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Abstract
In this paper we present an original adaptive task scheduling system, which optimizes the 
energy consumption of mobile devices using machine learning mechanisms and context 
information. The system learns how to allocate resources appropriately: how to schedule 
services/tasks optimally between the device and the cloud, which is especially important 
in mobile systems. Decisions are made taking the context into account (e.g. network con-
nection type, location, potential time and cost of executing the application or service). In 
this study, a supervised learning agent architecture and service selection algorithm are pro-
posed to solve this problem. Adaptation is performed online, on a mobile device. Informa-
tion about the context, task description, the decision made and its results such as power 
consumption are stored and constitute training data for a supervised learning algorithm, 
which updates the knowledge used to determine the optimal location for the execution of 
a given type of task. To verify the solution proposed, appropriate software has been devel-
oped and a series of experiments have been conducted. Results show that as a result of the 
experience gathered and the learning process performed, the decision module has become 
more efficient in assigning the task to either the mobile device or cloud resources.

Keywords Adaptation · Context-aware system · Energy optimization · Machine learning · 
Mobile cloud computing
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1 Introduction

The rapid development of mobile devices and the growing importance of applications and 
services that run on these devices has resulted in a need to pay more attention to the quality 
parameters associated with the use of such solutions. So far, in the context of the operating 
quality of applications and services of this type [1], primarily QoS (Quality of Service) 
parameters were considered that cover the network connection status (including delay, jitter 
and bandwidth) and QoE (Quality of Experience) parameters that show the level of user 
satisfaction with a given application or service. It should be noted that in the context of 
mobile devices using battery power, a prerequisite for maintaining the highest level of both 
QoS and QoE parameters is ensuring the longest possible uptime of the device. It can even 
be claimed that ensuring the longest possible uptime of the mobile device (alongside the 
applications and services running on it) from the point of view of conserving power is in 
fact a QoE parameter because it increases the level of user satisfaction with mobile applica-
tions and services.

Increasing mobile device uptime is possible through optimizing power consumption 
while preserving the best possible quality parameters of mobile services and applications. 
Such optimization can be implemented at the software or hardware levels and should take 
into account the context in which the mobile device operates, including network connec-
tion quality, location and potential time and cost of executing the application or service. 
The use of context information may allow the adaptation of mobile services and applica-
tions to prevailing conditions in order to improve the quality parameters (including execu-
tion time) and to optimize power consumption. The adaptation process in the context of 
optimizing power consumption can be implemented with respect to the mobile device itself 
and also to the mobile services and applications running on the device. Methods allow-
ing for adaptations of this type often use remote resources such as cloud computing (the 
Mobile Cloud Computing concept [2]) or another mobile device with appropriate resources 
(the cloudlets concept), to which applications/services or their components are offloaded 
in order to optimize the operation of the mobile device [3]. The choice of when and what 
to offload from the mobile device can be made offline during the software development 
process or dynamically when the device is working. Adaptation makes it possible to reduce 
the time and costs of executing applications/services on mobile devices and to optimize 
their power consumption online.

In this paper we present our original concept for an adaptive system for optimizing the 
power consumption of mobile devices using context-based and machine learning mech-
anisms. Having analyzed existing solutions, we found out that there are no systems that 
would enable the dynamic, online adaptation of mobile applications/services by using 
machine learning algorithms while simultaneously accounting for the context in which 
the mobile device is located. A few articles describe solutions that use machine learning 
algorithms but these have some limitations such as requiring the use of models developed 
previously in offline mode or not taking into account specific applications/services when 
optimizing the power consumption of a mobile device. Our innovative solution works fully 
online on the mobile device being optimized and enables dynamic adaptation using the 
context in which applications/services are executed on the mobile device. It enables the 
costs and time required to execute mobile applications/services to be reduced and helps to 
optimize the power consumption of the mobile device.

The classic approach to online learning is based on reinforcement learning [4]. Our 
solution is based on supervised learning, like in [5], in which it is executed offline. We 
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show that it is possible to apply it online. Instead of preparing the training data set once at 
the beginning, the training data can be automatically extended and the learned knowledge 
updated while it is in use, just like in reinforcement learning. It is a novel approach to 
online learning. Our results from other domains demonstrate that fewer trials are required 
to find a good policy than in the case of reinforcement learning , especially in a complex 
environment (see e.g. [6]). This research shows that this type of learning is applicable to 
practical problems that are encountered in mobile computing. As a result, knowledge spe-
cific to every device may be efficiently learned locally in this device even while it is in 
use. There is no need to prepare a separate strategy for every device type offline. This also 
resolves scalability and privacy issues.

The structure of the article is as follows: Sect. 2 presents the analysis of research in the 
field of power optimization in the context of mobile devices, Sect.  3 presents solutions 
in the field of machine learning on mobile devices, Sect. 4 describes the adaptive power 
optimization system developed for mobile devices using context information, Sect. 5 intro-
duces the results of the experiments conducted and Sect. 6 contains conclusions.

2  Related Work

Issues related to power management are becoming increasingly relevant, inter alia in the 
context of modern distributed systems, including those using virtualization and cloud com-
puting In [7], the authors present an analysis of power-saving techniques and examine the 
capabilities of machine learning in automatic power management systems. However, the 
article lacks a broader discussion of machine learning algorithms and aspects of possible 
adaptation. The analysis only considers desktop and similar systems and does not cover 
mobile devices, which have become an important part of modern distributed systems.

The power consumption aspect has been very important since mobile devices, includ-
ing mobile phones, first came into existence. A lot of papers have been published on this 
matter including [8, 9] and some recent studies where authors present a general analysis of 
power management in the context of mobile devices [10] and energy saving strategies in 
the context of mobile device applications [11]. In [9], the authors present different methods 
described in literature that allow for increasing the energy efficiency of mobile devices at 
the software and hardware levels, including power management at the level of operating 
system, the management of sensors and communication interfaces and the use of cloud 
computing. [11] presents the strategies that can be implemented by the mobile application 
developer: Mobile Computation Offloading, sequential programs and GUI design.

Some publications such as [12] analyze in more detail the possibilities of saving 
mobile device power using cloud computing. The authors present an analysis of power 
consumption required when offloading calculations to the cloud using the network inter-
faces of mobile devices. They also analyze situations where using the Mobile Cloud 
Computing (MCC) concept may not lead to power savings. This may be related to pri-
vacy and data security considerations that necessitate more CPU usage (e.g. in the case 
of data encryption processes) and thus cause increased power consumption. Ensuring 
the reliable execution of certain services in the absence of proper communication with 
the cloud may also lead to increased mobile device power consumption. However, the 
authors only discuss theoretical considerations related to power saving in the Mobile 
Cloud Computing environment. Their research does not include practical tests and 
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discussions of possible adaptation (e.g. with the use of machine learning algorithms) 
to prevailing conditions in which services are executed in the context of their execution 
time and power consumption.

A similar concept for offloading applications from a mobile device in order to reduce 
power consumption and increase efficiency is presented by the authors of [13]. How-
ever, those studies do not use the Mobile Cloud Computing concept but rather the idea 
of cloudlets that allows the offloading of applications/services to nearby mobile resource-
rich devices. The authors present the algorithm developed, which enables the offloading 
of data in an optimal manner, taking into account mobile device load and the availability 
of cloudlets. However, those studies lack practical tests that would present how the algo-
rithm developed affects the power consumption of mobile devices and also tests that would 
include the context of running applications.

Also in the article [14], the authors use cloudlets (and private / public cloud servers) for 
multilevel full and partial offloading strategies. However, the tests of the developed solu-
tion were carried out only by simulation without using real devices.

An important article discussing a broad range of issues related to power consumption 
in the case of mobile applications enabling mobile e-learning is [15]. It presents research 
related to adaptive mobile systems that can learn while simultaneously showing how it is 
possible to expand these systems to make them aware of power consumption, thus allowing 
for power savings. The article analyzes the power management, modeling and adaptation 
aspects in the context of this type of system. The authors also conducted a critical analy-
sis of existing constraints and the possibility of accounting for energy aspects in systems 
of this type. However, there is no thorough analysis of the possibilities of using machine 
learning algorithms that use the context of learning applications running on mobile devices 
and of enabling power optimization for devices of this type.

The use of mobile device communication modules has a significant impact on power 
consumption. [16] introduces the concept of minimizing data transmission costs in the 
Mobile Cloud Computing environment. The authors propose a solution that uses and at the 
same time extends the CloneCloud environment [17], which makes it possible to analyze 
the code and select only the most important elements that need to be offloaded to the cloud. 
The tests conducted, inter alia with the use of face recognition applications, showed a 
reduction in the time required for offloading the required data to the cloud and a reduction 
in service execution time as well as lower power usage by mobile devices. It is an interest-
ing solution for reducing mobile device load; however, it does not take into account such 
factors as the context in which the service is executed. At the same time, some elements 
are always offloaded to the cloud, although in some cases this may not be efficient due to 
the service execution time and power consumption considerations. Therefore, adding to the 
concept developed the possibility of using machine learning algorithms that could learn 
which elements of the application and when should be offloaded to the cloud would in 
our opinion enable the required amount of data transferred to be reduced even further and 
mobile device power consumption to be optimized to a greater degree.

Machine learning is a popular technique used to optimize energy consumption. It may 
be applied in large scale systems, e.g. for data center scheduling [5]. Berral et  al. apply 
supervised learning to create models that predict important system parameters (power con-
sumption levels, CPU loads etc.). The models are learned from previous system behaviors 
and they are used to optimize scheduling decisions. It is a similar approach to ours, but we 
target mobile devices and the models learned are simpler because they only predict a single 
value for the computational task performed. Moreover in [5], the learning process occurs 
offline.
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Another learning strategy is used in [18]. Reinforcement learning, a typical approach to 
online learning, is applied for adapting the routing protocol used by an underwater sensor 
network with the goal being to prolong the lifetime of such networks. Simulation results 
show that the adaptation extends lifetime by 20 percent.

So far, few studies have been conducted that concern the analysis of power consumption 
and possibilities for reducing it and that would at the same time use the context in which the 
mobile device is operating, and machine learning algorithms that allow for power consump-
tion optimization. One of the most important articles covering these topics is [19]. In that 
article, the authors analyze machine learning algorithms in the context of power saving in 
mobile systems. They present a concept where power saving is possible thanks to the dynamic 
adaptation of data transfer and network interface parameters, which is conducted automati-
cally without user intervention. It involves the appropriate startup and shutdown of mobile 
device network and localization interfaces. The authors also conducted actual tests for five dif-
ferent user profiles and five different smartphones using the Android operating system. Each 
device was running the Context Logger application, which logged the context of individual 
mobile device users to an external server where the data were analyzed offline using an algo-
rithm developed by the authors. Those data, combined with the context in which the device 
and user were operating, included details such as the day of the week, location, Wi-Fi signal 
strength, 3G signal strength, battery status, CPU utilization and device motion. The analysis 
of those data from a week-long test allowed the evaluation of user behavior, including the 
correlation of the need for data offloading with location. On that basis, certain user behavior 
patterns were determined that were associated with the context of using mobile devices and 
five models were proposed that defined the users’ (e.g. employees’ or students’) behavior. At 
the same time, the authors analyzed five different machine learning algorithms: Linear Dis-
criminant Analysis, Linear Logistic Regression, Non-Linear Logistic Regression with Neural 
Networks, K-Nearest Neighbor and Support Vector Machines, which were used in the tests. 
However, that analysis only concerned general use and did not take into account the charac-
ter of mobile systems and solutions such as Mobile Cloud Computing. The authors also pro-
posed a model for mobile device power consumption for devices running the Android (2.3.3) 
system, using the Monsoon Solutions1 power monitor software. For this purpose, they con-
nected the mobile device to a PC and monitored power consumption in real-time when the 
communication and localization interfaces were turned on (active state) and off (idle state). As 
a result, they determined the average power consumption for each of the interfaces. However, 
this method appears to have some disadvantages. The momentary radio signal strength, which 
is related to distance from the transmitter, directly affects the power consumption of the trans-
mitting/receiving interfaces of the mobile device. User location and potential terrain obstacles 
can also influence the power consumption of the localization interface (GPS). Those aspects 
were not addressed by the authors at all. Power measurements and determining the model for a 
particular device, which is treated as a whole, exclusively under laboratory conditions does not 
answer the question concerning the practical characteristics of power consumption by com-
munication interfaces of a mobile device. In this context, our research on power consumption 
(e.g. communication interfaces) included not only the mobile device itself but also individual 
services executed on it, which allowed for a more accurate analysis of energy aspects. The 
studies that we carried out used the PowerTutor software [20], which allows for a continu-
ous analysis of power consumption. Using online analysis instead of predetermining a model 

1 Monsoon Solutions—www.msoon .com.

www.msoon.com
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under laboratory conditions (as the authors did [19]) allows for a better inclusion of the actual 
context in which the mobile device is located. The authors [19] carried out a series of tests that 
demonstrated the effectiveness of using different machine learning algorithms to dynamically 
predict the energy efficiency of different device interface configurations. Among other things, 
they were successful in 90% of cases when predicting power consumption using support vec-
tor machines, neural networks and k-nearest neighbor algorithms. However, it appears that 
such research requires tests on a larger scale than involving just a few users. For such a small 
number of devices, the patterns discovered may not be fully useful and universal. We believe 
that when the operation of the entire device is considered in isolation, without analyzing indi-
vidual applications/services and without including the actual context and, moreover, it is lim-
ited to a few predefined user models, this does not enable power consumption optimization 
in the case of real-world mobile applications and services. Studies conducted by the authors 
mainly concern the prediction of energy efficiency of individual interface configurations; we 
think that subsequently, this knowledge is not adequately leveraged. In this respect our studies 
use power analysis, including the predicted power consumption, to optimize (using machine 
learning algorithms) the execution of individual services, which allows for the optimization 
of the entire mobile device. Conclusions from the analysis of the article described here were 
among our motivations to carry out our research and to develop a completely different, and 
innovative, approach to the topic of mobile device energy consumption optimization with the 
use of machine learning algorithms.

This research is a continuation of the results published in our papers [21, 22]. In [21], we 
present possibilities for using machine learning and the code offloading mechanism in the 
MCC concept, whereas in [22], we propose an innovative recommender system that allows the 
optimization of the selection of multimedia services (for converting photos and videos). The 
main goal in [22] was to optimize the service execution time. The system developed allows the 
selection of multimedia services offered by different providers locally on the mobile device or 
remotely in the cloud. In order to choose the service execution location, the concept of learn-
ing agents is used that utilizes various machine learning algorithms such as C4.5, Random 
Forest and Naïve Bayes. The tests conducted included the context associated with the type of 
network connection (LTE/HSPA/EDGE) and also various methods for converting photos and 
videos. The article focuses primarily on optimizing the service execution time; energy aspects 
have not been studied thoroughly. At the same time, the solution developed only covers a sys-
tem for recommending choices with respect to a single type of service (multimedia conver-
sion), which limits its versatility to some extent.

With respect to using the Mobile Cloud Computing concept, an important aspect is that 
the optimization of resources concerns not only the mobile device but the cloud as well [23] 
[24]. In [23], the authors demonstrate that it is possible to optimize resource usage in MCC by 
applying common patterns used in traditional cloud computing, whereas in [24], the authors 
propose optimization the power consumption in the data center based on neural network.

3  Supervised Learning Techniques in Context of Mobile Devices

Generally, supervised learning allows us to generate an approximation of the function 
f ∶ X → C , which assigns labels from set C to objects from set X. To generate knowl-
edge, a supervised learning algorithm requires labeled examples that consist of pairs of f 
arguments and values. Let us assume that elements of X are described by a set of attrib-
utes A = (a1, a2,… , an) where ai ∶ X → Di . Therefore xA = (a1(x), a2(x),… , an(x)) is used 
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instead of x. If the size of C is small, like in this study, the learning is called classification, 
C is the set of classes, and h is called the classifier.

The supervised learning module obtains Training data, which is a set {(xA, f (x))} , and 
generates the hypothesis h, which is stored in Generated Knowledge. The Problem is xA , 
and the Answer is h(xA).

There are many supervised learning methods, which use various hypothesis representa-
tions and various methods of constructing hypotheses. Three of them are described below.

Naïve Bayes (NB) is a simple probabilistic classifier, which is a special case of a Bayes-
ian network. Generally, a Bayesian network is a pair (G, P) where G is a structure graph 
and P is a set of local, conditional probability distributions between variables and their 
parents. In the case of NB, G is very simple: the class node c is the parent of every attribute 
node a1, a2,… , an . Learning is a process of calculating a priori probabilities P(c) and con-
ditional probabilities P(ai|c) . The probability distribution of a class variable, for example 
(a1(x), a2(x),… , an(x)) , is calculated using the following formula:

C4.5 is a decision tree learning algorithm developed by Ross Quinlan [25]. The basic 
idea of learning is as follows: the tree is learned from examples recursively. If (almost) all 
examples in the training data belong to one class, the tree consisting of the leaf labeled by 
this class is returned. In the other case, the best attribute for the test in the root is chosen 
(using an entropy measure), training examples are divided according to the selected attrib-
ute values, and the procedure is called recursively (for every attribute test result with the 
rest of attributes and appropriate examples as parameters.)

The random forest algorithm builds an ensemble of decision trees. To reduce overfitting, 
trees are trained on subsets of the training set (selected at random) and using subsets of the 
attribute set (also selected at random) [26]. The decision is calculated by voting.

In the context of the application considered, these three algorithms may be compared as 
follows (see Table 1): NB is the fastest, but it is able to account for dependencies between 
attributes. The knowledge represented by probabilities is difficult to analyze. C4.5 learns 
more slowly, but the decision tree may represent any hypothesis. It is also readable for 
human experts. Random forest is the slowest algorithm but exhibits robust prediction 
results. Trees may represent complex hypotheses and ensembles make it possible to reduce 
overfitting. However, because of a large number of trees, the knowledge generated is also 
difficult to analyze.

In reinforcement learning, various techniques are used to prevent reaching a local opti-
mum. The idea is to explore the solution space more thoroughly by choosing suboptimal 
actions from time to time (e.g. random or not performed in a given state yet). We decided 

(1)P(c(x) = cj) =
P(cj)

∏n

i=1
P(ai(x)�cj)

∏n

i=1
P(ai(x))

Table 1  Comparison of supervised learning algorithms applied in mobile devices

Learning algorithm Learning speed Hypothesis complexity Read-
ability to 
humans

NB Fast Low Poor
C4.5 Medium High Good
Random forest Slow Very high Poor
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to use this technique for supervised learning too because experimental results show that 
exploration is useful.

One such method is �-greedy where the agent selects the action that it believes has the 
best long-term effect with probability 1 − � , and it chooses an action uniformly at random 
otherwise. � ∈ (0, 1) is a tuning parameter. In our experiments it is constant, but in rein-
forcement learning it often decreases with time.

4  Adaptive Context‑Aware Energy Optimization for Services

Let us define the learning agent (Fig. 1) as a tuple:

where P is the processing module, L is the learning module, TD is training data, K is 
knowledge learned, T is a set of computational tasks, C is a set of possible contexts (bat-
tery state, connection, date, etc.), R represents possible task execution results, A is a set 
of attributes, which are used to describe tasks, results and the context, and D is a set of 
decisions. The aim of the agent is to return decision d ∈ D = {d1, d2,… dns} , which cor-
responds to engaging one of ns services.

Input data for processing module P is a pair x = (t, c) ∈ T × C . This pair describes it 
with attributes from O ⊂ A , which yields xO = (o1(x), o2(x),… on(x)) . Next, using the 
knowledge stored in K it selects d ∈ D , which has the minimum predicted cost. If K is 
empty, d is randomized.

The decision d is then applied and the task is run using the corresponding service (e.g. 
locally or in the mobile cloud). After the execution, the P module obtains execution results 
r ∈ R , which are described by Res = {r1, r2,… rm} ⊂ A attributes (e.g. battery consump-
tion b(x, d), calculation time ct(x, d)).

The P module stores those results together with xO and decision d in TD. Therefore the 
complete example stored in TD has the form

(2)LA = (P,L, TD,K, T ,C,R,A,D),

Fig. 1  Architecture of the adaptive service choice system
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The knowledge used to predict R values is trained by the learning module L using super-
vised learning algorithms and TD, and stored in K. The form of the knowledge depends on 
the learning algorithm applied. For example, if C4.5 is used, the knowledge has the form of 
a decision tree with leaves representing values of predicted resource usage (time or battery) 
and other nodes represent tests on O attributes. In cases like this, when the learning algo-
rithm performs classification instead of regression, the predicted attribute must be discre-
tized. The number of bins has a high impact on accuracy. However, five bins turned out to 
be the optimal value in all our cases (see the tuning of parameters described in Sect. 5.3).

Using value predictions ri ∈ Res , the processing module P rates its decisions d ∈ D by 
calculating predicted expenses e(x, d):

where wi are weights of the result ri . By choosing the weights, one sets priorities for the 
criteria. As a result, the system is flexible and universal, because it may be adjusted to user 
requirements.

The P module selects the decision for which execution is predicted to be successful and 
the expense is predicted to be the lowest. To avoid a local optimum, the �-greedy strategy 
is applied and a suboptimal decision is executed from time to time. The algorithm of the P 
module including the steps described above is presented in Algorithm 1.

(3)
xA∪D = (o1(x), o2(x),… on(x), r1(x, d), r2(x, d),…

rm(x, d), d).

(4)e(x, d) =

m∑

i=1

wi ∗ ri(x, d),
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5  Evaluation

In order to run experiments, software using the architecture developed was implemented, 
which makes it possible for a set of tests to be conducted and detailed results to be 
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generated for a chosen configuration. The software developed can operate in two modes: 
for determining optimal classifier parameters (Hill Climbing) and for performing a set of 
tests. Both modes use the architecture developed, but in the first mode classifier param-
eters are modified on the go while the second mode uses predetermined values of classifier 
parameters.

All tests carried out consisted of multiple series and each series comprised a set of 
rounds. During each round, a set of tasks were performed (Face Recognition or OCR). 
After obtaining the result for the individual task, the time rt and power consumption rp 
were measured (i.e. costs of performing the task). After each round had been conducted, a 
classifier was built on the basis of the knowledge acquired from the previous and current 
rounds in the series in question. Those classifier parameters were established in the process 
of Hill Climbing. In the first round (reference round), the task execution location (cloud or 
mobile device) was selected randomly. The costs calculated on the basis of the results of 
this round were not used to build a classifier, but to calculate the penalty that was applied 
when the task ended in an error. Such a situation could occur e.g. when the network con-
nection established to execute the cloud service was disrupted or terminated. Then, instead 
of the costs calculated, ri values from the reference round corresponding to this task were 
used, multiplied by a constant factor equal to 1.5. After all rounds in the series had been 
conducted, all knowledge gathered was deleted. During the tests carried out, multiple 
series were conducted in order to obtain average values for individual rounds.

Two services were used during tests: Face Recognition and OCR. For the Face Recogni-
tion (FR) service, five types of tests were developed (shown in Table 2) for different input 
data (video stream parameters).

For the OCR service, five types of test were developed as well (shown in Table 3) for 
different input data (image parameters).

Three mobile devices were used during initial tests: the Lenovo Tab 2 A7-30D (1.3 GHz 
CPU, 1 GB RAM) tablet as well as the Samsung Galaxy Trend Plus (1.2 GHz CPU, 768 
MB RAM) and HTC Desire 610 (1.2 GHz CPU, 1 GB RAM) mobile phones. All devices 
used the Android 4.4.2 operating system. The main experiment was conducted using only 
the Lenovo Tab 2 A7-30D device. In order to run remote tasks (Face Recognition and 
OCR) in the cloud, the AWS Lambda solution was used.

All experiments were executed using real-world Internet connections (Wi-Fi and 
HSDPA/HSUPA). Therefore we were not able to control connection quality and the results 
obtained suffer from relatively high variation. However, such conditions are similar to real-
world applications in which connection quality may change.

The following attributes are used in experiments: O consists of nine attributes presented 
in Table 4. Eight of them describe a task t, one (connectionType) describes a context c. 

Table 2  Types of tests for the Face Recognition service

Name Resolution Video frames Duration Comments

fr1 1280 × 720 29 fps 00:00:03 Single face
fr2 640 × 480 29 fps 00:00:31 Three different faces, rapid change in the face currently 

displayed
fr3 1280 × 720 30 fps 00:00:25 More than a dozen faces visible at the same time
fr4 406 × 720 30 fps 00:00:03 Single face
fr5 854 × 476 25 fps 00:00:13 Three different faces, rapid change in the face currently 

displayed



1850 P. Nawrocki, B. Sniezynski 

1 3

Ta
bl

e 
3 

 T
yp

es
 o

f t
es

ts
 fo

r t
he

 O
C

R
 se

rv
ic

e

N
am

e
Re

so
lu

tio
n

Fo
rm

at
Si

ze
 o

f fi
le

C
om

m
en

ts

oc
r1

64
0 

× 
48

0
PN

G
22

.8
 K

B
Pr

in
te

d 
bl

ac
k 

te
xt

, w
hi

te
 b

ac
kg

ro
un

d,
 la

rg
e 

fo
nt

oc
r2

72
0 

× 
25

5
JP

EG
14

1 
K

B
Ty

pe
sc

rip
t, 

pa
rtl

y 
fa

de
d,

 n
ew

sp
ap

er
 a

rti
cl

e 
cl

ip
pi

ng
oc

r3
37

68
 ×

 5
25

6
JP

EG
2.

26
 M

B
Pr

in
te

d 
bl

ac
k 

te
xt

, w
hi

te
 b

ac
kg

ro
un

d,
 la

rg
e 

fo
nt

oc
r4

71
6 

× 
48

4
JP

EG
73

.3
 K

B
B

la
ck

 p
rin

te
d 

te
xt

 w
ith

 p
ur

pl
e 

he
ad

er
, w

hi
te

 b
ac

kg
ro

un
d,

 lo
w

 im
ag

e 
qu

al
ity

oc
r5

30
6 

× 
30

6
JP

EG
22

.2
 K

B
Ph

ot
o 

of
 a

 sh
or

t t
ex

t, 
gr

ad
ie

nt
 b

ac
kg

ro
un

d 
(w

hi
te

 a
nd

 re
d)

, h
or

iz
on

ta
l l

in
es

 
ab

ov
e 

an
d 

be
lo

w
 th

e 
te

xt



1851Adaptive Context-Aware Energy Optimization for Services on…

1 3

Execution results R consist of two numeric attributes: batteryUsage and timeUsage. The 
set of decisions D has two values: cloud and local.

5.1  Power Measurement

The power consumption measurement (estimation) module was an important element used 
in power consumption tests in the process of learning and also an element allowing the 
classifier that predicted energy demand to learn. The choice of the method for measuring or 
estimating power was preceded by analysing and testing existing solutions. The tests were 
performed for Android 4.4.2, which was used by a large number of mobile devices at the 
time (in 2016). The method selected should work in real time (online), allow measurements 
for individual device components (CPU, wireless communication modules), and should 
have appropriate measurement resolution (less than 1% battery consumption). Owing to 
this resolution, it is possible to measure the power consumption of particular applications/
services on mobile devices quite accurately.

The first study concerned power measurement methods on Android devices. The 
most commonly used measurement method is to use a public API (BatteryManager) that 
makes it possible to retrieve information about the current power status of the device. It 
uses a subscription mechanism, which prevents obtaining information about battery sta-
tus regularly and continuous real-time measurements. At the same time, the maximum 
resolution of measurements is 1%, which may sometimes not be sufficient to measure 
the difference in power consumption between application/service launches in differ-
ent contexts. It is possible to use an advanced API (via the android.os.BatteryManager 
class), which allows measurements with a resolution better than 1%, but this is feasible 
only for a few devices with the Summit SMB347 and MAX17050 battery charger inte-
grated circuits, which are present in Nexus series devices (such as Google Nexus 6 and 
9), so this is not a solution which could be widely used on a variety of Android devices. 
There is also the non-public BatteryInfo Android API, which makes it possible to obtain 
low-level information about power consumption. However, it requires android.permis-
sion.BATTERY_STATS permissions, which are reserved for applications built into the 
system and cannot be easily used by user applications. Another option for obtaining 

Table 4  Attributes describing tasks and the context

Name Domain Description

taskType {fr, ocr} Type of the task to execute
Size ℕ FR: number of frames, OCR: file size
Resolution ℕ Number of pixels (per frame for FR)
nrOfTemplates ℕ FR: number of faces to detect, OCR: N/A
handleRotations Boolean FR: value of HandleArbitraryRotations parameter, OCR: N/A
determineRotation Boolean FR: value of DetermineFaceRotationAngle parameter, OCR: 

N/A
resizeWidth ℕ FR: value of InternalResizeWidth parameter, OCR: N/A
Threshold ℕ FR: value of DetectionThreshold parameter, OCR: N/A
connectionType {none, HSDPA/

HSUPA, Wi-Fi, 
unknown}

Internet connection type
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data on power consumption is to use the dumpsys batterystats command and visualize 
the results in the Battery Stats and Battery Historian programs. This enables data to be 
obtained from system logs, including information on power consumption by the entire 
device as well as its individual components. The downside of this solution is that it 
does not work online and that it only shows the results on a PC. Another solution (Carat 
[27]) allows for the monitoring and analysis of data (on an external server) on power 
consumption from multiple mobile devices simultaneously and for detecting anomalies 
in the operation of individual applications. However, this solution does not allow local 
power measurement in real time (online). There are also closed applications available, 
such as Battery Doctor, Battery Saver 2017 and GSam Battery Monitor, which can be 
used for the monitoring and management of battery consumption on mobile devices. 
Still, due to the lack of their source codes or libraries, it was not possible to use them 
in the solution developed. An alternative to software solutions is the physical measure-
ment of battery power consumption. This is the most accurate method, but it usually 
requires gaining access to mobile device internals and the use of additional measur-
ing equipment. Moreover, such solutions only allow for the measurement of total power 
consumption of the device without obtaining any results for individual components such 
as CPU or wireless communication modules. Because of the nature of this measure-
ment, this solution will never be widely used. Examples in this category are BattOr [28] 
(open-source), and the commercial Monsoon Mobile Device Power Monitor solution.

Our further research focused on the estimation of power consumption by mobile 
devices. Solutions using this method make it possible to obtain real-time results with 
a high measurement resolution. The most popular and widely used solution based on 
estimation is the PowerTutor program, which uses three basic energy characteristics of 
mobile device components. For a thorough analysis of the capabilities of this solution 
and its potential further use, we used the source code of this program to develop our own 
library for estimating power consumption. The solution developed allows for estimating 
power consumption of individual mobile device components (such as CPU and commu-
nication modules) with an error in the range of 1–5% [20], but it was designed for older 
devices and does not support new LTE wireless communication modules. Finally, the 
latest method for estimating mobile device power consumption uses the power profiles 
provided by device manufacturers. However, not all mobile devices have these profiles 
defined correctly which leads to problems with using this method. At the same time, no 
libraries have been developed that use this solution. In order to compare this method 
with PowerTutor, we conducted tests using the Lenovo Tab 2 A7-30D device. Prelimi-
nary results showed that for this device, there are no major differences between the two 
solutions when it comes to estimating the power consumption of the CPU and wireless 
communication modules.

The analysis of available solutions demonstrates that only estimation methods work 
on most devices and meet basic requirements, i.e. they work online, allow for measur-
ing individual components of a mobile device and have the appropriate measurement 
resolution. While being aware of its limitations, we have decided to use our own library 
developed with the use of the PowerTutor source code. However, with the device used in 
tests, this solution allowed for a fairly accurate estimation of the power consumed by the 
CPU and wireless communication modules. In future research concerning new Android 
mobile devices, we are going to use a solution based on power profiles, which has been 
pre-tested by us. This will require developing a library for analysing the power_profile.
xml system file and calculating the power consumption of individual components of a 
mobile device.
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5.2  Power Consumption During Learning Process

In the first stage of proper research, the energy cost of building classifiers was measured 
(including the operation of the Weka library [29, 30]), which made it possible to assess 
whether it was not excessive in relation to the potential savings resulting from the use of 
the solution developed. Tests were performed for the three classifiers used (C4.52, Random 
Forest, Naïve Bayes) using the Lenovo Tab 2 A7-30D tablet. For conducting tests, artificial 
training data were generated, containing 1,000 random examples, which corresponds to 
executing 1,000 tasks using the system developed. Every classifier was tested with differ-
ent percentages (25%, 50%, 75% and 100%)3 of the training data set used. Tests for specific 
percentage values were repeated 100 times and the final result was averaged. In Fig.  2, 
battery consumption (as a percentage) during the process of building individual classifiers 
is shown. The results demonstrate that power consumption for all classifiers is low (up to 
0.4% of battery charge) and does not significantly affect the ability to carry out the tests of 
the services developed. In addition, the data set used for these tests was very large and in 
practice when it comes Face Recognition and OCR service tests, the amount of data that 
had to be processed by the classifier was much smaller (usually from 100 to 200 examples). 
The lowest power consumption is associated with the Naïve Bayes classifier and this is due 
to the fact that Naïve Bayes exhibits linear time complexity, which results in less stress on 
the device at the time of building the classifier (compared to the remaining classifiers used) 
and thus less energy expenditure.

Fig. 2  Battery consumption while building a classifier

2 Weka’s C4.5 implementation (J48) was used in the tests.
3 For example, a 25% test meant that to build the classifier, 250 examples were used from the input data.
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5.3  Tuning Classifier Parameters

In the next research stage, the Lenovo Tab 2 A7-30D mobile device was used, on which 
the Hill Climbing algorithm was run in order to determine the optimal parameters for 
individual classifiers. During the tests, the weights of adaptive algorithm were set as fol-
lows: wp = 50 and wt = 50 , and for each classifier, 20 series of the algorithm were run, 
each series consisting of five rounds, and all series for a single set of parameters were 
repeated twice. Initial values of parameters were selected manually based on results of 
a number of optimization process executions during software development and testing. 
They appeared to be close to optimal values. However, one may start the tuning process 
from another starting point, taking into account that it may take longer. Generally, the � 
parameter should be as small as possible given the time complexity of the process. As 
concerns the number of bins, it equals two because we wanted odd values of this param-
eter to have a neutral value in the middle. This is not necessary, though. The � param-
eter for � is set to five to limit the amount of computations. For each set of parameters, 
tasks were executed in various contexts—a single test round consisted of:

• Five tasks executed with the Wi-Fi connection available (9 Mb/s), including three 
Face Recognition tasks (fr3, fr4, fr5) and two OCR tasks (ocr4, ocr5);

• Five tasks with the HSDPA/HSUPA connection available, including three Face Rec-
ognition tasks (fr3, fr4, fr5) and two OCR tasks (ocr4, ocr5).

The result of this stage of research was the optimization of parameters for two clas-
sifiers: C4.5 (Table 5) where the � parameter was changed (from 10 to 15) and Naïve 
Bayes (Table 6) where the same parameter changed from 10 to 20. Such a big change in 
the value of the Naïve Bayes classifier probably resulted from the fact that the decisions 
made by the classifier were sometimes suboptimal and a higher value of this factor con-
tributed to better optimization.

For the Random Forest classifier (Table 7), the initial parameters proved to be opti-
mal and did not require improvement.

Table 5  Optimization of 
parameters for the C4.5 classifier

Name Initial value � Final value

Pruned False “Toggle” False
� 10.0 5.0 15.0
Bins (for class attributes) 5 2 5
minNumObj 3 1 3

Table 6  Optimization of 
parameters for the Naïve Bayes 
classifier

Name Initial value � Final value

� 10.0 5.0 20.0
Bins (for class 

attributes)
5 2 5
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5.4  Optimization

The final stage consisted of conducting the tests concerning the possibility of optimiz-
ing power consumption (and additionally execution time) using different classifiers. 
During the tests related to optimizing power consumption, the weights of the adaptive 
algorithm were set to wp = 90 and wt = 10. For the additional test related to optimizing 
execution time (Fig. 10), the weights were set to wp = 10 and wt = 90. The Lenovo Tab 2 
A7-30D mobile device was used during test. Each test carried out consisted of 20 series, 
each series of nine rounds, and each round comprised:

• Seven tasks executed with the Wi-Fi connection available (9 Mb/s), including four 
tasks of the Face Recognition type (fr1, fr2, fr4, fr5) and three tasks of the OCR 
type (ocr1, ocr2, ocr4);

• Seven tasks executed with the HSDPA/HSUPA connection available, including four 
tasks of the Face Recognition type (fr1, fr2, fr4, fr5) and three tasks of the OCR type 
(ocr1, ocr2, ocr4).

Detailed test results for individual classifiers are presented in two graphs: for the opti-
mization of power consumption and task execution location (mobile device or cloud 
computing). For the power consumption optimization graph, the result of a single round 
was the aggregate power consumption by all tasks executed in that round. The graph 
shows the average results of individual rounds conducted in all series; for each result, 
the standard deviation is marked. The t-Student test was also performed for each clas-
sifier and for averaged results from all series of the first and the last round. In the case 
of the graph showing the task execution location, the result of a single round is the 
number of tasks executed in a given location (locally on the mobile device or remotely 
using cloud computing). On the graph, each round is marked separately and contains 
the average number (from all series) of tasks executed in a particular location (locally/
remotely).

Figure 3 shows the power consumption optimization graph for the C4.5 classifier. It can 
be seen that power consumption decreases in subsequent rounds until it begins to oscillate 
around a single value of 17,500 mJ. The result of the t-Student test for this classifier (the 
p-value) equals 0.000018, which means that average values for the first and last rounds are 
statistically significantly different.

Figure 4 shows the graph presenting the number of tasks executed locally on the mobile 
device and remotely in the cloud for the C4.5 classifier. It can be noticed that the algo-
rithm using this classifier sends more and more tasks to the cloud over time (in successive 
rounds), reducing power consumption on the mobile device.

Figure  5 shows the power consumption optimization graph for the Random Forest 
classifier. It can be seen that power consumption decreases in subsequent rounds until it 
reaches a value of about 18,000 mJ. The result of the t-Student test for this classifier (the 

Table 7  Optimization of 
parameters for the Random 
Forest classifier

Name Initial value � Final value

� 10.0 5.0 10.0
Bins (for class attributes) 5 2 5
numFeatures 3 1 3
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p-value) equals 0.00000017, which means that average values for the first and last rounds 
are statistically significantly different.

Figure 6 shows the graph presenting the number of tasks executed locally on the mobile 
device and remotely in the cloud for the Random Forest classifier. It can be noted that the 
algorithm that uses this classifier, similarly as in the case of C4.5, sends more tasks to the 
cloud, reducing power consumption on the mobile device.

Fig. 3  Energy optimization for the C4.5 classifier

Fig. 4  Number of tasks performed in the cloud and on the mobile device for the C4.5 classifier
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Figure 7 shows the power consumption optimization graph for the Naïve Bayes classi-
fier. It can be seen that power consumption between the first and last rounds does decrease, 
but it is not a steady or large reduction. The result of the t-Student test for this classifier 
(the p-value) equals 0.1, which means that average values for the first and last rounds are 
not statistically significantly different.

Fig. 5  Energy optimization for the Random Forest classifier

Fig. 6  Number of tasks performed in the cloud and on the mobile device for the Random Forest classifier
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Figure 8 shows a graph presenting the number of tasks executed locally on the mobile 
device and remotely in the cloud for the Naïve Bayes classifier. It can be noticed that the 
algorithm using this classifier, similarly to the previous tests, sends more tasks to the cloud; 
however, it does not allow a significant power consumption optimization to be achieved. 
This might be related to the high value of the random factor, which was the result of run-
ning the Hill Climbing algorithm.

Fig. 7  Energy optimization for the Naïve Bayes classifier

Fig. 8  Number of tasks performed in the cloud and on the mobile device for the Naïve Bayes classifier
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Figure 9 shows a comparison of power consumption optimization results for all three 
classifiers and for services performed without using machine learning methods (exclusively 
locally on the mobile device and exclusively in the cloud). It can be noticed that classifiers 
based on decision trees (C4.5 and Random Forest) perform much better than the Naïve 
Bayes classifier. They achieve almost the same optimization levels and the result of the 
t-Student test for both classifiers (the p-value) equals 0.3741, which means that average 
values for the last round for the C4.5 and Random Forest classifiers are not statistically 
significantly different. However, the Random Forest classifier achieves the final power con-
sumption stage faster. The worst result was achieved by the Naïve Bayes classifier. The 
result of the t-Student test for the Naïve Bayes and C4.5 classifiers (the p-value) equals 
0.0021, which means that average values for the last round for those classifiers are statisti-
cally significantly different. In cases where the service was executed in a single location (in 
the cloud or locally), the results were worse than in cases where classifiers and machine 
learning were used. However, the result for running the service exclusively in the cloud 
was only slightly worse than for the Naïve Bayes classifier.

In order to check whether the algorithm developed allows for the optimization of other 
parameters, task execution time optimization tests were carried out (Fig. 10) for the C4.5, 
Random Forest and Naïve Bayes classifiers and for services performed without using 
machine learning methods (exclusively locally on the mobile device and exclusively in the 
cloud). For all the classifiers tested, task execution time between the first and last rounds 
decreased. Similar to the power consumption optimization tests, classifiers using decision 
trees performed much better than the Naïve Bayes classifier when it came to optimizing 
task execution time. The result of the t-Student test for average values of the first and last 
rounds of Naïve Bayes classifier tests amounted to 0.3, which means that there is no sta-
tistically significant improvement in task execution time results for that classifier. For the 
C4.5 (the p-value in the t-Student test equals 0.00019) and Random Forest (the p-value in 

Fig. 9  Comparison of power consumption optimization for all three classifiers (C4.5, Random Forest and 
Naïve Bayes) and for services performed without using machine learning methods (exclusively locally on 
the mobile device and exclusively in the cloud)



1860 P. Nawrocki, B. Sniezynski 

1 3

the t-Student test equals 0.0026) classifiers, the decrease in task execution time between the 
first and last rounds was statistically significant. All classifiers achieved almost the same 
level of optimization. Results of t-Student tests for these classifiers were as follows: 0.3471 
(C4.5/Random Forest), 0.3880 (C4.5/Naïve Bayes) and 0.1939 (Random Forest/Naïve 
Bayes) which means that average values for the last round for all classifiers are not statisti-
cally significantly different. In cases where the service was executed in a single location (in 
the cloud or locally), the results were significantly worse than in cases where classifiers and 
machine learning were used.

Numbers of tasks executed in both locations for various contexts (HSDPA/HSUPA and 
Wi-Fi connections) are presented in Figs. 11, 12, 13, 14, 15 and 16. For all learning algo-
rithms and contexts, the number of local executions exhibits a downward trend, while the 
number of cloud executions shows an upward one. The difference between local and cloud 
executions is larger for the Wi-Fi connection than for HSDPA/HSUPA because transfer 
speed is higher, the connection is more stable, and data transfer becomes cost-effective for 
a larger number of tasks. This is particularly noticeable for the C4.5 and Random Forest 
algorithms, which are more accurate than Naïve Bayes.

In order to compare our software with already existing solutions, we analyzed 
various Mobile Cloud Computing solutions. Many of those (such as MALMOS [31], 
COMET [32] and COSMOS [33]) do not take into account energy aspects at all in their 
operation. Only a few (such as AIOLOS [34], CACTSE [35], Cuckoo [36], EMCO [37], 
IC-Cloud [38], MAUI [39] and ThinkAir [40]) account for energy aspects and only the 
IC-Cloud solution uses machine learning algorithms to optimize the operation of appli-
cations/services. However, almost all of the solutions analyzed (including IC-Cloud) are 
not being developed any further or there is no access to their source codes. It was only 

Fig. 10  Comparison of execution time optimization for all three classifiers (C4.5, Random Forest and Naïve 
Bayes) and for services performed without using machine learning methods (exclusively locally on the 
mobile device and exclusively in the cloud)
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possible to find source codes for two solutions: AIOLOS4 and Cuckoo5. Unfortunately, 
both of these solutions use old software development kit versions (such as Eclipse and 

Fig. 11  Number of tasks performed in the cloud and on the mobile device for the Naïve Bayes classifier and 
HSDPA/HSUPA connection

Fig. 12  Number of tasks performed in the cloud and on the mobile device for the Naïve Bayes classifier and 
Wi-Fi connection

4 Code repository—https ://githu b.com/ibcn-cloud let/aiolo s.
5 Code repository—https ://githu b.com/inter droid /cucko o-libra ry.

https://github.com/ibcn-cloudlet/aiolos
https://github.com/interdroid/cuckoo-library
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the ADT plugin instead of Android Studio). In the case of AIOLOS, we were able to 
configure and build a sample project, but when running the sample (using the Androsgi 
plugin), the application closed and reported an error. The code was analyzed, but it was 
not possible to determine what caused the error. For the second solution—Cuckoo, it 
was possible to run the sample application. However, comparing this solution with our 

Fig. 13  Number of tasks performed in the cloud and on the mobile device for the C4.5 classifier and 
HSDPA/HSUPA connection

Fig. 14  Number of tasks performed in the cloud and on the mobile device for the C4.5 classifier and Wi-Fi 
connection
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system proved difficult due to the fact that Cuckoo lacked machine learning mechanisms 
and used completely different solutions in terms of the computing cloud—the server ran 
on an EC2 instance and it was not possible to use the AWS Lambda service.

Fig. 15  Number of tasks performed in the cloud and on the mobile device for the Random Forest classifier 
and HSDPA/HSUPA connection

Fig. 16  Number of tasks performed in the cloud and on the mobile device for the Random Forest classifier 
and Wi-Fi connection



1864 P. Nawrocki, B. Sniezynski 

1 3

6  Conclusions

Multiple studies have been carried out recently concerning the possibilities of reduc-
ing the power consumption of mobile devices, primarily in the area of optimizing the 
functioning of their screens, processors or wireless communication modules. However, 
our analysis concerning existing solutions revealed that there are no systems that use 
machine learning for optimizing power consumption on mobile devices using MCC. In 
this article, we present an original concept for an adaptive system enabling the optimi-
zation of mobile device power consumption and at the same time taking into account 
the context of the device’s operation. The use of machine learning algorithms in our 
solution allowed for the optimization of power consumption and reducing the service/
application execution time on the mobile device.

Two services were used in the tests: Face Recognition and OCR. They were imple-
mented on a mobile device with the Android operating system, with the ability to run 
them in the AWS Lambda compute cloud. The experiments carried out demonstrated 
that the adaptation algorithm developed made it possible to reduce power consump-
tion for the C4.5 classifier by 41%, for the Random Forest classifier by 48% and for 
the Naïve Bayes classifier by 17%. Despite the relatively large standard deviation for 
the Naïve Bayes classifier, tests showed that the solutions developed can significantly 
reduce the power consumption of mobile devices. At the same time, we examined the 
possibility of optimizing the execution time of services/applications, and the results 
obtained—execution time being reduced by 23% (C4.5), 29% (Random Forest) and 19% 
(Naïve Bayes)—also demonstrated the effectiveness of the solution developed. During 
the tests, we also found out that the power consumption of the system developed during 
the learning process itself is very low and does not significantly affect the operation of 
the mobile device.

Our research shows that it is possible to create a system using adaptive algorithms based 
on machine learning that enables efficient learning and making increasingly better deci-
sions. This allows for power consumption optimization as well as for reducing the ser-
vice execution time on mobile devices. In further tests, we would like to address, among 
other things, the possibility of using distributed learning. Local models would be learned 
on mobile devices like it is the case now; however, part of the data collected would also be 
sent to the cloud where global models could be learned from aggregated data provided by 
many users. Such global models could subsequently be sent to mobile devices and allow 
them to use global knowledge locally.
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which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
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