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Abstract
The sink hole attack is a typical wireless sensor network attack. The sink hole node adver-
tises itself as the best route to the sink node or the base station. The nodes in the com-
munication zone of the sink hole node then redirects their observed data to the sink hole 
node upon receiving the broadcasted supposedly the best route. The sink node receives 
the packets and then drops them. It can also modify them before relaying them to the sink 
node or base station. This study proposes a scheme designed to address the effects of the 
sink hole attack called the Hop Count-Based Detection Scheme for Sinkhole Attack. The 
performance of the scheme is evaluated using Matlab. The scheme is compared to Ibra-
him’s algorithm which is the best algorithm in literature. The simulation results show that 
HCODESSA achieves good results in comparison to Ibrahim’s. The results show that the 
sinkhole attack has adverse effect on the performance of the network and that its severity 
depends on the number of nodes it can mislead. We further evaluated the two schemes 
using statistical techniques which proved that HCODESSA performs better.

Keywords Internet of things · Routing · Sensor network · Sinkhole attack · Software-
defined wireless sensor cognitive radio networks · Statistical techniques

1 Introduction

Software-defined wireless sensor cognitive radio network (SDWSCRN) is an emerging 
technology which is the integration of the software-defined networking (SDN) [1] and 
wireless sensor cognitive radio networks (WSCRN). It integrates the capabilities of SDN 
in the WSCRN such as programmability and automation. Software-defined wireless sen-
sor cognitive radio network enhances the simplicity and flexibility of WSN management 
[2]. Software-defined wireless sensor cognitive radio network also incorporates internet 
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of things (IoT) which enables sensor actuator to be embedded onto physical objects to 
exchange observed data. It has the same structure as the SDN and it consists of the applica-
tion layer, the control layer/plane which controls the network and the flow of data [3]. In 
an ever changing environment where it is difficult to manage the WSCRN after deploy-
ment and the reconfiguration of nodes is not possible hence the need for SDN capabili-
ties [4]. The sensor nodes in the software-defined wireless sensor cognitive radio network 
reports local observed data to the sink node which is also known as the base station in 
an infrastructure based environment. Nodes can also send their reports to the web server 
in an ad hoc environment. In a case where the nodes require reconfigurations, network 
administrators use the software defined concept to reconfigure the nodes [5]. The concept 
of SDN in WSCRN simplifies network management [6]. However, WSCRN is prone to 
sinkhole attacks which is one of the major attacks in WSN in general. The compromised 
node advertises to its neighbours fake routing updates as the best route and shortest route to 
the base station, which attracts network traffic [7]. The neighbouring nodes will then direct 
their data to the sinkhole nodes which either drops packets or modifies packets before for-
warding them. The attack can be used to launch other attacks such as selective forwarding, 
wormhole, Acknowledge spoofing attack. The sinkhole attack prevents the sink node or 
base station from receiving observed data or correct data.

Software-Defined Wireless Sensor Cognitive Radio Networks are susceptible to sink-
hole attack. There is a need for the mitigation of the sinkhole attack in Software-Defined 
Wireless Sensor Cognitive Radio Network. The attack is capable of altering and dropping 
data packets which can lead to incorrect updates and decision making. In military, the 
effects of the sink hole attack are diverse in the context of intelligence, surveillance, and 
reconnaissance in combat in the battlefield and situational awareness [8]. Observation data 
is used to detect, identify, and classify threats based on count, number, and type whether 
it is an armed vehicle or men on foot, and the type and quantity of weapons [9]. Incorrect 
updates based on such observed data due to sinkhole attack can lead to causalities in the 
battlefield or at the camp. With the advancement of technology, SDWSN provides signifi-
cant advantages in advancing humanity.

The introduction of IoT enables vehicle drivers to have pre-defined information about 
the conditions of the roads [10]. The sensor nodes transmit observed data to the gateway 
which will relay the data to the controlling computer or to the cloud application, where the 
drivers will be able to access the data in real-time and make timely decisions [11]. Such 
data should not be modified because it can course chaos on the roads in a typical smart 
transportation set up. This study propose to develop a Hop Count-Based Detection Scheme 
for Sinkhole Attack (HCODESSA) to mitigate the effects of the destructive sinkhole attack 
in the SDWSCRNs.

The scheme uses hop counts of the nodes as the bases of detecting the sinkhole nodes in 
the network. It isolated the identified sinkhole nodes from the network. The performance 
of the proposed scheme was evaluated in terms of probability of false positive, probability 
of false negative, and probability of detection in contrast to Ibrahim’s Hop Count-Based 
Detection Algorithm. Moreover, the study evaluated the effects of the packet dropping 
sinkhole attack with regard to packets loss ratio and  packet delivery ratio. On average, 
from the simulation results; HCODESSA outperformed Ibrahim’s detection algorithm. 
Furthermore, statistical tests on the average probability of detection and probability of false 
positive of the two  algorithms were conducted and the tests show that there is significance 
difference in terms of the two average probabilities and it was concluded that HCODESSA 
indeed outperformed Ibrahim’s Hop Count-Based Detection Algorithm.
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2  Literature Review

The literature review discusses some of the proposed algorithms for detecting and mitigat-
ing the sinkhole attack in the SDWSCRN and their challenges; furthermore, it highlights 
spectrum sensing concepts of the network and other security algorithms in wireless net-
works such as Vehicle Ad hoc Network (VANET) and Mobile Ad hoc Network (MANET). 
The two discussed networks are related to our study in a sense that they are wireless and 
mobile networks.

Choi et  al. [12] proposed a method that uses link quality indicator to detect sinkhole 
attack in a network. Sinkhole attack advertises the highest link quality to its neighbors. The 
method requires extra nodes called detector nodes, which are used in detecting the attack. 
The challenge of the scheme is that detection of sinkhole only occurs when the detector 
node is between sinkhole node and source node, and sinkhole node and base station. Sheela 
et  al. [13] proposed a non-cryptographic scheme which used mobile agents to defend 
against sinkhole attack. The mobile agents used dummy data to detect data modification, 
considering the data alteration capability of sinkhole attack. The algorithm is not flexible 
to allow scalability, which creates high network overheads because of the communication 
mode of the mobile agents and sensor nodes which is active mode. Sreelaja et  al. [14], 
proposed a model for detecting the sinkhole attack which uses Ant Colony Optimization to 
identify an intruder in the WSN. The algorithm does not generate false positive according 
to the authors’ results. The authors used Swarm intelligence techniques to detect the sink-
hole attack [15]. Zhang et al. [16] proposed a redundancy mechanism to detect the sinkhole 
attack in a network. The authors took advantage of the three stages of path establishment, 
namely the Route Request, Route Reply and Route Establishment. In [17] authors proposed 
a light weight intrusion detection system equipped with an advanced intelligent system. 
For detection, they used an ensemble soft computing technique. Optimal relay selection 
technique is proposed in [18]. The algorithm implements the amplification and forward-
ing techniques to achieve efficient relay selection of the spectrum. Through dynamic man-
agement of relay selection and spectrum allocation, the algorithm is able to increase net-
work throughput and maximizes the signal to noise ratio (SNR). Vehicle Ad Hoc Network 
(VANET) is one of the new emerging network technologies; which also requires security. 
Vijayakumar et al. [19] proposed a dual authentication and key management technique to 
allow secure communication between vehicles in VANET and to prevent unauthorized 
vehicle to enter into the VANET. The algorithm takes advantage of the Batch Level Signa-
ture (BLS) for key generation and smart card which the drivers are presented upon register-
ing their vehicles in the VANET. Energy consumption is one of the attributes to consider in 
a wireless environment [20]. Muthurajkumar et al. [21] proposed a secure energy efficient 
routing algorithm which make use of intelligent agents for effective decision making. The 
algorithm does not only improve secure routing and efficient energy consumption. It also 
reduces routing delay in MANET.

In [22], authors proposed a message digest anomaly-based detection scheme to detect 
sinkhole nodes. The scheme uses an instance of cryptographic mechanism (the message 
digest approach) to assess the invulnerability of data, its integrity and authenticity. A novel 
detection algorithm for the detection of sinkhole attacks in WSNs is proposed [23]. In the 
approach, sink node checks the data communication route and keeps the current route of 
the nodes in memory. If it notices inconsistencies in a data packet, it checks the route of 
the nodes against the memory route and keeps similar nodes in memory and deletes the 
malicious node, then notifies other nodes not to forward their observed data to the detected 
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malicious node anymore. In the recent years (2018 and 2019), the research interest in rout-
ing related attacks has been increasing [24]. For example, Internet of things as an integral 
component of the 5th generation (5G) communications is vulnerable to routing attacks. It 
needs to be protected from routing attacks [25]. Sinkhole and selective forwarding are the 
most common and destructive attacks in infrastructure based networks. With the develop-
ment of the SDN technology, it is essential for a network to be able to spread quickly new 
code to every node in the network and in a secured manner. Two-hop Neighborhood Infor-
mation joint Double Broadcast Radius (TNI-DBR) algorithm was proposed to disseminate 
the security codes in a Software Defined Wireless sensor network in a fast, secure, and 
energy-efficient way in [26]. In [27] Liu et  al., proposed a Probe Route Based Defense 
Sinkhole Attacks (PRDSA) which counters sinkhole attack and guarantees security for 
Internet Of Things. The algorithm consists of a routing mechanism which combines far-
sink reverse routing, equal-hop routing, and minimum hop routing. The algorithm has min-
imum impact on the network lifetime.

3  Methodology

The study relies on computational simulation and mathematical formulae which leads 
to accurate and precise results, because this is a computational study. MatLab was used 
to code the algorithms, run simulations and to generate data which is then presented in 
a graphical format. MatLab is a multi-paradigm numerical computing environment and 
fourth-generation programming language [28].

3.1  Metrics

To test the effectiveness and robustness of the proposed scheme, some performance met-
rics were selected which, according to literature, are the best fit metrics for this kind of 
study. Moreover, to evaluate the effect of the sinkhole attack, some metrics were selected 
which are believed to be the suitable metrics.

The performance of the two algorithms was evaluated using the three performance met-
rics from literature, which are Probability of detection, Probability of false negative and 
Probability of false positive [29]. Furthermore, the effect of the attack was evaluated using 
packet delivery ratio (PDR) and packet loss ratio (PLR).

3.2  Network Setup and Simulations

Table 1 presents simulation parameters and their corresponding values, giving a summary 
of parameters which were considered in carrying out the experiment of the study. To ena-
ble the cognitive radio capability, the study used IEEE 802.11b standard with extension to 
support Cognitive radio networks.

The number of channels was set to 6, from literature 6 channels are suitable and efficient 
for a network of between 10 and 150 nodes [30]; hence, that is why 6 channels were cho-
sen. Energy detection was used as the type of incumbent user detection type because it is 
less complex and it does not require the knowledge of primary user signal in detecting the 
presence and absence of the primary user [31].
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3.3  Proposed Algorithm Detection Method

Figure 1 displays an instance of two sinkhole nodes (node 3 and 5) in the network. Hop 
counts in red are the corresponding hop counts of the attacking nodes (3 and 5). Fur-
thermore, in green are the hop counts of the legitimate sensor nodes. At this instance, 
the change in position values for all nodes are zeros since the detection have not yet 
taken place. The hop counts are sent to the base station using hop by hop transmission.

After the base station had received all the hop counts from neighbor nodes, it then 
updates the nodes hop count database with new hop counts. The base station then sorts 
the hop counts in an ascending order. As it sorts the hop counts sequentially, the change 
in positions is also affected. If a node moves one step to the left or to the right its change 
in position value will be incremented by 1. As such, a node with the smallest hop count 
value will have a greater change in position value if it was to be moved to the far end 
in Fig. 2. As such, it will also affect change in position of nodes which were to its left 
before its move, as show in Fig. 2.

Figure 2 represents a state of the base station dataset after node 3 had been moved to 
the far left because of its small hop count value.

Table 1  The simulation parameters of the study

Parameters Values

Antenna OmniAntenna
Environment Cognitive radio wireless Environment
MAC protocol IEEE 802.11b with extension to sup-

port cognitive radio networks
Number of data channels 6
Number of common control channels 1
Channel date rate 11 mbps
Number of sensor nodes 20, 40, 60, 80, 100
Percentage of sinkhole nodes in a network 15%, 25%, 35%
Propagation model TwoRayGroundl
Network size 500 × 500  m2

Fusion time 0.5
Primary user detection type Energy detection
Mobility Random waypoint model
Spectrum sensing Cooperative spectrum sensing (CSS)
Fusion rule MAJORITY-based
Sensor nodes Cognitive radio sensor nodes

Fig. 1  Normal hop count 
sequence
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The movement affected node 1 and 2′s change in position values and the values are 
incremented by 1 as they moved to the right by one unit. The change in position of node 
3 is now 2 because it was moved two units to the left. At this stage node 5 is not yet 
moved to the leftmost side because the base station sorts the hop counts sequentially.

If a node shifts j units, that j value becomes its change position value. That is, if a 
node shifts 4 units for that instance 4 is its change in position. And any node that is non-
malicious but is forced to change its position, its current change in position value will 
be the initial value plus 1. From Fig. 3, node number 3 shifted 2 units to the left and its 
changed in position value changed from zero to 2. Every node before node 3 will shift 
one place to the right in order to make space for it; thus their current change in position 
values are 0 + 1 which is 1. Node 3 will also change position in a case where there are 
other sinkhole nodes in the network. It will shift one unit to the right for each instance 
and its current change in position will be initial change in position value plus one which 
will be 3 (2 + 1), shown in Fig. 3.

Now that node 5 was at the most far right, it affects every node in the dataset and 
hence, causes them to shift one position to the right to make a position available for 
node 5. For each initial change in position of all affected nodes, one (1) will be added to 
the initial change in position, therefore the current change in position will be given by 
initial change in position + 1.

The change in position value for node g in the ith attack estimated sequence is calcu-
lated as follows:

where C(*, g) signifies the change in position of node s in the attack estimated sequence *. 
Then the average change in position value of node s in the ith attack estimated sequence is 
computed as follows:

where P(g) is the sample mean of the change in position value. With regard to the above 
definition, the first theorem come into existence.

(1)pj(g) =
||||
C
(
ĥj, g

)
− C

(
hj, g

)||||
, 1 ≤ g ≤ N

(2)P(g) =

n∑

j=0

pj(g)

n

Fig. 2  sink node dataset after the 
first instance of sort took place

Fig. 3  Sink node dataset after the 
second instance of sorting
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Theorem 1 A node d is a sinkhole node if its average change in position P(g) is more than 
a bound K given by:

Proof Suppose the nodes 1 up to i are sinkhole nodes and all the others are legitimate, the 
change in position of the sth node in any sample is a random variable denoted by P(s) . In a 
case of a single sinkhole node, it is noticed that a sinkhole node s with change in position 
p(s) may make at most p(s) number of nodes change in position by 1.

In computing the average change in position value, the sink node will first compute the 
change in position value for each of the observed attack estimated sequences. In the example, 
there are two attack estimated sequences, so p1(3) will denote the first attack sequence and 
p2(3) will denote the second attack estimated sequence. For first instance p1(3) is found to be 
2 and p2(3) is found to be 1, both are calculated as follows:

Using equation Eq. 2, we get the average change in position of node 3 to be 3/2 which is 
similar to 1.5. The equation is as follows P(3) =

∑2

j=1

2+1

2
= 1,5,

Notice that node 3′s final change in position value is not 2 but 3 which is the effect of 
sinkhole node 5. Node 3 only affected two nodes 1 and 2, respectively. This can be further 
explained as a sinkhole node’s final change in position can be affected by other sinkhole nodes, 
while the number of non-malicious nodes it affected is equal to the first change in position of 
the affected sinkhole nodes. Node 3 affected two non-malicious nodes which is equal to its 
first change in position p1(3) = 2 . Then sinkhole node 5 changed position to the most left 
entry of the attack estimated sequence and decreased node 3′s change in position to 1, which 
is node 3′s final change in position p2(3) = 1 . However, it is visible that from the Figs. 2 and 
3 that node 1 and 2′s change in position are both 2, due to the two sinkhole nodes 3 and 5. 
This points out that node 3′s effect on node 1 and 2′s change in positions remains the same. 
Therefore, given the final change in position of any sinkhole node s, it is highly possible that 
the actual change in position of p�(s) for node s is pi(s) + i − 1 , which happens when all other 
sinkhole nodes affect s’s change in position in the same direction which is opposite to node s’s 
initial shift direction. Moreover, the extreme number of affected nodes due to a change in posi-
tion of node s is given by  pi(s) + i − 1 . Furthermore, the probability that a node’s change in 
position is changed by s is upper bounded by:

Considering the fact that a non-malicious node cannot change its  position value on its 
own, therefore given pi(s) , the expected change in position of any non-malicious node g 
due to node s denoted as ps(g) can be expressed as:

(3)K =
i

N − 1
(� + i)

(4)
p(s) + i − 1

N − 1

E(ps(g)|p(s)) ≤
p(s) + i − 1

N − 1
∀(i + 1) ≤ g ≤ N

E(E(ps(g)|p(s))) ≤ E

(
p(s) + i − 1

N − 1

)
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Therefore, the expected change in position of any legitimate node g caused by sinkhole 
nodes is upper bounded by:

where � is the mean average change in position of all sinkhole nodes; computed as follows:

In Eq. 7, the first inequality holds since the extreme total change in position of a non-mali-
cious node caused by sinkhole nodes happens when all sinkhole nodes make g to move to 
the same direction. As the sample size becomes sufficiently large, it guarantees that a sam-
ple mean becomes a great estimator of expectation stated in Eq. 7. When the expectations 
are replaced with sample mean, the equations become:

Let K denotes the upper bound on the right–hand side of Eq. 8. Then the average change in 
position of every non-malicious node g is upper bounded by K. Moreover, if a node g has 
an average change in position P(g) > K , it must be a sinkhole node.

Theorem 1 yields an adequate condition for node s being a sinkhole node if P(s) ≥ K 
implies s is a sinkhole node, it again yields an imperative condition for node g being a 
legitimate node that is, if g is a legitimate node then P(g) ≤ K holds.

If the attack estimate sequence is {n1, n2, … , ni} then the other nodes 
{ni+1, ni+2, … , nN} are legitimate nodes. As such, the sample average and sample vari-
ance of change in position of legitimate nodes can be computed as follows:

The nodes whose change in positions are greater than the second threshold are sinkhole 
nodes. That is if  P(t) > �̂� + 3�̂� then node t must be a sinkhole node s.

E(ps(g))E(p(s))

E(p(s))
≤

E(p(s)) + i − 1

N − 1

(5)≈ E(ps(g)) ≤
E(p(s)) + i − 1

N − 1
∀(i + 1) ≤ g ≤ N

E(p(s)) ≤

i�

s=1

E(ps(g)) ≤

∑i

s=1
E(p(s)) + i − 1

N − 1

(6)≤
� + i2

N − 1
∀(i + 1) ≤ g ≤ N

(7)� = E

�∑i

s=1
p(s)

i

�
=

i�

s=1

E(p(s))

i

(8)P(g) ≤
i

N − 1
(� + i) ∀(i + 1) ≤ g ≤ N

(9)�̂� =

N∑

j=i+1

P
(
gj
)

N − i

(10)�̂�2 =

N∑

j=i+1

(
P
(
gj
)
− �̂�

)2

(N − i) − 1
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We assumed that sinkhole nodes always report a hop count of 1 to their neighbor-
hood and that all other legitimate node reports a hop count of more than 1. After the 
nodes have transmitted their neighborhood information to the base station, the base sta-
tion then sorts the hop counts of the nodes in ascending order. This means nodes with 
significantly lower hop counts are placed at the head of the queue.

Using a change in position the base station computes the change in position of each 
node as it sorts the hop counts. Figure 4 illustrates the flow chart of HCOBASSA algo-
rithm in details.

3.4  Statistical Analysis

The student’s t test statistics was used to check the significant difference between the 
means of the average probabilities of detection and probabilities of false positive. As 
working with independent or unpaired samples the significant difference of variance 
using the F test statistic was first checked in order to choose the appropriate T test 
(assuming equal variance or assuming unequal variance). The hypothesis was stated as 
follows:

H0 There is no significant difference in the averages of the probabilities of both schemes.

H1 There is significant difference in the averages of the probabilities of both schemes.

Fig. 4  detection flow-chat of 
HCODESSA
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H0 is the null hypothesis and H1 is the alternative hypothesis. The null hypothesis states 
that there is no significant difference in terms  of the averages of probability of detection 
and averages of probability of false positive of the two algorithms, meaning that the per-
formance of the two algorithms are simillar. Whereas, the alternative hypothesis states that 
there is significant difference in the probabilities which means.

The tests were carried out at a 99% level of significant (α), which means that if we cal-
culate a confidence interval from 100 simulation samples, about 99% of them would con-
tain the true mean of the population. Furthermore, confirming that there is no difference, 
therefore the performance of the two algorithms is similar.

4  Results and Analysis

This section presents the comparative performance results of the HCODESSA and Ibra-
him’s algorithm. Figure 5 depicts the comparison of the average probability of detection of 
the two algorithms.

On average, HCODESSA managed to achieve 100% probability of detection in all 
the network sizes, whereas the Ibrahim’s scheme achieved an average of 70% probabil-
ity of detection. In this scenario, there were 15% attacking nodes in the network. The 
HCODESSA outperformed the Ibrahim’s by almost 30%. With 25% of the attacking node, 
HCODESSA’s performance dropped to 91% and Ibrahim’s probability remained constant. 
It detected almost the same number of attacking nodes in the varying network sizes.

Though the performance of HCODESSA dropped, it managed to maintain the desir-
able percentage and its detection rate remained above 80%. It is noticeable that percentages 
of the probability of detection with 25% and 35% attacking nodes are the same; in other 
words, HCODESSA achieved a constant probability whilst Ibrahim’s could not reach 80% 
average probability. However, its performance increased marginally to 76% when the per-
centage of the attacking nodes was increased to 35%.

Fig. 5  Comparison of average probability of detection for both HCODESSA and BRAHIM’s Hop Count-
Based Detection Algorithm
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Figure 6 presents the comparative results of the two schemes with regard to probability 
of false negative. The probability of false negative is the inverse of probability of detection. 
Higher probability of detection means less probability of false negative and vice versa.

HCODESSA achieved 0% probability of false negative whereas Ibrahim’s algorithm 
achieved 30% when 15% attacking nodes were considered. This means HCODESSA man-
aged to detect all the sinkhole nodes and Ibrahim’s only managed to detect 70% of the sink-
hole nodes. Although HCODESSA’s performance degraded when malicious nodes were 
increased to 25% and achieved 9% probability of false negative, the results are acceptable 
in comparison to Ibrahim’s. The performance of the Ibrahim’s improved and less prob-
ability of false negative was achieved in comparison to the results of the scenario with 15% 
sinkhole nodes.

The performance of Ibrahim’s algorithm with respect to probability of false negative has 
showed a great improvement of about 6% with 35% attacking nodes. Although its results 
are not that favorable, the improvement is welcome. HCODESSA maintained the same 
performance for the scenarios with 25% and 35% of the attacking nodes in the network. 
This is a good performance as the probability of false negative was maintained before 10%.

The probability of false positive was also generated to evaluate the two schemes. The 
probability checks the percentage of legitimate nodes that are regarded as sinkhole nodes 
by both algorithms. It is desirable that the probability of false positive be as low as pos-
sible, while keeping legitimate sensor nodes in the network and detecting and isolating 
sinkhole nodes.

Figure 7 shows the comparative results of the average probability of HCODESSA and 
Ibrahim’s schemes. Both algorithms have the same trend of incurring a higher percentage 
with 25% of sinkhole than on the other percentage of the attacking nodes; 15 and 35. This 
means that with 25% of the sinkhole nodes in the network, both algorithms regarded a 
higher  number of legitimate sensor nodes as sinkhole nodes than in the case where there 
are 15% and 35% sinkhole nodes. However, even though this is the case, HCODESSA’s 
probability of false positive is 4.9% which is good compared to 43% of the Ibrahim’s 
algorithms.

Fig. 6  Comparison of average probability of false negative for both HCODESSA and IBRAHIM’s Hop 
Count-Based Detection Algorithm
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HCODESSA achieved a probability of false positive which is less than 5% while 
Ibrahim’s was above 20% in the scenario with 15% malicious nodes. The HCODESSA 
therefore outperformed the Ibrahim by more than 15%. Although HCODESSA incurred a 
greater percentage in the scenario with 25% malicious nodes, the results are comparatively 
good. The Ibrahim’s in this case, it achieved 43% while HCODESSA incurred 4.9%. the 
performance of both algorithms improved in the scenario with 35% malicious nodes.

4.1  The Effect of the Sinkhole Attack

In this Section, we present the simulation results of the effects of the sinkhole attack. 
Packet loss ratio (PLR) and Packets delivery ratio (PDR) metrics were used to evalu-
ate the two schemes. The results depict the effect of the sinkhole attack on the per-
formance of the network. Figure  8 presents the performance results of the network 
when there is no attack. The results show that, as the network size increases, the packet 
delivery ratio also increases. The lowest ratio of packet dropped value is 0.83 (83%) 
which is almost the same as the maximum ratio value of the packet delivery ratio when 

Fig. 7  Comparison of average probability of false positive for both HCODESSA and IBRAHIM’s Hop 
Count-Based Detection Algorithm

Fig. 8  PDR against network size 
in the absences of the attack
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there is a sinkhole attack in Fig.  5. This shows that the sinkhole attack has a major 
effect on the packet delivery ratio in the network.

Figure  9 presents the results of PDR in the presence of the sinkhole attack. The 
results show that the network dropped a significant number of packets compared to 
Fig.  8. For each network size, the first blue bar denotes a scenario with 15% attack-
ing nodes and the next two bars represent the scenarios with 25% and 35% attacking 
nodes. However, the position of the sink hole nodes has effect on the performance of 
the network. When the sink hole node is closer to the base station, it can sink all the 
network traffic. However, if it’s further way at the edge of the network it can drop pack-
ets of the nodes in its neighborhood.

The greater impact of the sinkhole attack can be seen in Fig. 10. The results show 
that a large number of packets were dropped or lost when there were 25% and 35% 
of malicious nodes in the network. The greatest loss ratio recorded was 0.7 which 
is equivalent to 70%. This means 70% of the packets  were dropped by the sinkhole 
attacking nodes before they were delivered to the base station.

The severity of the sinkhole attack therefore depends on the number of nodes which 
it can mislead. This will give a sink hole attack node an opportunity to drop as many 
packets as possible. In a network scenario with 80 nodes and 15% sinkhole nodes, 
the effect of the sinkhole attack is moderate in comparison to 25% and 35% scenarios 
because the sinkhole nodes were not located in a zone where they could mislead a 
good number of nodes.

Fig. 9  PDR against network size 
in the presence of the attack

Fig. 10  PLR against network size 
in the presence of the attack
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4.2  Statistical Tests for Probability of Detection

Figure  11 presents the test statistic for the two algorithms with regard to their prob-
abilities of detection. Figure 11a presents the F-test statistic for checking whether the 
variances of the two algorithms are equal or not. The calculated value of F test statistic 
(2.3898) is less than the F critical value (99). This means the null hypothesis is not 
rejected. We therefore conclude that we are 99% confident that there is not significant 
difference in the variance of the probability of detection of the two algorithms.

Figure  11b proves that HCODESSA outperformed Ibrahim’s algorithm. Assuming 
equal variance from the F test in Fig. 11a, the t test statistic value of 7.06196 is greater 
than the t critical two-tailed value of 4.6040. We therefore reject the null hypothesis 
which states that there is not significant difference in the means of the probability of 
detection of the two algorithm. We therefore conclude that we are 99% confident that 
there is significant difference in the probability of detection  of the two algorithms.

4.3  Statistical Tests for Probability of False Positive

Figure 12 presents the test statistic of the probabilities of false positive of the two algo-
rithms. Figure 12a presents the F-test statistic for checking whether the variances of the 
two algorithms are equal or not. The calculated value of F test statistic of 37.21267 is 
less than the F critical value of 99. The f test statistic is not in the rejection range. We 
then conclude that statistically, there is no significant difference in the variances of the 
probabilities of false positive of the two algorithms.

Testing the difference in the Means of the probability of false positive for the two 
algorithms, it is clear that the t test statistic value of 5.5338 is greater than the t critical 
two-tailed value of 4.60409. The t test statistic falls in the rejection range. We therefore 
conclude that at 99% confidence interval there is significant difference in the Means of 
the probability of false positive of the two algorithms and reject the null hypothesis.

HCODESSA IBRAHIM HCODESSA IBRAHIM
Mean 94.66137566 72.21058201 Mean 94.66137566 72.21058201

Variance 21.37574536 8.94457378 Variance 21.37574536 8.94457378
Observa�ons 3 3 Observa�ons 3 3

df Pooled Variance
F Hypothesized Mean Difference

P(F<=f) one-tail df
F Cri�cal one-tail t Stat

P(T<=t) one-tail
t Cri�cal one-tail
P(T<=t) two-tail
t Cri�cal two-tail

2
0
4

0.001060437
3.746947388
0.002120874
4.604094871

7.061963059

15.16015957

(a) F-test: Two-Sample for Variances 
(probability of detec�on)

(b) T-test: Two-Sample Assuming Equal Variances 
(probability of detec�on)

2.389800329
0.295002626

99

Fig. 11  Test statistics for probability of detection
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5  Conclusion

The performance of the HCODESSA and Ibrahim’s algorithms were evaluated in three 
different network setups. In each network setup, three scenarios of the number of sink 
hole nodes were also considered. The number of the sink hole nodes ranged from 15 to 
35%. The performance of the schemes were evaluated based on the following metrics: 
probability of detection, probability of false positive and probability of false negative. 
The results show that HCODESSA outperformed the Ibrahim’s algorithm. Further-
more, the effect of the sink hole attack was evaluated using the packet delivery ratio 
and packet loss ratio. The results show that the sinkhole attack has adverse effect on the 
performance of the network. The severity of the sink hole attack also depends on the 
location of sink hole node and the number of nodes it can mislead.

The results also show that the proposed HCODESSA outperformed the Ibrahim’s 
algorithms in all the performance metrics and scenarios which were considered. In addi-
tion, the statistical tests on the average performance of the two algorithms regarding the 
probability of detection and probability of false positive were conducted. The statistical 
results show that the proposed HCODESSA outperformed Ibrahim’s algorithm.
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IBRAHIM HCODESSA IBRAHIM HCODESSA
Mean 34.19974584 3.119880675 Mean 34.19974584 3.119880675

Variance 92.15450189 2.476428085 Variance 92.15450189 2.476428085
Observa�ons 3 3 Observa�ons 3 3

df Pooled Variance
F Hypothesized Mean Difference

P(F<=f) one-tail df
F Cri�cal one-tail t Stat

P(T<=t) one-tail
t Cri�cal one-tail
P(T<=t) two-tail
t Cri�cal two-tail

2 47.31546499

0.005211565
4.604094871

(a) F-test: Two-Sample for Variances 
(Probability of false posi�ve)

(b) T-test: Two-Sample Assuming Equal Variances 
(Probability of false posi�ve)

3.746947388

37.21267031
0.026169331

99

0
4

5.533796691
0.002605782

Fig. 12  Test statistic for probability of false positive
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