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Abstract
Wireless sensor networks have been considered as an emerging technology for numerous 
applications of cyber-physical systems. These applications often require the deployment 
of sensor nodes in various anisotropic fields. Localization in anisotropic fields is a chal-
lenge because of the factors such as non-line of sight communications, irregularities of ter-
rains, and network holes. Traditional localization techniques, when applied to anisotropic 
or irregular fields, result in colossal location estimation errors. To improve location estima-
tions, this paper presents a comparative analysis of available localization techniques based 
on taxonomy framework. A detailed discussion on the importance of localization of sensor 
nodes in irregular fields from the reported real-life applications is presented along with 
challenges faced by existing localization techniques. Further, taxonomy based on tech-
niques adopted by localization methods to address the effects of irregular fields on loca-
tion estimations is reported. Finally, using the designed taxonomy framework, a compara-
tive analysis of different localization techniques addressing irregularities and the directions 
towards the development of an optimal localization technique is addressed.

Keywords  Anisotropy · Irregular fields · Localization · Taxonomy · Wireless sensor 
networks

1  Introduction

The emergence of Internet of Things (IoTs) and intelligent applications like smart cit-
ies, smart homes, smart healthcare services, and intelligent vehicular monitoring have 
increased the need to connect the physical environment with the digital world [1, 2]. Wire-
less sensor networks (WSNs) are playing a vital role in such applications because of the 
ease with which they can connect physical and digital worlds  [1]. Advances in Micro-
Electro-Mechanical System (MEMS) technology, wireless communication, and digital 

 *	 K. V. Santhosh 
	 kv.santhu@gmail.com

	 Soumya J. Bhat 
	 soumya.janardhana@gmail.com

1	 Department of Instrumentation and Control Engineering, Center for Cyber Physical System, 
Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

http://orcid.org/0000-0003-4394-5947
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-020-07460-6&domain=pdf


2018	 S. J. Bhat, K. V. Santhosh 

1 3

electronics have led to the proliferation of WSNs  [3]. With the advancement of sensor 
technologies, WSNs are envisioning a wide variety of promising services in many fields 
such as search-and-rescue operations, environmental monitoring, precision agriculture, 
smart transportation, military surveillance, event detection (fires, floods, and hailstorms), 
to name a few [4–8].

WSNs are a network of sensor nodes which are tiny and cost effective devices. Sensor 
nodes consist of one or many sensors to monitor phenomena around them, Analog to Digi-
tal Converter (ADC) unit to convert monitored data to digital format, a small memory unit, 
a microcontroller for data processing, a transceiver unit to exchange data and a power sup-
ply which is usually a battery [9]. Nodes transmit the monitored data to a gateway node or 
base station through single hop routing or multi-hop routing [10, 11]. Gateway node, which 
is usually a powerful node, will process the data and take necessary actions [12].

WSNs are formed by deploying sensor nodes in the field of interest. An efficient deploy-
ment maximizes the quality of network in terms of coverage, connectivity, and lifetime 
of the network [13, 14]. Deployment of sensor nodes can be carried out in deterministic 
or random fashion, as represented in Fig.  1. In a deterministic deployment, the location 
of each sensor node is predetermined. By knowing the field geometry and radio propaga-
tion pattern of nodes, a minimum number of required nodes and their positions can be 
determined to achieve the required degree of coverage and connectivity [15, 16]. But, these 
methods are usually not suitable for large scale networks which involve hundreds to thou-
sands of nodes as they demand the placement of a huge number of nodes in predetermined 
places. Uniform random deployment is more suitable for networks consisting of a huge 
number of sensor nodes [17, 18]. Disadvantage of this method is that, as this involves ran-
domness, it does not guarantee complete coverage and connectivity. It is possible that there 
is missing coverage and connectivity in a few parts of the field.

After deployment, sensor nodes start monitoring phenomena around them and start col-
lecting information on events. The information collected by each sensor node can be rep-
resented in the form (D, L, T), where D is the measurement data, L is the location of the 
measuring node, and T is the time at which measurement was done [12]. It is important to 
know the location of nodes along with measurement data and time of measurement. Loca-
tion information of nodes in the network is essential to provide location stamps for the 
observed events, act on sensed data, locate and track target objects, determine the quality of 

Fig. 1   a Deterministic deployment of sensor nodes. b Random deployment of sensor nodes
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coverage, facilitate geographic routing algorithms based on nodes location, position aware 
data processing, etc. Studies have revealed that existing location finding techniques like 
Global Positioning System (GPS) are not suitable to be used in WSNs because of higher 
power consumption and reduced accuracies in indoor and urban areas [5, 6, 19–22].

Localization in WSN is the process of determining the location of sensor nodes. The 
existing traditional localization techniques in WSN utilize connectivity information, dis-
tance, and angle measurements between sensor nodes to estimate the location of nodes [23, 
24]. Centroid  [25, 26], weighted centroid  [10, 25], Approximate Point in Triangle 
(APIT) [19, 27] and Distance Vector hop (DV-hop) [6, 28] are few of the existing locali-
zation techniques which make use of connectivity information between nodes. Received 
Signal Strength (RSS) [18, 29–32], Time of Arrival (TOA) [7, 33, 34] and Time Differ-
ence of Arrival (TDOA) [34] based localization techniques utilize distance measurements 
between sensor nodes. RSS based techniques make use of change in signal strength from 
transmitting node to the receiving node to estimate the distance between nodes. TDOA and 
TOA based techniques make use of time a signal takes to travel between two nodes. Angle 
of Arrival (AOA) based localization methods make use of angular estimations between 
nodes [4, 35].

In the existing literature, a number of localization algorithms have been reviewed in 
the area of estimation of location for sensor nodes. Authors in  [36, 37] have conducted 
a review of generic WSN localization techniques. Recent advances on localization tech-
niques in WSNs were presented in [36] by considering a wide variety of factors and cat-
egorizing them in terms of sparse and dense node density, anchor based and anchor free 
algorithms, indoor and outdoor operating environment, static and mobile nodes, etc. In this 
review, it is observed that to handle a variety of applications in different scenarios, WSNs 
would need to be equipped with a combination of techniques and context to estimate loca-
tions accurately. A study of research problems associated with node localization in WSN 
was provided by [37]. In this paper, sensor network localization problems were described 
in terms of detection and estimation framework with emphasis on anchor based localiza-
tion measurements. A review of rigid graph based localization of WSNs was conducted 
in [38]. Rigid graphs can sustain a different kind of deformations due to translation, rota-
tion, and reflection. Concepts of rigid graphs were found to be more useful for determining 
correct location coordinates from error prone distance measurements.

Authors in [39, 40] have conducted a review of mobility assisted localization techniques. 
In [39], authors have reported a review on various mobile anchor node assisted localization 
techniques. Discussions of various classification algorithms based on the mobility model 
and path planning schemes were conducted. In  [40], authors have presented a survey on 
mobility-assisted localization techniques by focusing on the algorithmic approaches of 
these techniques. In this survey, along with algorithmic approaches, error refinement mech-
anisms adopted were highlighted, and also mobile anchor trajectories presented in existing 
works were reviewed.

Location finding is more challenging in practical scenarios where nodes are affected by 
non-line of sight (NLOS) communications, irregularities of terrains, and hardware mal-
functioning. Hence, a detailed review of the available localization techniques that try to 
overcome the effects of irregularities is presented. This review is restricted to a network of 
static sensor nodes. In this review, an overview of the research done in the field of WSN 
localization techniques, evaluation, and comparison to existing localization techniques for 
irregular fields is presented.

The paper is organized as follows. Section  2 introduces different representations of 
irregular fields and evaluation criteria for localization techniques. Section  3 discusses 
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the motivations and challenges of WSN localization in irregular fields. Classification of 
localization techniques using different classification criteria and a taxonomy framework is 
provided in Sect. 4. Finally, conclusions and future research directions are summarized in 
Sect. 5.

2 � Basics of Localization

This section discusses basics of localization by defining localization problem, irregulari-
ties of field, various representations of irregularities and evaluation criteria of localization 
techniques.

2.1 � Localization Problem

Localization is determining locations of unaware sensor nodes by making use of proximity 
measures to reference nodes. Proximity is a quantitative measure which is proportional to 
the geographic distance. An example for a proximity measure is RSS. Here, by measuring 
the decay in signal strength from location unaware nodes to location aware reference nodes, 
geographic distance between the nodes can be estimated. TOA is another example for prox-
imity measure. Here, by making use of time a signal takes to travel from location unaware 
nodes to reference nodes, geographic distance between the nodes can be estimated. In [41], 
authors have defined the localization problem as follows.

Consider a sensor network with N nodes. In this network, let M nodes be reference 
nodes denoted as X1,X2,… ,XM and N-M be location unaware nodes with unknown posi-
tions denoted as XM+1,XM+2,… ,XN . The Euclidean distance which is a measure of geo-
graphic distance between two nodes Xi and Xj is defined as

where Xik and Xjk are the kth coordinates of Xi and Xj respectively in d-dimensional space.
Localization problem can be stated as,

Given: Xi , Xj , pij and psi for i,j � {1,2,...,M}, s � {M+1,M+2,...N}
Estimate: Xs

where Xi , Xj are reference nodes, pij is the proximity between any two reference nodes 
which can be in terms of RSS, hop count, TOA, AOA etc. and psi is the proximity between 
location unaware sensor node and any reference node.

In other words, localization is the problem of estimating locations of N–M nodes with 
the help of M reference nodes.

2.2 � Definition of Irregularity

Let fp be the function that maps co-ordinates of two sensor nodes Xi and Xj to pij , where pij 
is the proximity between Xi and Xj . Proximity pij can be in terms of minimum hop counts 
or difference in transmitted and received signal powers between nodes Xi and Xj or any 

(1)dij = fd(Xi,Xj) =

√

√

√

√

d
∑

k=1

(Xik − Xjk)
2
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other measures. As defined in [41], if the measured proximity pij for a pair of sensor nodes 
Xi and Xj written as pij = fp(Xi,Xj ) is a function of the Euclidean distance between Xi and 
Xj , written as gp(dij ), the sensor network is said to be regular or isotropic.

Irregular or anisotropic fields are the ones where proximities measured by a sensor node 
to others vary with different directions and hence cannot be represented as a function of 
Euclidean distance. In other words, there doesn’t exist a function gp which can map prox-
imity pij to Euclidean distance dij.

2.3 � Different Representations of Irregularity

Irregularities in the fields can be represented in terms of irregular radio propagation pat-
tern of nodes, noise in the environment, and by considering network holes and irregularly 
shaped fields.

2.3.1 � Irregular Radio Propagation Pattern of Nodes

In [42], authors have used Degree of Irregularity (DOI) parameter to denote the irregularity 
of a radio pattern. In a field with randomly scattered obstacles of different sizes, radio sig-
nal gets attenuated with different magnitudes at different directions. The DOI is defined as 
the change in maximum path loss percentage per unit degree change in the radio propaga-
tion direction. As shown in Figs. 2 and 3, when there are no obstacles, DOI is 0 and Radio 
Propagation Pattern (RPP) is a perfect sphere. As the irregularity of the field and number 
of obstacles increase, radio propagation pattern becomes more and more irregular [43].

2.3.2 � Noise

Irregularity in fields can be because of the presence of random obstacles which results in 
reflections, diffractions, absorptions and scattering of the radio signals from nodes. This 
causes NLOS communication among nodes, which can be represented by approximating 
NLOS error to follow different distributions, such as Gaussian distribution, uniform distri-
bution, and exponential distribution in different conditions [44].

According to [45], distance between two nodes i and j can be represented as

(2)pij = fp(Xi,Xj) = gp(dij) ∀i, j ∈ 1, 2,… ,N and gp ∶ R → R

Fig. 2   DOI at various levels. a DOI = 0 , b DOI = 0.002, c DOI = 0.02
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where d(i,j) is the true Euclidean distance between nodes i and j, �n is noise factor.

where vn is the measurement noise and bnlos is the NLOS error which can follow different 
distributions.

2.3.3 � Network Holes

Network holes are created by irregularities in the field where in some parts of the field sig-
nal propagation is completely blocked. This may be due to huge obstacles like rocks, rivers 
or buildings. Larger holes force signal propagation to take a longer path resulting in huge 
deviations from the actual distance between nodes [46]. As shown in Fig. 4a, signal propa-
gation from node s to node t is close to a straight line, hence proportional to actual distance 

(3)Z(i, j) = d(i, j) + �n

(4)�n = vn + bnlos

Fig. 3   RPP of nodes, a without obstacles and b with obstacles

Fig. 4   In a, signal propagation from node s to node t is close to a straight line. In b, signal propagation from 
node s to node t is taking a longer route because of the obstacle
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and in Fig. 4b the path is curved in the presence of holes to bypass the hole. This results in 
higher bias of shortest path from actual distance between nodes s and t.

2.4 � Evaluation Criteria

Quality of a localization technique for WSNs depends on whether it can satisfy the accu-
racy requirements while maintaining the resource consumptions of sensor nodes to be 
minimal. Localization techniques are evaluated for accuracy and success percentage at dif-
ferent node densities and reference node counts. These techniques are also evaluated for 
memory requirements, communication costs, time taken for communication and complex-
ity of algorithms  [47]. Localization accuracies and other characteristics are evaluated in 
different irregular shapes of fields with network holes and obstacles. They are also evalu-
ated for multi-dimensional cases and heterogeneous or homogeneous set of nodes [48, 49]. 
Accuracies are usually evaluated as average localization error which is calculated using 
below equation.

where n is the number of location unaware nodes, (xi,est, yi,est, zi,est) is the estimated co-ordi-
nate of ith node, (xi,act, yi,act, zi,act) is the actual co-ordinate of ith node.

Success percentage is the number of nodes successfully localized, which can be calcu-
lated using below Eq. [47].

Success percentage is a way of measuring the quality of a localization algorithm. Higher 
value of success percentage indicates larger number of nodes localized by the algorithm 
and smaller value indicates only a few nodes in the network are localized.

3 � Motivation and Challenges of Localization in Irregular Topologies

3.1 � Motivation

Motivations for localization in irregular fields with different sized obstacles, complex 
shaped fields and terrains are discussed here.

Considering an example of battle field surveillance or intelligent vehicular monitoring. 
They comprise of fields with obstacles of different sizes where sensors can rarely be uni-
formly deployed over the field. These obstacles result in degradation of radio communi-
cation among nodes and create holes in networks. Secondly, even in case of isotropic or 
regular fields, uneven power consumption among sensor nodes may create network holes. 
Lastly, external interferences like rain, sand storm, etc. may cause communication failures 
which result in holes in the network [46].

Intelligent environmental applications Localization is important in environmental applica-
tions like forest fire monitoring, precision agriculture applications. Forest fires are one of 

(5)
ALE =

n
∑

i=1

�

(xi,est − xi,act)
2 + (yi,est − yi,act)

2 + (zi,est − zi,act)
2

n

(6)Success percentage =
Number of target nodes localized

Total number of target nodes
× 100
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the commonly occurring problems across the world. WSNs can provide solutions by gath-
ering sensory data values like humidity and temperature from sensor nodes deployed in the 
field. By efficient localization of sensor nodes deployed in forest regions, place of fire can 
be known accurately through localization algorithms. Based on this information, neces-
sary actions can be taken immediately. But, as forest areas are usually not plain uniform 
fields, considering irregularities of field increases localization accuracies [50, 51]. WSNs 
are also used in precision agriculture applications, such as pest management and pH sens-
ing in large farms [30]. Accurate localizations help in execution of required actions at right 
places.

Industrial monitoring WSNs are used in few industrial monitoring applications like moni-
toring of high temperature processes, vicious gas monitoring, etc. One such application is 
in the construction industry which needs monitoring of carbon monoxide (CO) concentra-
tions. At over-standard concentration it may result in burns or explotions. WSN with CO 
sensors is deployed for this purpose. This requires placement of nodes amidst obstacles of 
different types like machines, humans and furniture. Localization considering these obsta-
cles will correctly locate the place of over-standard concentration of CO [52].

Smart cities WSNs are an essential part of smart cities, smart roads for intelligent moni-
toring and control of events, etc. One such application is optimizing highway lighting for 
energy saving in smart cities. This is done through smart lighting techniques. WSNs are 
used to detect the presence of vehicles along the road and to control lamps accordingly. 
Efficient localization considering obstacles like vehicles, trees enhances the performance 
of such systems [53].

3.2 � Challenges

In practice, sensor network is deployed in geographic regions of varying shapes and ter-
rains consisting of obstacles of different size and shapes causing network holes and NLOS 
communications. These irregularities in network results in variation of distance to proxim-
ity mapping in the field of interest [41].

Few examples of challenges faced by some of the popular localization approaches due 
to irregularities is provided here.

RSS based localization techniques They work under the assumption that by measuring the 
RSS value, distance between the transmitting and receiving node can be estimated.

Can RSS based localization techniques be used to localize nodes in irregular fields?
Experiments conducted in [42] show that, in the presence of radio irregularities, RSS 

values between a pair of transmitter and receiver at fixed distance varied when the receiver 
was placed at different propagation directions from the transmitter. Hence, RSS based dis-
tance estimations result in huge deviations in irregular fields [54].

Hop count based techniques These algorithms make use of hop distance and hop counts 
to estimate locations. This works under the assumption that each hop distance is same 
throughout the network. Average distance per hop is calculated by measuring hops between 
reference nodes and mapping it to the known distance between reference nodes. Using 
the average distance per hop and number of hops, location unaware nodes estimate their 
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distances to reference nodes. This information is used to estimate the location of unknown 
nodes [55].

Can hop count based localization techniques be used to localize nodes in irregular 
fields?

In irregular topologies, communication range will have different values in different 
propagation directions. This results in different hop sizes in the network depending on 
irregularity. So, measuring node distance as the product of hop counts and average hop 
distance gives high location errors. Also, the presence of network holes results in bent 
paths and hence overestimated distances between nodes, which adds to the localization 
errors [56, 57].

Centroid based localization techniques Location of a node is estimated as geographic cen-
troid of all reference nodes which are in it’s communication range [58].

Can centroid based localization techniques be used to localize nodes in irregular fields?
In the presence of obstacles and holes, nodes cannot be uniformly distributed. As shown 

in [42], in irregular fields, the node that can hear from N reference nodes need not be nec-
essarily at the geographic center of these nodes. Hence, estimating the location of a node 
as centroid of other nodes results in large estimation errors. The performance gets worse in 
case of nodes on the borders of network holes and fields.

TOA and TDOA based localization techniques These algorithms estimate distances 
between nodes by making use of time it takes for signal to travel [59].

Can TOA and TDOA based localization techniques be used to localize nodes in irregu-
lar fields?

Generally, in irregular fields, obstacles force radio signal propagation between two 
nodes to take a longer route. This usually adds a positive bias for the TOA and TDOA 
measurements [60]. The NLOS error is often regarded as a positive bias due to the longer 
indirect propagation path in NLOS condition. This positive bias results in over estimation 
of distance between nodes and larger location estimation errors.

To overcome the above mentioned challenges, researchers have further enhanced locali-
zation algorithms which will be discussed in the next sections.

4 � Classification of Localization Algorithms in Irregular Fields

Localization algorithms make use of different techniques to improve the positioning accu-
racy in anisotropic fields. Localization techniques can be classified based on different 
parameters. Here, we have discussed various classification criteria and reported a technique 
based taxonomy framework. Then, a comparative analysis of localization techniques is car-
ried out.

4.1 � Criteria for Classification of Localization Techniques

4.1.1 � Network Topology

Localization designs employ different techniques to improve location estimations with 
reduction in power consumption, computation and communication overhead  [61]. One 
such technique is to design network topology as centralized and distributed techniques.
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Centralized technique In centralized localization techniques, most of the computations 
are performed at a central node with higher capabilities. These type of algorithms collect 
all the necessary information for estimating locations from the network and process the 
collected information centrally. This approach reduces computational overhead on sen-
sor nodes. As the computations are executed at a node with higher capacity, these type of 
localization methods can be implemented with complex algorithms. But, since multiple 
communications are needed to exchange data between sensor nodes and central node, com-
munication cost of these methods is generally high.

Distributed technique Localization methods which fall under this category have the algo-
rithms running on sensor nodes in distributed manner. Nodes exchange information with 
surrounding nodes and estimate their locations on their own. As the computations are per-
formed at node level, algorithms employing complex techniques cannot be run. These type 
of algorithms are expected to run with simple computations using minimal computational 
capabilities and storage space of node.

4.1.2 � Transmission Modalities

Based on the mode of transmission used, localization algorithms can be classified as range 
based and range free methods [25].

Range based methods These techniques make use of distance or angle measurements 
between nodes to estimate the location of nodes. Few of the popular ranging measurements 
are based on RSS, TOA, TDOA and AOA. These methods are observed to provide higher 
accuracies. Drawback is that they need special high-cost hardware to estimate point-to-
point distance and angles.

Range free methods These techniques make use of connectivity information between nodes 
to estimate locations. DV-hop, APIT, Centroid, weighted centroid are few of the popular 
range free techniques reported in the literature. Unlike range based methods, they do not 
need high-cost hardware on the nodes. These are simple methods with lower computa-
tional cost and power consumption. However, these advantages come at the cost of reduced 
accuracy.

4.1.3 � Dimensionality

Based on the dimension of field considered for designing and evaluating localization algo-
rithms, dimensionality can be 2D or 3D.

2D In a 2D field, all the nodes are assumed to be deployed on a plain field. Altitude infor-
mation of the nodes is ignored for ease of computation.

3D Here, the field is assumed to be more realistic with different altitudes like forests, 
mountains, buildings, etc. and nodes are deployed at different places in this field. Sensor 
node location estimation techniques are designed to estimate node locations in 3 co-ordi-
nate system. However, 3D node localizations are much more complex and complicated in 
terms of computations [48].
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4.1.4 � Network Type

Based on transmission range of nodes, networks can be classified as homogeneous and 
heterogeneous networks.

Homogeneous networks Here all the sensor nodes are assumed to be of having same trans-
mission range. Effect of differences in hardware configuration and battery status on trans-
mission ranges are often ignored.

Heterogeneous networks These type of networks consider sensor nodes of different trans-
mission ranges. Usually, in a WSN, few sensor nodes participate more in communication 
process and their battery gets quickly depleted. Also, sensor nodes can be of different hard-
ware configurations. Due to all these reasons, sensor nodes will have different transmission 
ranges resulting in heterogeneous network of nodes.

4.2 � Technique Based Taxonomy Framework for Localization

In this section, technique-based taxonomy framework to categorize localization algorithms 
designed for WSNs considering field irregularities is discussed. As illustrated in Fig.  5, 
localization techniques for WSNs can be categorized into optimization based, machine 
learning-based and cluster-based approaches. Optimization-based approaches are further 
categorized into Particle Swarm Optimization (PSO), Bacterial Foraging Optimization 
(BFO), Invasive Weed Optimization (IWO) and firefly algorithm. Machine learning-based 
methods are categorized as Fuzzy Logic System (FLS), Artificial Neural Network (ANN), 
Support Vector Machine (SVM) and Kernel Partial Least Squares (KPLS). Cluster-based 
approaches are categorized as segmentation and data clustering methods.

Using the taxonomy framework presented in Fig. 5, localization algorithms are classi-
fied into multiple categories. The criteria for classification is chosen as the discipline from 
which they have adopted ideas to solve the localization problem.

4.2.1 � Optimization‑Based Approaches

Optimization based approaches make use of nature inspired algorithms which mimic 
the nature for solving hard and complex problems. Nature exhibits extremely diverse, 

Fig. 5   Taxonomy of localization techniques for WSNs in irregular fields
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dynamic, robust, complex and fascinating phenomenon and it always finds the optimal 
solution to solve its problems maintaining perfect balance among its components. This 
is the thrust behind bio inspired computing [62]. Different optimization techniques and 
localization algorithms which make use of these techniques are discussed here.

Particle swarm optimization (PSO) PSO models social behavior of a flock of birds. It can 
be used for optimization of non-linear functions. It consists of a swarm of candidate solu-
tions called particles, which explore an n-dimensional hyperspace in search of the global 
solution [63, 64].

PSO is a popular algorithm used by many localization methods to improve the locali-
zation accuracies in anisotropic fields [47, 54, 56, 59, 65]. To reduce the effect of noise 
parameters, two PSO based localization algorithms namely Dimensionality based Par-
ticle Swarm Optimization (DPSO) and Hybrid Dimensionality based Particle Swarm 
Optimization (HDPSO) were developed by authors in [47]. These algorithms followed 
swarm based method by considering each dimension individually for particle deploy-
ment to obtain the optimized values. The personal best position value (pbest) within 
the swarm and global best (gbest) value for each dimension were calculated. The loca-
tion coordinates were obtained by consolidating the gbest values. HDPSO differed from 
DPSO with its enhanced grouping strategy. Algorithms were evaluated in a 3D field of 
20 m × 20 m × 20 m with random deployment of 100 reference nodes and 200 location 
unaware nodes. ALE was observed at 0.2511 m for DPSO and 0.1449 m for HDPSO. 
HDPSO attained improved localization accuracy, but with higher computational cost. In 
the evaluation of the derived algorithms, anisotropy was limited with noise percentage 
fixed at 0.02.

In  [54], authors reported another PSO based localization algorithm called Node Seg-
mentation with Improved Particle Swarm Optimization (NS-IPSO). This algorithm divides 
nodes into segments and then uses an enhanced PSO to improve the accuracy of the esti-
mated distances between nodes. The results showed that the algorithm yields better accu-
racy in different shapes of fields.

Bacterial foraging optimization (BFO) BFO algorithm is inspired from the social foraging 
behavior of bacteria Escherichia coli, commonly abbreviated as E. coli. The main advan-
tages of this optimization are parallel distributed processing, insensitivity to initial value, 
and global optimization [48, 66].

A BFO based range free localization using fuzzy (RFBFO + Fuzzy) algorithm for ani-
sotropic environment was developed in  [48] by making use of RSS information between 
nodes, fuzzy logic system and BFO. The non-linearity induced by anisotropic environment 
between RSS and distance was overcome by modeling the edge weights between location 
unaware nodes and reference nodes using Mamdani type fuzzy model. Five membership 
functions VLOW, LOW, MEDIUM, HIGH, and VHIGH were used to map input variable 
RSS of fuzzy model. The edge weights were further optimized by conducting 50 independ-
ent trials. Weighted centroid method was used to estimate location of target nodes. The 
algorithm was evaluated in a 3D field of 150 m × 150 m × 150 m with 150 nodes, by con-
sidering DOI of 0.02. With ratio of reference nodes at 10%, ALE of 2.269 m was observed. 
Performance was not evaluated in the presence of network holes.

Invasive weed optimization (IWO) This is a stochastic optimization algorithm inspired from 
colonizing weeds. In this optimization, it is tried to mimic robustness, adaptation and ran-
domness of colonizing weeds in a simple and effective optimizing algorithm [67].
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A novel IWO based localization method using fuzzy logic system (RFIWO + Fuzzy), 
which is similar to the previously discussed RFBFO+Fuzzy was developed in [48]. This 
algorithm gave better localization accuracy than RFBFO+Fuzzy. But convergence rate of 
RFIWO+Fuzzy was reported to be slower than that of RFBFO+Fuzzy. Based on applica-
tion demand, suitable algorithm needs to be chosen. The algorithm was evaluated in a 3D 
field of 150 m × 150 m × 150 m with 150 nodes, by considering DOI of 0.02. With ratio 
of reference nodes at 10%, ALE of 2.213 m was observed. Effect of network hole on the 
performance of the system was not discussed.

Firefly algorithm The firefly algorithm is a stochastic optimization algorithm which is 
developed by idealizing some of the flashing characteristics of fireflies [68].

A NLOS node localization algorithm that utilizes the firefly algorithm was presented 
in [69]. This method was developed by considering prior error statistics of zero mean nor-
mal distribution for observation noise and exponential distribution for NLOS error. The 
objective function was derived according to the approximate maximum likelihood method. 
The non-linear objective function was solved by firefly algorithm. The algorithm was eval-
uated in a 2D field of 40 m × 40 m dimension with randomly deployed obstacles. Refer-
ence nodes were located at (0, 0), (0, 40), (40, 0), (40, 40) and (10, 30). With number of 
LOS measurements 3 and NLOS measurements 2, noise standard deviation at 5/m, root 
mean square error was observed at around 13 m.

In  [23], authors presented a range-free 3D node localization method RFFA+ Fuzzy 
using the application of firefly algorithm. In a WSN with randomly distributed sensors, few 
location aware sensor nodes were used as reference nodes. The co-ordinates of the remain-
ing sensor nodes were calculated by collecting RSS information received from reference 
sensor nodes and assigning edge weights based on RSS voltage. Edge weights were mod-
eled using fuzzy logic system to reduce computational complexity and further optimized 
by firefly algorithm to minimize location error. The algorithm was evaluated by consider-
ing random deployment of 40 location unaware nodes and 20 reference nodes in a field 
of 10  L × 10  L × 10  L. Noise variance of 0.02 was considered. ALE of 0.0283  L was 
observed. The research can be enhanced by considering more realistic representation of 
irregular fields.

4.2.2 � Machine Learning (ML) Based approaches

ML is an application of artificial intelligence which helps systems to self-learn from the 
experiences and acts without human intervention. These approaches help in solving locali-
zation problems by extracting useful information from the large amount of data collected 
by sensor nodes [70]. Application of different machine learning algorithms in localization 
is discussed here.

Fuzzy logic system (FLS) In general, FLS is a nonlinear system that maps an input feature 
vector into a scalar output. FLS consists of four steps: a fuzzifier, fuzzy rules, a fuzzy infer-
ence engine, and a defuzzifier [43, 71].

FLS can be used to solve the localization problem in anisotropic fields  [43, 72]. 
In [43], authors investigated the integration of two soft-computing techniques FLS and 
Extreme Learning Machine (ELM) with the goal of enhancing the localization preci-
sion while considering varying node densities, sensing coverage conditions and irregu-
lar topology. Centroid based Fuzzy Logic (FL) is found to give better results for low 
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signal coverage nodes and low node densities and ELM gives more accurate estima-
tions in high coverage and high node density conditions. A hybrid scheme based on 
above two models, Hybrid Fuzzy Deep-ELM Localization (HF-DELM) was developed 
to improve estimation accuracy. First, Centroid based FL was enhanced to overcome 
the variations in RSSs caused by irregular topologies by using signal and weight nor-
malizations and FLS. ELM was enhanced by using deep learning in training stage and it 
was further enhanced by applying the concept of force vector. By applying experimental 
design results to FLS and constructing fuzzy rules, the fuzzy output was derived, which 
was used for the hybrid weight. The developed technique was evaluated in a 2D field of 
100 m × 100 m with 300 nodes deployed randomly. When 15% of the nodes were refer-
ence nodes and 20 m of signal radius, ALE of 0.23 m was observed at DOI of 0.02. The 
irregularity of the field was considered only in terms of DOI.

A centroid based localization method, HVP-FELM that uses hybridization of FLS 
and ELM was developed in [73]. In this technique, efficiency in heterogeneous topolo-
gies was improved by compensating increasing error in estimation on the borders of the 
field or border with a hole by applying vector concept to determine the proper direction 
of the moving location approximation. In addition, PSO was used to determine the best 
solution under a given set of constraints. The performance was evaluated in a 2D field 
of 100 m × 100 m by considering one hole and 5 holes scenarios.

Artificial neural network (ANN) ANNs are inspired by biological neural networks. ANNs 
consist of groups of interconnected artificial neurons. Researchers from many scientific 
disciplines have been using artificial neural networks to solve a variety of problems in pat-
tern recognition, prediction, optimization, associative memory, control etc [74–76].

A neural network based localization algorithm called LPSONN was reported in [49], 
considering both localization accuracy and storage overhead as objective function. This 
is a centralized algorithm where a head reference node collected hop count information 
from the network and trained neural network using the received information. As the per-
formance was found to be varying with different number of neurons in the hidden lay-
ers, PSO was used to optimize number of neurons in the hidden layers of each module 
of neural network. Performance was evaluated by considering 400 nodes deployed in a 
2D field of 60 m × 60 m. Performance was evaluated in the presence of 5 network holes 
and for a ‘C’ shaped field. ALE of around 3 m was observed at 15% reference node den-
sity. Performance of the algorithm for smaller obstacles causing irregular RPPs was not 
reported.

A range free ANN based localization technique was presented in [77]. In this paper, a 
distance estimation method in which distance estimation solely depends on idealistic trans-
mission range of all nodes and number of hops between any two nodes k and i is reported. 
To account for the effects of irregular nodes, Multi-Layer Perceptron (MLP)-type feed-
forward back propagation ANNs were used. The estimated distances between reference 
nodes using new distance estimation method was fed as input and true distances between 
reference nodes were derived as output. This model was used to estimate locations of other 
nodes. The developed algorithm was evaluated in a 2D field of 10 m × 10 m. At 200 node 
count and 10% reference node density, normalized root mean square error of 0.6 m was 
observed when DOI was fixed at 0.06. No discussion was reported on evaluation of perfor-
mance in the presence of network holes.

Support vector machine (SVM) SVM is a type of machine learning algorithm. SVM is 
often used to solve both linear and nonlinear classification by training data. The idea of 
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SVM is to gain an optimal hyperplane in the feature space which can separate the two class 
data with largest interval [78, 79].

A novel range-free localization approach based on Multidimensional Support Vec-
tor Regression (MSVR) was reported in  [80]. In this work the localization problem was 
mapped as a non-linear regression problem, dealing with multiple dimensions. The locali-
zation procedure began with all the sensors and reference nodes communicating with each 
other to collect the connectivity measurement information. This information was broad-
casted to the sink node. Sink node estimated optimal MSVR and broadcasted the parameter 
vector of optimal MSVR to the sensor nodes. Location of all sensor nodes was estimated 
by using these parameters. The developed technique was evaluated in a 2D field of 100 m 
× 100 m dimension with ‘X’ and ‘C’ shapes and in 3D field of 100 m × 100 m × 100 m 
dimension with DOI at 0.14. Considering the deployment of 200 nodes with 25 reference 
nodes, location estimation error of 3.7 m-5.6 m was observed for 2D field and 11.1–14.8 m 
was observed for 3D field. Evaluation was not performed under irregular shaped 3D fields.

Kernel partial least squares (KPLS) A kernel version of the partial least squares, called 
KPLS, is commonly used in construction of nonlinear regression models in possibly 
high-dimensional feature spaces. This is more suitable for moderately sized problems 
with the advantages of simple implementation, less training cost, and easier setting of 
parameters [1].

A KPLS based localization method called Location Estimation-Kernel Partial Least 
Squares (LE-KPLS) was developed in  [1]. The offline phase consisted of training the 
model with hop-counts to physical distances of location aware reference nodes. In the 
online phase, the trained model was used to estimate locations of nodes using hop-counts 
from the location unaware nodes to the reference nodes. In a 2D ‘C’ shaped field of dimen-
sion 300 m × 300 m with 300 nodes and 28 reference nodes, root mean square error of 
3.95 m was observed. In a 3D regular shaped field with DOI of 0.02, root mean square 
error of 5.6 m was observed. Algorithm was not evaluated for irregular shaped 3D fields.

4.2.3 � Cluster Based Approaches

Clustering-based approaches are popularly used in applications with huge data to group 
similar data instances of similar behavior. Few localization techniques make use of cluster-
ing techniques to estimate locations.

Segmentation based approaches Network segmentation is used to solve optimization prob-
lem by dividing the network while minimizing or maximizing some given criteria or prop-
erty [57, 81].

A segmentation based localization method, DisLoc was developed in [57]. In this algo-
rithm, the complex shaped network was first divided into several simple sub-networks by 
applying the approximate convex partitioning. Then, each sub-network was accurately 
localized by using multidimensional scaling-based algorithm. In the last step, all the parti-
tions were merged to create the global map of the network. Performance was evaluated on 
four representative topologies of real-world applications like a 5-shaped coal mine tunnel, 
the Feishape topology as railway station, a H-Shaped terminal building and a C-shaped 
ordinary building entrance. At network connectivity 14, localization error of about 59% 
was observed. Localization accuracy was improved along with lower computational 
overhead.
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Data clustering based approaches Here, few of the techniques that divide data into differ-
ent groups based on some characteristic of data for improving the performance of localiza-
tion accuracy are discussed.

DV-maxHop localization scheme was reported in  [82] to minimize localization errors 
while keeping number of transmissions during localization at minimum. In this algorithm, 
a control parameter MaxHop was introduced to DV-Hop algorithm. This MaxHop param-
eter sets an upper limit on the distance to which reference node information transmits. Only 
the position information from reference nodes which were within MaxHop hop counts were 
considered by nodes. In anisotropic environment, this reduced estimations from distant ref-
erence nodes which would probably cause errors. This also reduced number of transmis-
sions between the neighbors resulting in faster convergence time and lower energy cost. 
Value of MaxHop was preselected based on network density, anchor ratio, network shape 
etc. Performance was evaluated in ‘O’, ‘C’, ‘S’ shaped 2D fields. In a ‘C’ shaped field with 
324 nodes and 10% nodes with location information, ALE of 3.99 m was observed. In a 
regular shaped field with DOI 0.4, ALE of 3 m was observed. Algorithm can be enhanced 
and evaluated in the future to enhance the performance by considering both network holes 
and DOI in the same field.

LOS/NLOS mixture creates a high probability of inaccurate estimations. To overcome 
this, authors in  [83] presented a cloud based self-organizing localization (cloud-based 
SOL). In this technique, all sensor nodes sent their neighbor node ID list to a central node, 
which forwarded the list to the cloud computing environment. Localization algorithm 
worked in the cloud computing environment. In the cloud computing environment, a vir-
tual WSN was constructed using the neighbor node lists of all the nodes. Modification of 
the node location with any hop node was done by giving priority to the estimation of global 
geometry in the early stages and local geometry in later stages. Later, angle based judg-
ment was used to detect bent estimated topology. Algorithm was tested in a 2D field with 
dimension 1 m × 1 m and obstacle of dimension 0.5 m × 0.4 m. 50 nodes were deployed 
with 3 reference nodes and 0.2 m being the coverage of each node. ALE of 0.25 m was 
observed. Performance evaluation was restricted to 2D fields with complex shapes.

A Heuristic Multidimensional scaling (HMDS) algorithm to improve accuracy of node 
localization in anisotropic WSNs with holes was developed in [84]. The nodes which com-
municate across the holes were identified and using virtual nodes, Euclidean distances 
between these nodes were recalculated. Other nodes calculated Euclidean distances using 
Dijkstra shortest paths. These distance estimations when applied to Multidimensional Scal-
ing algorithm improved localization accuracies. Algorithm was evaluated in different irreg-
ular shapes like semi ‘C’, ‘O’, multiple ‘O’ and concave fields. In a semi ‘C’ shaped 2D 
field of dimension 100 m × 100 m with 60 m × 60 m hole, 800 nodes were deployed with 5 
nodes as reference nodes. At average connectivity 10.7, ALE of 8 m was observed. Effect 
of smaller obstacles causing irregular RPPs is not discussed.

In [85, 86], authors developed Extended Kalman Filter Multidimensional Scaling (EKF-
MDS). Distance estimation was obtained using the concept of virtual node. Location coor-
dinates were obtained by Multidimensional Scaling-MAP (MDS-MAP) algorithm. The 
results were then refined using Extended Kalman Filter (EKF) algorithm. In  [85], tests 
were conducted in a 2D field of dimension 100 m × 100 m with 70 m × 70 m hole. When 
300 nodes were deployed with 3 reference nodes, at average connectivity 6.28, ALE of 
10 m was observed. Research can further be enhanced by considering irregular RPPs and 
3D fields.

Distributed Hybrid Particle/FIR Filtering (DHPFF) based on distributed filtering to mit-
igate NLOS effects and localization failures was developed in [60]. In this method, TOA 
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measurements were distributed among several local hybrid particle finite impulse response 
filters for processing. Distributed filtering and data association techniques were used to 
separate reliable estimates from NLOS affected estimates. The designed technique was 
observed to be working correctly in the presence of one NLOS affected data of the four 
measurements. Performance was evaluated in a 2D field of dimension 20 m × 20 m. An 
obstacle located at the center with radius 2.5 m produced ALE of 0.094 m and obstacle of 
radius 5 m produced ALE of 2.86 m. However, in more harsh situations with two or more 
NLOS receivers, the developed DHPFF failed to estimate, but could recover from failures 
for next position estimation.

To reduce the adverse influence of multipath effects on distance estimation,  [87] 
reported an Optimal Multi-Channel Trilateration positioning algorithm (OMCT). This 
algorithm first uses an adaptive Kalman filter to remove the RSS measurement noise and 
the optimal node position estimates are obtained from multi-objective evolutionary algo-
rithm. Improved localization results were observed under channel diversity. Few other 
algorithms which use data clustering techniques are Modified Joint Probabilistic Data 
Association (MJPDA) algorithm  [88] and Enhanced Least-Square Algorithm based on 
improved Bayesian (ELSAB) [89]. MJPDA divides the measurements into LOS and NLOS 
classes using virtual points obtained by grouping the measurements whereas ELSAB uses 
Bayesian classifiers for measurement data. These algorithms classify the obtained data into 
different categories to improve position estimations.

4.3 � Comparative Analysis of Localization Techniques

A comparison table of localization techniques is presented in Table 1 by making use of 
classification criteria discussed in Sect. 4.1 and taxonomy framework in Sect. 4.2. Table 1 
shows the characteristics of localization techniques developed especially for WSNs in 
irregular fields. From the table, it can be observed that different algorithms have consid-
ered different types of anisotropies. While few algorithms have represented anisotropies by 
including a noise factor, some have considered different shapes of fields. Some algorithms 
have modeled the node level anisotropies using parameter DOI. Hop based techniques 
are the most popular among range free methods and RSS based localization among range 
based methods. Also, it can be observed that distributed network topology is the most pop-
ular approach for localization. This is because distributed algorithms reduce unnecessary 
communications to a central location and perform computations locally. This table can be 
used in the analysis of various localization methods.

4.4 � Evaluation of WSN Localization Techniques

In summary, there are a number of localization algorithms developed to work efficiently 
in the presence of field irregularities. From the above description of existing algorithms, 
it can be observed that different algorithms have utilized different techniques to overcome 
the nonlinearity caused by irregular fields on proximity measures. These algorithms work 
under the assumption that there is no movement of nodes after deployment. Most of these 
algorithms are developed under the assumption that all nodes have the same transmission 
ranges, and there are no hardware failures of nodes. Algorithms were evaluated in terms 
of localization accuracy by considering complex shaped fields, network holes, and irregu-
lar RPPs. Though many algorithms provide good location estimations in 2D fields, locali-
zation errors are large in the case of 3D fields. Algorithms have conducted performance 
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analysis in terms of computation and communication complexities. But, the feasibility of 
implementing these algorithms in the existing sensor nodes of limited computational capa-
bilities is still a question.

5 � Conclusions

In this review of WSN localization algorithms in irregular fields, using the taxonomy 
framework, existing localization techniques designed for irregular fields were analyzed. 
Furthermore, a comparison table was created to compare these techniques in terms of net-
work topology, dimensionality, range measurement, and network type.

On review of existing localization algorithms considering field irregularities, a sum-
mary of current research challenges and important research areas to focus can be drawn as:

Irregularities in the field Even though a number of localization algorithms are developed 
considering irregularities of field, extensive research on this is not yet reported. Algorithms 
need to be tested in a more realistic representation of fields. Existing algorithms try to 
model the nonlinearity caused by obstacles on proximity information by measuring prox-
imity between location aware reference nodes in the field. They are evaluated either by 
considering few network holes or by considering a fixed DOI. But in a real scenario, the 
field is complex in shape with different sized network holes and varying DOIs at different 
parts of the field. For example, in a forest environment, small obstacles like trees, small 
rocks cause irregular radio propagation patterns, whereas bigger obstacles like large rocks, 
water bodies cause network holes. The communication environment causes different path 
losses in different parts of the fields. The degree of anisotropy varies at different places in 
the field. Developing a localization algorithm that accounts for varying types and degrees 
of irregularities at different parts of the field is an important research area to focus on.

Heterogeneous sensor nodes Most of the existing localization techniques reported assume 
a homogeneous set of sensor nodes, i.e., sensors are assumed to have identical transmis-
sion ranges. But the transmission ranges of any two nodes may vary due to differences in 
hardware configuration and battery status. For example, the nodes which are more close to 
sink nodes will have more communication overhead in case of multi-hop routing. Nodes in 
places where the frequency of occurrence of events is higher will participate more in data 
forwarding. These factors cause few nodes to be used more frequently, thus in the reduction 
of their battery power. Hence, it is more realistic to consider a heterogeneous combination 
of sensor nodes with different transmission ranges. In the case of existing hop based locali-
zation techniques, hop length of a node with lower battery power may differ largely from 
average hop length, and in case of RSS based localization, a node with reduced battery 
power may be misunderstood as affected by NLOS communication. Localization accura-
cies are greatly affected by heterogeneous sensor nodes. Hence, developing future localiza-
tion techniques considering the heterogeneous set of nodes in terms of transmission cover-
age will improve performance in practical usages.

Fault analysis Existing techniques are developed by making use of a few location aware 
reference nodes. The system is modeled by measuring the actual and estimated distances 
using any of the measurement techniques between reference nodes. Locations of other 
nodes are estimated based on this model. Hence, it is most important to model the system 
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accurately. But, it is possible that few of the nodes that are used to model the system turn 
faulty. This may be due to hardware malfunctions, rough environments, or security attacks. 
A more detailed analysis in this regard would provide a more stable localization technique 
that can work accurately even in the presence of a few faulty reference nodes. As other 
nodes also participate in the later phase of localization, fault analysis on other nodes also 
need to be carried out.

Dimensionality Many of the existing techniques focus mainly on a 2D plane. In real-life 
applications, nodes are often deployed in 3D space; for example, in forests, buildings, 
mountains, etc. 3D node localization is more complex in terms of computations. Sensor 
nodes are devices with limited computational capability and power source. Future research 
on localization can develop power-efficient localization algorithms considering 3D envi-
ronments that can work in the limited computational capabilities of sensor nodes.
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