of intricate noise models, primarily Rician type was scarcely studied for the 
reconstruction of MR images from sparse k-space data. Asymmetric Rician distribution 
sets in a signal dependent bias which predominantly affects the image contrast and thus 
poses a major challenge in denoising [12]. Hence, in this work we present the concept of 
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denoising MR images based on sparse representation with CNN methods. The proposed 
denoising algorithm reconstructs MR images with high visual quality, further; it can be 
directly employed without optimization and prediction of the Rician noise level. The algo-
rithm reduces artifacts in an effective manner by preserving local structures present in 
the MR images. Experimental results of the algorithm have been compared with several 
existing state-of-the-art techniques, such as DLMRI [2], non-local means (NLM) [5] and 
its variants. Experimental outcomes exhibit significant improvement in the peak signal to 
noise ratio (PSNR) compared to the existing algorithms which are considered in this paper. 
Further, the quality of reconstruction has also been assessed with metrics namely, feature 
similarity index metric (FSIM), high frequency error norm (HFEN) and quantitative index 
based on local variance (QILV). The algorithm developed by us solves optimization by 
minimizing the rank iteratively, hence converges very quickly and also provides precise 
reconstruction from sparse k-space data. The above attributes provides potential applicabil-
ity to our denoising method in remote health monitoring.

The rest of the article is organized as follows. Section 2, discusses the related work on 
sparse MRI. In Sect. 3, we discuss the methods for solving the sparse optimization prob-
lem relating it with the proposed CNN-based formulation. The novel CNN-based Rician 
denoising model has been detailed in Sect. 4. Experimental results are presented in Sect. 5 
and Sect. 6 summarizes and concludes this paper.

2  Related Work on MRI

MRI is an excellent imaging modality to diagnose pathological and physiological altera-
tions that occur in the human body, however, the k-space data acquisition remains very 
slow as it is done sequentially in time. Although some increase in the speed has been 
achieved by employing parallel acquisition of data and multiple RF receiver coils, however, 
it also introduces noise and aliasing. This initiated various researchers to work towards 
reducing these problems and some of the related literature is presented below.

The presence of geometric regularities and unpredictable sparse singularities can lead 
to staircase artifacts. Bandlet basis provided denoising along with compression by divid-
ing the geometrically regular images [3]. Total variation (TV) is one of the popular meth-
ods; however it could be employed only when the images had constant regions. In [13], 
total generalized variation (TGV) gets over this limitation to provide good denoising for 
images having varying characteristics. Low rank modeling enables constrained recovery 
of MR images with slow phase variations from limited k-space data [14]. It finds potential 
applicability in dynamic MR imaging. In [15], a reconstruction for diffusion-weighted MR 
images has been developed which was resilient to motion and could fix phase mismatches. 
These methods required high computation time.

A breakthrough in the image processing was achieved with the introduction of deep 
learning methods. Krizhevsky et al. developed a deep CNN for image classification in [16] 
that gave a new insight to image processing. Deep learning methods employ supervised 
learning which provides accurate reconstruction at very high speed. Since training the deep 
networks is laborious, a network known as ResNet was introduced in [17] to overcome this 
challenge. The layers in ResNet were trained from the residual functions with respect to the 
input layer rather than learning from unreferenced functions. In [18], a cascaded CNN was 
introduced to tackle poor SNR of the reconstructed image resulting from sparse diffusion 
tensor cardiac magnetic resonance images (DTC-MRI). In [19], an adversarial network has 
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been employed for perceptual refinement in the reconstructed MR images which provided 
a better stability to the training model. In [20, 21], a deep learning convolutional neural 
network (DLCNN) approach using U-Net was introduced for the reconstruction of under-
sampled MR images. In [21], k-space correction was used to eliminate folding artifacts that 
resulted due to undersampling. Basic U-Net was extended to dual and tight frame U-Net 
in [22] to provide noise resistant reconstruction from sparse computer tomography (CT) 
data. In U-Net++ [23], skip connections were utilized to decrease the semantic difference 
between the feature maps of the encoder and decoder thereby easing the learning process. 
The U-Net++ was further extended in [24], to provide segmentation of varied sized objects 
in multiple modalities that included MRI, CT scan and electron microscopy (EM). In [25], 
a multi-scale 3D dictionary was developed using a variant of alternating direction method 
of multipliers (ADMM) for dynamic MR image reconstruction along with the regulariza-
tion method. A deep neural network architecture along with bandpass filtering has been 
presented in [26] for the efficient reconstruction of MR images. Although a patch based 
approach enhanced the consistency with data measurements and provided a better accu-
racy, however the inherent correlation between the patches was not exploited. In [27] vari-
ational autoencoder (VAE) has been utilized for reconstruction of MR images by learning 
the distribution of image patches. Acquisition time and artifacts due to coherent aliasing 
has been reduced through deep residual learning from sparsely sampled k-space data in 
[28].

In [29], CNN was employed for left ventricle segmentation and removal of the outliers 
in the cardiac MRI. In [30], ResNet [17] was employed for accurate T1 mapping with very 
low error as compared to maximum likelihood error (MLE). Currently CNNs are being 
used in the detection of COVID-19 patients through the classification of chest CT scans. 
In [31], a CNN based on multi-objective differential evolution (MODE) has been used to 
detect COVID-19 positive patients. In [32], a DeTraC (decompose, transfer, and compose) 
network has been developed by transfer learning a pre-trained ImageNet with the chest 
X-ray dataset for identification of COVID-19 patients. CNNs require huge data for training, 
and obtaining such an amount of data in a short duration is a major issue. In [33], an auxil-
iary classifier generative adversarial network (ACGAN) namely CovidGAN has been pro-
posed to address the above issue. Training the CovidGAN was done via synthetic images 
of chest X-ray that were generated by the GAN. However, the recent work in [29–33] does 
not explore sparsity or noise in the measurements.

In the recent past, NLM filters have been employed to remove Rician noise from the MR 
images [5], however, sparsity inherent in the MR images was not exploited. Recently adap-
tive sparse reconstruction based on CNN (AsrCNN) was employed to explore patch based 
processing to denoise sparse images corrupted with Gaussian noise [34]. To our knowl-
edge, CNN based approach to denoise sparse MR images corrupted with Rician noise has 
been scarcely explored. The proposed CNN based algorithm is capable of denoising the 
Rician noise corrupted sparse MR images and also reduces the computation time substan-
tially. Hence, it has a potential applicability for online reconstruction.
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3  Denoising Sparse MR Images via CNN‑Mathematical Formulation

In this section, we present the possible solutions to the sparse optimization problem. 
Initially, we discuss the existing Bayesian method for denoising the sparse MR image 
patches. Next, we consider optimization by rank minimization and develop the possible 
formulation with the CNN.

3.1  Bayesian Approach

Patch based processing of an image provides a better extraction of local features, hence 
in the present work, patch based reconstruction of an image has been emphasized. Let 
a ∈ ∁m be the vector representation of an image patch of dimension 

√
m ×

√
m to be 

reconstructed from very few k-space observations b ∈ ∁n . To reconstruct the image 
patch, consider posterior distribution X(a|b) , which can be represented by Bayes’ rule as

Image reconstruction can be modelled by employing MAP estimation

applying log on both sides of the above equation:

logX(a) and logX(a|b) represents the priori term and information probability respec-
tively. Sparse recovery involves reconstruction of an image patch a ∈ ∁m from the acquired 
k-space measurements b ∈ ∁n such that, n < m which is given by

where B ∈ ∁n×m is a measuring matrix, that encodes the undersampling operation, In the 
presence of noise, the measurements b is given by

here, K represents the noise with standard deviation of � . Further, the rank of the matrix Ba 
constitutes the dimension of the generated vector space, which signifies the sparsity. When 
a noise of Rician distribution interferes with the image, it introduces an image dependent 
bias. With Rician noise the objective of the proposed denoising algorithm to reconstruct an 
image patch a can be rewritten from Eqs. (3) and (5) as,

where, K(a) represents the state linked with priori term X(a) . The estimated solution need 
to reduce both l2 − norm problem and state parameter which is weighted by a factor � in 
the presence of noise. Hence, the term �K(a) plays a major role in reducing the noise pre-
sent in the model.

(1)X(a|b) = X(b|a)X(a)
X(b)

(2)argmax
a

X(a|b) = argmax
a

X(b|a)X(a)

(3)argmax
a

logX(a|b) = argmax
a

logX(b|a) + logX(a)

(4)b = Ba

(5)b = Ba + �K

(6)a = argmin
a

||b − Ba||2
2
+ �K(a)
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3.2  Optimization Via Rank Minimization: a CNN Approach

The problem of sparse coding can be effectively resolved by rank minimization method. The 
log-det (logarithm of determinant) function [35] minimizes the rank iteratively by finding the 
local minimum. In this section, we explore the usage of CNNs to iteratively reduce the value 
of log-det function and provide applicability in rank minimization.

The CNN framework utilizes the patch based processing for accurate reconstruction 
from sparse and noisy k-space measurements. Convolutional kernels in CNNs operate on 
extracted image patches by convoluting them with the kernel matrix. In the present paradigm 
it is assumed that the sparse signals/image patches possess self-similarities. At first image is 
converted into patches, and then the extracted patches are grouped to characterize the signal 
similarities. This technique reduces the optimization problem present in the various state-of-
art-techniques. If � represents the set of all patches, considering the similarity and sparsity 
inherent in the MR images, various similar type of patches can be generated each of size √
m ×

√
m at position f  for �̂f ∈ �

m . Let Cf  be the group of positions which corresponds to 
similar patches in an image, then Cf  can be expressed as

where, �̂f  represents noiseless patches, �̂fk are the corresponding noisy patches and the 
function fk minimizes the noise below a pre-defined threshold value H . Once grouping 
of patches is performed, a subsequent evaluation of information matrix can be done as 
b =

[
b0, b1,… bn−1

]
 and Cf ∈ �

m×n , where every column of Cf  represents a patch af  . The 
present work assumes that all the patches in a batch possess same patterns. When the infor-
mation matrix b is corrupted with Rician noise the desired result changes. Reconstruction 
of MR image from less number of k-space measurements can be accomplished by rank 
optimization. The matrix rank for Ba can be recovered by sorting out the optimization issue 
as,

where || ⋅ ||2
2
 represents the L2 normalization and �2

�K
 represents the variance of Rician 

noise. The argument in Eq. (8) can be minimized by reducing the rank of matrix Ba . Gen-
erally, rank minimization represents a NP-hard problem and it cannot be solved directly. 
The non-convex optimization methods provide an effective solution to rank minimization 
to achieve an efficient signal recovery [35]. The issue of rank optimization can be sorted 
out with the below equation, using logarithm of the determinant to provide smooth estima-
tion for rank

here � represents a small positive regularization constant. The function log det(a + �I) is 
concave in a, hence its value decreases with each iteration, thereby converges rapidly to 
provide the right minimization. The function J(a, �) evaluates the summation of logarithm 
of singular values that can be utilized as smooth surrogate for Rank a. The function J(a, �) 
can provide better solution for rank optimization problem compared to other existing tech-
niques. Hence, Eq. (9) can be rewritten as,

(7)Cf = [{fk||�̂f − �̂fk
|| < H}]

(8)Ba = argmin
Ba

Ba, s.t.||b − Ba||2
2
≤ �2

�K

(9)J(a, �) = log det(a + �I)

(10)J(Ba, �) = log det
((

BaBaT
)0.5

+ �I
)
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where, D represents a diagonal matrix and its diagonal elements can be defined as eigen 
values of matrix BaBaT which simplifies BaBaT = ZD

1

Z
 and D0.5 is the diagonal matrix 

with its diagonal elements defined as singular values of matrix Ba . Then, the rank optimi-
zation problem to obtain the estimate â can be sorted as,

Estimating â in the presence of Rician noise through CNN training involves refining of 
weights w with every iteration such that â = a . Hence a is updated based on the weights w 
and can be formulated as

3.2.1  Proposed Formulation for Denoising

This section presents the proposed CNN-based formulation for denoising and reconstruc-
tion of MR images from the sparse k-space data. The problem present in Eq. (14) can be 
solved further with CNNs by considering sparsity and iterative updation of weights to 
reduce the Rician noise. A possible formulation for reducing optimization problem is,

The first term in the above equation handles sparsity, the second term reduces the noise 
iteratively and � represents the regularization parameter. Dividing the optimization prob-
lem in Eq. (15) into two sub-problems (1) Estimating the image patches from the measure-
ments (2) Denoising the patches iteratively by refining the weights through CNN training 
i.e.

In the above equations r represents the current iteration. An iterative gradient technique 
can be employed to estimate a(r+1) , as finding inverse of the observation matrix B can be 
inconvenient due to its large size. Then, the solution for a-subproblem of Eq. (16) can be 
given as

here, � is defined as controlling factor for step-size. The term BT
(
Ba(r) − b

)
 signifies min-

imizing the reconstruction error iteratively based on the feature maps and �
(
a(r) − w(r)

)
 

minimizes the error by refining the weights.
This can be represented as,

(11)J(Ba, �) = log det
(
ZD0.5 1

Z
+ �I

)

(12)J(Ba, �) = log det
(
D0.5 + �I

)

(13)â = argmin
Ba

J(Ba, 𝛿)s.t.||b − Ba||2
2
≤ 𝜆2

𝜎K

(14)(a,w) = argmin
a,w

||b − Ba||2
2
+ �K(w)

(15)(a,w) = argmin
a,w

||b − Ba||2
2
+ �||a − w(r)||2

2
+ �K(w).

(16)a(r+1) = argmin
a

||b − Ba||2
2
+ �||a − w(r)||2

2

(17)w(r+1) = argmin
w

�||a(r+1) − w||2
2
+ �K(w)

(18)a(r+1) = ar − �
[
BT

(
Ba(r) − b

)
+ �

(
a(r) − w(r)

)]
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where,

The above equation indicates the updates of ar can be evaluated efficiently based on the 
computation of B̄ . The ideal solution of optimization problem is updation of ar to ar+1 . On 
the other hand, w sub-problem can be evaluated at ar+1 which is an operator of K(w) and its 
solution can be obtained with the help of a denoiser as,

where, f (⋅) denotes denoiser. Various techniques can be utilized to denoise the input MR 
images. In the present work, a CNN adopted from U-Net [21] is utilized to denoise huge 
training datasets. CNN based denoising is carried out by reducing the redundancies present 
in the noise corrupted images and also solves the optimization problem. We summarize the 
proposed method for denoising of MR images as given below

The observation matrix B is initialized. The value of controlling factor � for step size 
and the regularization parameter � is selected to be greater than zero and the pseudocode is 
summarized below

Choose the controlling factors 𝜑 > 0, 𝛽 > 0 and compute B̄ using Eq. (20)

1. Start with the iteration r = 0

2. Initialize a as a(0) = BTb; and w(0) = 0

3. do

  
end while convergence is not achieved

4. Output: ar+1

4  CNN Architecture for Denoising

This section describes the proposed denoising architecture based on the CNN model. The 
functional diagram of the proposed denoising algorithm is illustrated in Fig.  1. CNN is 
composed of two sections viz. encoding and decoding of features. Feature encoding, com-
prises of multiple convolutional layers followed by pooling layers. The reception of neu-
rons can be enhanced with the help of pooling layers.

Convolutional layers in the encoding part employ kernels of size 3 × 3 with a stride of 1. 
A non-linear activation ReLU was applied subsequently. Pooling layer is placed next to the 
convolutional layer to reduce the spatial resolution of the feature maps. The feature maps 
inside the pooling layer are convoluted with the kernels of size 2 × 2.

In the encoding stage, input is a 256 × 256 image which is followed by convolutional 
layers with 64-channel feature maps. A max pool layer is used next to downsample the 
feature maps to 128 × 128 . The subsequent convolutional layers generate a 128-channel 

(19)a(r+1) = B̄ar + 𝜑BTb + 𝜑w(r)

(20)B̄ =
[
(1 − 𝜑𝛽)I − 𝜑BTB

]

(21)wr+1 = f
(
a(r+1)

)

a(r+1) = B̄ar + 𝜑BTb + 𝜑w(r)

wr+1 = f
(
a(r+1)

)
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feature maps. A max pool layer further downsamples the size of feature maps to 64 × 64 . 
The lowest convolutional layer generates 256 channel feature maps. Encoding primarily 
doubles the number of feature map channels and at the same time reduces its size at every 
stage while traversing down the U-Net [21].

Decoding stage, also known as expansive path, involves upsampling of feature maps 
along with the deconvolution process. However, the reconstructed feature maps lose spatial 
information to large extent and the final reconstructed images may lose essential details of 
the images. Therefore, it is crucial to eliminate this problem and it can be achieved by fus-
ing (concatenating) the feature maps from the encoder with the corresponding feature maps 
of the upsampling layer to generate updated and upsampled feature maps.

The decoding consists of convolutional layers with 3 × 3 kernels and a subsequent non-
linearity of ReLU type, as in encoding. The 256 channel feature map obtained from the 
encoding is deconvolved to 128 channel feature maps. A max pool layer is placed after 
every convolution stage, to upsample the size of the feature maps. At every stage, the 
encoder feature maps from the same level are fused with the output of the convolutional 
layer. The final layer generates the desired number of classes to produce the reconstructed 
output image.

4.1  Training Details

The architecture of proposed CNN based denoising model is trained by an end-to-end 
process. Overfitting in the proposed CNN architecture has been reduced by employ-
ing drop out layer before the output layer. A learning rate of 0.001 has been employed 
and the momentum parameters have been fixed to 0.9

(
�1
)
 and 0.999

(
�2
)
 . The value of 

Step   size 
controlling

IFFT
FFTFully Sampled 

Noiseless 
Image

Rician 
Noise

+ Noisy 
 k-Space
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Weights

Under
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Mask
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X
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CNN Model

WeightsError
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Weights 

Post 
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Fig. 1  Proposed CNN-based denoising model
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epsilon was initialized to 1e-08. CNN has been trained for 10,000 iterations with a batch 
size of 8. Proposed CNN uses Adam solver as it combines the advantage of AdaGrad 
and RMSProp [36]. Adam works with sparse and noisy gradients, moreover the param-
eter updates are invariant with the rescaling of gradients and provides a good control 
over the stepsize [36].

Input to the proposed algorithm is images normalized in the range [0, 1]. Fully sam-
pled, noiseless and normalized 256 × 256 images have been used to train the proposed 
CNN to obtain the target weights. A simulated Rician noise of level 10 is added to the 
same set of images in the k-space. Sparsity is achieved by applying k-space undersam-
pling, from which around 75% samples are removed. Inverse Fourier transform converts 
the undersampled noisy k-space data to noisy and sparse MR images. These images are 
next given to the same CNN to generate observed weights which are further refined with 
error minimization. Target weights (obtained from fully sampled noiseless image) are 
considered as reference weights. CNN refines the weights by minimizing the loss func-
tion as given below

where, bf  and af  represents the f th pair of degraded and actual image patches respectively. 
�
(
bf ;�

)
 represents the patches of reconstructed image which consists of a parameter set as 

� . It is to be noted that the set of parameters � is different from the weights w.The quality 
of reconstructed images can be further improved by employing several loss functions while 
training the CNN. Post processing involves scaling the normalized images back to the orig-
inal intensity levels and dimensions. Figure 1 shows the schematic diagram of the proposed 
denoising model based on CNN and sparse k-space data.

5  Performance Evaluation

This section demonstrates the performance of the proposed algorithm by considering vari-
ous images and undersampling schemes that include random, pseudoradial and Cartesian 
sampling. Experimentation has been performed with in vivo scans of MR images to eval-
uate the algorithm for undersampling limit. Experimental outcomes have been validated 
with various parameters namely PSNR [2], FSIM [37], HFEN [2] and QILV [38]. Our 
algorithm achieves high visual quality with detailed information and patterns in the recon-
structed MR image.

5.1  Implementation Details

The CNN in the proposed algorithm has been trained on a GPU; it effectively removes 
Rician noise and improves the efficiency of MR data acquisition process. A parallel GPU 
configuration using CAFFE framework enhances the execution speed to a great extent. In 
the present work, every implementation has been carried out on an Intel i5 − 4460 proces-
sor with 16 GB RAM and 64-bit windows 10 OS with 3.20 GHz CPU. MATLAB 2016B 
has been used to simulate the results in this work.

(22)� = argmin
�

M∑

f=1

||�
(
bf ;�

)
− af ||22
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5.2  Comparative Study

The proposed CNN based denoising algorithm has been compared with various state-of-
the-art-techniques namely

(1) Dictionary learning magnetic resonance imaging (DLMRI) [2]
(2) Non-local means (NLM) and its variants namely unbiased NLM (UNLM), Rician 

NLM (RNLM), enhanced NLM (ENLM) and enhanced NLM filter with preprocessing 
(PENLM) [5].

Exclusive experiments were carried out on simulated k-space data of brain and in vivo 
k-space data of knee by increasing the undersampling limit from 4-fold to 20-fold. All 
the experiments are validated not only by visual analysis but also by quantitative data 
assessment.

5.2.1  Comparison with Dictionary Learning MRI

This section presents the experimental results with the proposed CNN-based algo-
rithm by considering axial brain, T2-weighted sagittal L-spine, C-spine images [39] and 
T1-weighted knee image [40]. The performance of the CNN-based reconstruction has 
been compared with DLMRI [2] and basic zero filled (ZF) reconstruction with respect to 
the PSNR and computation time. Rician noise level of around 10 has been added to the 
above reference images in the k-space and subsequently undersampled in the same domain. 
DLMRI iterations involve alternate sparse coding and dictionary learning stages. To imple-
ment DLMRI, Orthogonal Matching Pursuit (OMP) [41] was employed for sparse coding 
and 5 iterations of K-SVD [42] was used for learning the dictionary. Rest of the DLMRI 
parameters were chosen as in [39].

In Fig. 2, reconstruction with the proposed CNN-based method at 20-fold undersam-
pling is presented and compared with the DLMRI and ZF reconstructions. Figure  2a 
depicts the 20-fold random undersampling having most of the samples in the central 
k-space. Figure  2b shows the 512 × 512 axial brain image and Fig.  2c is the noise cor-
rupted image. ZF reconstruction in Fig.  2d depicts prominent artifacts with 13.94  dB 
PSNR. DLMRI and CNN reconstruction for axial brain is given in Fig. 2e, f respectively. 
DLMRI reconstruction in Fig. 2e displays excessive smoothing and provides a PSNR of 
26.12 dB. CNN reconstruction removes noise effectively and reconstructs sharper image 
with 30.20  dB PSNR, which is 4.08  dB higher as compared to the DLMRI. Computa-
tion time with the proposed CNN was around 13 s whereas DLMRI needed nearly 60 s to 
reconstruct the same 512 × 512 axial brain image.

Figure  3 shows the reconstruction of 512 × 512 L-spine image with 4-fold Cartesian 
undersampling (Fig.  3a). Reference L-spine image is given in the Fig.  3b and the noisy 
L-spine image is shown in Fig. 3c. ZF reconstruction in Fig. 3d displays some blurring due 
to k-space undersampling and its PSNR was observed to be 27.9 dB. L-spine reconstructed 
with CNN method (Fig. 3f) provided a PSNR of 31.28 dB which was 2.08 dB higher than 
the PSNR with DLMRI (29.25 dB) in Fig. 3e. Computation time for CNN was around 13 s 
whereas DLMRI required around 70 s.

Table 1 demonstrates the comparison of the quantitative results obtained with the pro-
posed algorithm, DLMRI [2] and ZF reconstruction by 4-fold random undersampling of 
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the k-space (Fig.  4a). Experiments were carried out by considering the images of axial 
brain (Fig. 2b), L-spine (Fig. 3b), C-spine (Fig. 4b) and knee (Fig. 4c). Quantitative results 
with the proposed CNN method exhibit an improvement of around 2 dB in PSNR and a 
considerable reduction in the computation time, compared to DLMRI reconstruction. ZF 
reconstruction is obtained by applying inverse Fourier transform to the noisy and sparse 
k-space measurements. Hence, it provides very low PSNR and computation time.

5.2.2  Comparison with Non‑local Means

This section illustrates the qualitative results obtained with our algorithm and also pre-
sents the quantitative comparison of the proposed CNN-based denoising with the vari-
ants of NLM [5]. MR sequences like T1, T2 and Proton Density (PD)-weighted provides 
excellent contrast and anatomical details; however, under the influence of Rician noise 
the image quality deteriorates. Rician noise introduces bias that leads to the blurring of 
edges and structural errors. Images from BrainWeb Database [43] have been employed for 
simulations in this section. Experiments have been carried out on T1-weighted (Fig. 5a), 
T2-weighted (Fig. 5d) and PD-weighted (Fig. 5g) MR images, to evaluate the performance 
of the CNN-based proposed algorithm. All the parameters have been selected according 
to the requirement and a Rician noise of around 9% has been added to the images in the 
k-space.

Fig. 2  Reconstructions with 20-fold random undersampling: a sampling mask, b reference axial brain 
image [39], c brain image with 10% Rician noise, d ZF reconstruction, e DLMRI reconstruction, f CNN-
based reconstruction
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Figure  5 presents the visual results with the proposed algorithm for 4-fold under-
sampling of the k-space by considering the above MR image sequences. Our algorithm 
denoises and provides accurate reconstruction of T1-weighted image with a PSNR of 
25.55 dB in Fig. 5c. PSNR of the reconstructed T2-weighted image in Fig. 5f is 30.53 dB 
and displays good denoising. A PSNR of 31.29 dB was observed with the reconstructed 
PD-weighted image (Fig. 5i). Reconstruction time for our algorithm was observed to be 
few seconds.

Table  2 compares the numerical results of the proposed method with the NLM and 
its variants. The proposed CNN-based method has been implemented with a 4-fold and 

Fig. 3  Reconstructions with 4-fold Cartesian undersampling a sampling mask, b reference image of 
T2-weighted L-spine, c L-spine with 10% Rician noise, d ZF reconstruction, e DLMRI reconstruction, f 
CNN-based reconstruction

Table 1  Comparison of PSNR and computation time with 4-fold random undersampling

Algorithm Metrics Images

C-Spine L-Spine Knee Brain

ZF PSNR (dB) 24.1 24.67 25.32 23.49
Time (s) 1.11 1.67 1.04 0.77

DLMRI PSNR (dB) 30.57 29.53 31.53 28.79
Time (s) 75.91 73.17 44.33 62.4

Proposed CNN based PSNR (dB) 32.32 31.97 33.19 30.19
Time (s) 13.7 12.6 13 13.8
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20-fold undersampling of the k-space unlike NLM, which considers entire k-space data for 
reconstruction. Quantitative outputs confirms that the CNN based denoising could achieve 
better PSNR for T2 and PD-weighted compared to NLM, UNLM and RNLM even with 
20-fold undersampling. Standard deviation (SD) of the Rician noise for NLM and the pro-
posed method has also been displayed in Table 2. The numerical values obtained with the 
reconstructions of Fig. 5 are indicated in bold as shown in Table 2.

Visual quality of the reconstructions manifests that the proposed denoising algorithm 
has the capacity to effectively remove the Rician noise as well as reconstruct edges pre-
cisely even with 4-fold undersampling.

5.2.3  Analysis of Undersampling Limit and Schemes

Dedicated experiments were carried out with the random and pseudoradial sampling 
scheme to test the proposed CNN-based denoising algorithm for achievable undersampling 
limit. A complex Rician noise of 10% was added in the k-space to the 256 × 256 ground 
truth image of brain (Fig. 6a) and 320 × 320 human knee image (Fig. 6b) from the dataset 
of [44]. The random undersampling of Fig.  4a was increased from 4-fold to 20-fold for 
the experimentation to record the PSNR, FSIM, QILV and runtime variations, as given 
in Table 3. Proposed algorithm reconstructs MR images with precision even at undersam-
pling rates as high as 20-fold, which is evident from the high PSNR, FSIM and QILV val-
ues. Computation time to reconstruct brain and knee image is between 3 to 6 s. PSNR was 
observed to be consistent even at high undersampling rates and with various sampling pat-
terns like pseudoradial. The minimum reconstruction time observed for ground truth brain 
and in vivo knee images are marked in bold as shown in Table 3. 

The algorithm was also evaluated with various undersampling schemes by considering 
the reference images of Fig. 6 corrupted with the same noise level as above.

A structural undersampling was adopted with a pseudoradial sampling mask as dem-
onstrated in Fig.  7a, which contains 30% k-space samples. Figure  7b displays the noise 
corrupted brain image obtained by adding 10% Rician noise to the reference image of 
Fig. 6a. The reconstructed brain image displayed in Fig. 7c provided a PSNR of 28.32 dB, 
similarity index (FSIM) and local variance (QILV) was observed to be 0.966 and 0.9677 
respectively.

Fig. 4  Random sampling and reference images a 4-fold random undersampling mask, b T2-weighted 
C-spine, c T1-weighted knee
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Next, in vivo knee MR image of Fig.  6b was undersampled with Cartesian sampling 
mask (Fig. 7d) obtained by acquiring 50% of the k-space points. Rician noise corrupted 
image, prior to undersampling is shown in Fig. 7e and the reconstructed knee image with 

Fig. 5  CNN-based reconstructions at 4-fold random undersampling. a T1-weighted reference brain image 
[5], b T1 image with 9% Rician noise, c Reconstructed T1 image, d T2-weighted reference brain image [5], 
e T2 image with 9% Rician noise, f reconstructed T2 image, g PD-weighted reference brain image [5], h PD 
image with 9% Rician noise, i reconstructed PD image
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Table 2  Numerical results for T1, T2 and PD-weighted images [5, 43] with respect to PSNR and Under-
sampling

MR image → T1- weighted T2- weighted PD- weighted Undersampling 
employed

Algorithm PSNR (dB) PSNR (dB) PSNR (dB)
NLM 28.91 24.49 24.72 No
UNLM 33.18 27.46 29.18 No
RNLM 32.79 28.64 28.83 No
ENLM 35.06 30.29 31.54 No
PENLM 36.84 31.76 32.76 No
Proposed CNN-based 24.82 30.04 30.89 20-Fold
Proposed CNN-based 25.55 30.53 31.29 4-Fold
SD-NLM 13.5 22.5 22.95 No
SD :proposed CNN-based 0.23 0.23 0.32 Yes

Fig. 6  Reference images [44] a ground truth brain, b In vivo knee, c In vivo axial brain

Table 3  Quantitative results with 
the proposed algorithm for brain 
image (Fig. 6a) and in vivo knee 
MR image (Fig. 6b)

Sampling scheme Image PSNR in dB FSIM QILV Time (s)

Random-4 fold Brain 28.88 0.97 0.97 3.8
Knee 31.88 0.96 0.76 5.3

Random-6 fold Brain 28.63 0.97 0.97 3.5
Knee 31.78 0.96 0.75 5.3

Random-8 fold Brain 28.37 0.97 0.97 3.5
Knee 31.72 0.96 0.75 5.3

Random-10 fold Brain 28.30 0.97 0.97 3.7
Knee 31.71 0.95 0.74 5.1

Random-20 fold Brain 28.32 0.97 0.97 3.6
Knee 31.72 0.96 0.74 6.1

Pseudo Radial-7 fold Brain 28.48 0.97 0.97 3.6
Knee 31.73 0.96 0.75 5.3
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the proposed CNN-based method is presented in Fig. 7f. A PSNR of 31.58 dB has been 
observed with the reconstructed knee image. QILV and FSIM were noted to be 0.7428 and 
0.9548 respectively.

Fig. 7  Visual representation of the reconstructed MR images using the proposed CNN-based denoising 
algorithm with 10% Rician noise added to the reference images of Fig. 6. a Pseudoradial mask [44], b noisy 
brain image, c reconstructed brain image, d Cartesian mask [44], e noisy knee image, f reconstructed knee 
image, g random mask [44], h noisy axial brain image, i denoised axial brain image
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We consider a 230 × 180 axial image of brain shown in Fig.  6c as the final image 
for the experimentation. This image was undersampled in k-space with 20% randomly 
acquired sampling pattern of Fig. 7g. A noise corrupted version of the axial brain image 
is given in Fig. 7h. Proposed algorithm reconstructs the denoised image (Fig. 7i) with 
a PSNR of 27.47 dB. QILV and FSIM values were observed to be 0.9897 and 0.9644 
respectively.

Experimental results with proposed algorithm show high quality reconstructions even 
with 80% missing k-space data. PSNR decreased by about 0.5 dB as the random under-
sampling rate was increased from 4-fold to 20-fold for brain image (Table 3) and maxi-
mum reconstruction time is 3.8 s. Quantitative results in Table 3 show only 0.2 dB vari-
ation in PSNR for knee image and maximum reconstruction time is as low as 5.1 s. Low 
computational time makes the proposed CNN based algorithm suitable for the online 
reconstruction.

6  Conclusion

In this manuscript, a CNN based novel framework to denoise sparse MR images corrupted 
with Rician noise, has been presented. CNN training exploits patch based processing to 
update and refine the dictionary of weights. Training eliminates the Rician noise and also 
estimates the missing k-space data to provide precise reconstructions even at high under-
sampling rates. The proposed CNN based denoising method converges faster and extracts 
MR image patterns in the recovered image, thereby boosting the speed and efficiency of 
MR data acquisitions. Our CNN based method has been compared with DLMRI and ZF 
reconstruction in terms of PSNR and computation time. There has been a tremendous 
increase in speed and PSNR due to CNN based approach when compared to DLMRI and 
ZF.

The proposed CNN framework can be employed without estimating the noise level, fur-
ther our algorithm preserves the local structures better than the traditional NLM, UNLM 
and RNLM even with high undersampling. The computation time using our algorithm is 
very low, minimum being 3.5 s. Proposed algorithm reconstructs with high visual quality 
even at high undersampling rates which is evident from the PSNR, FSIM and QILV values.

High undersampling rates provide required compression of k-space data at the acqui-
sition stage and can be employed for wireless transmission. However, various issues 
like bandwidth requirement, power consumption and encoding, associated with wireless 
streaming of k-space data needs to be addressed and remains the subject of future study. 
The CNN approach can be adopted for image segmentation to identify COVID-19 patients 
efficiently to overcome the current crisis.
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