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Abstract The localization of nodes plays a fundamental role in Wireless Sensor and

Actors Networks (WSAN) identifying geographically where an event occurred, which

facilitates timely response to this action. This article presents a performance evaluation of

multi-hop localization range-free algorithms used in WSAN, such as Distance Vector Hop

(DV-Hop), Improved DV-Hop (IDV-Hop), and the Weighted DV-Hop (WDV-Hop). In

addition, we propose a new localization algorithm, merging WDV-Hop, with the weighted

hyperbolic localization algorithm (WH), which includes weights to the correlation matrix

of the estimated distances between the node of interest (NOI) and the reference nodes (RN)

in order to improve accuracy and precision. As performance metrics, the accuracy, pre-

cision, and computational complexity are evaluated. The algorithms are evaluated in three

scenarios where all nodes are randomly distributed in a given area, varying the number of

RNs, the density of nodes in the network, and radio coverage of the nodes. The results

show that in networks with 100 nodes, WDV-Hop outperforms the DV-Hop and IDV-Hop

even if the number of RNs is reduced to 10. Moreover, our proposal shows an improvement

in terms of accuracy and precision at the cost of increased computational complexity,

specifically in the algorithm execution time, but without affecting the hardware cost or

power consumption.
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1 Introduction

WSANs are composed of sensors and actuators distributed in a geographic area of interest.

Sensors are devices of low processing capacity, very low power consumption, and low

cost, responsible for monitoring the physical environment, while the actuators perform a

task according to the collected data and reported by sensors during an event [1]. In

WSANs, knowing the position of the sensor nodes is very important, since it enables

determining the geographic localization of an event, and a timely response to this, apart

from facilitating the routing through the network and reduce the node power consumption

[2]. Therefore, the precise localization of sensors is a critical requirement for the

deployment of WSANs in a wide variety of applications such as animal tracking, logistics,

health care, monitoring spatial evolution of an extraordinary phenomenon, among others.

In WSANs, the localization is described according to a reference coordinate system defined

by RNs with known positions [3]. In reconfigurable networks, such as ad-hoc and WSAN,

connectivity is not always direct between twonodes, and the access points are connected through

multiple hops to the node of interest (NOI), [3, 4]. In amulti-hop scenario [5], neighboring nodes

provide information of the NOI, which is necessary and required to find its localization. Cur-

rently, there is a wide range of localization algorithms used in WSANs for determining the

localization of a sensor node. Some algorithms are based on GPS systems, which are useful

outdoors, while their performance is severely decreased in indoor scenarios [3, 6].

In the literature, localization algorithms are classified in range and range-free based

algorithms (or connectivity-based). The former assumes that the signal strength decreases

with distance, thus, signal strength readings can be used to estimate distance, which are

then used to infer the position of the NOI. These techniques present very accurate results.

However, they require specialized hardware, which makes them expensive in large net-

works [7]. When estimating the distance between nodes is unfeasible (or prone to errors),

distance free algorithms are recommended as they use information about connectivity.

These algorithms assume that the transmission rate is constant, or that the distribution of

nodes across the network is uniform it is known. This means that the performance depends

on the difference between expected and actual values of the transmission range and dis-

tribution of nodes (COM-LOC) [8]. In terms of accuracy, these techniques are not as good

as those based on range but its implementation is relatively simple and low cost. Due to the

limitations of hardware in WSANs and restrictions on power consumption, this article

focuses on investigating range-free algorithms localization in WSANs.

This article presents two contributions to the problem of localization in WSANs. First,

this work evaluates the performance of range-free multi-hop localization algorithms, such

as DV-Hop [9], IDV-Hop [10] and WDV-Hop [11]. Second, in this work a new range-free

localization algorithm is proposed, which improves accuracy and precision, merging the

WDV-Hop [11] and Weighted Hyperbolic (WH) algorithms. WDV-Hop is responsible for

estimating the distance between the NOI to the RNs, and WH computes the position of

NOI and reduces localization error by including weights to the correlation matrix of the

estimated distances between the NOI and the RNs. As performance metrics, accuracy is

evaluated in terms of Mean Squared Error (MSE) of the actual position and the estimated

position of the NOI; precision, as the distribution of errors and localization, and compu-

tational complexity based on the average time it takes a computer algorithm to estimate the

position of a node.
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The rest of the paper is organized as follows: Sect. 2 describes formally the problem.

Section 3 presents some localization techniques used in multi-hop networks. In Sect. 4, the

performance localization techniques presented in Sect. 2 are discussed. The main contri-

bution of this work is presented in Sect. 5, where an improved localization algorithm is

presented. The performance analysis of algorithms evaluated and compared with the

proposed algorithm is presented in Sect. 6 in terms of the Mean Squared Error and

computational complexity under different densities of nodes. Finally, The Conclusions are

presented.

2 Problem Statement

This section provides a formal description of the range-free localization problem. In this

work, a set of randomly distributed sensor nodes in a two dimensional plane is considered

to determine the position of an unknown NOI node. Also, in this work, we assume that

there is a set of N RNs Ai with known coordinates pi ¼ ðxi; yiÞ; i ¼ 1; 2; . . .;N, which
may be inside or outside the transmission range of the NOI.

Free-range localization algorithms use connectivity information between two nodes to

estimate the distance between the NOI to the RNs. For the purpose of this work, there is

connectivity between two nodes when they are within the coverage range of each other.

The radio coverage is obtained by the Received Signal Strength Indicator (RSSI). In this

work, the Log-Normal Shadowing Model (LNSM) is used to estimate the signal strength in

the distances distribution [COM-LOC-1] [11], because both theoretical and experimental

studies support this model in indoor and exterior scenarios. The Log-Normal model

propagation is used to estimate the power received, which is inversely proportional to the

distance d�g where g is the path loss exponent. This model is expressed by:

PRXðdBmÞ ¼ A� 10g log
d

d0
þ Xr; ð1Þ

where A is the average power received at a reference distance d0;Xr is a Gaussian random

variable with zero mean and standard deviation r in dB. Typical values for the path loss

exponent are in the range of 1.5 through 5 and for r in the ranges of values from 4 to 12 dB

[3, 12, 13]. Multilateration is used in order to estimate the position of the NOI.

3 Related Work: Localization Techniques

Localization techniques in WSNs are mainly classified into three categories: The first class

are distance estimation techniques such as Angle of Arrival (AoA), Time of Arrival (ToA),

Time Difference of Arrival (TDoA), and Received Signal Strength (RSS), used to estimate

the distance between two sensor nodes. ToA computes physical distance by speed and time

of signal propagation, which requires a perfect synchronization of the nodes. AoA esti-

mates the distance of the NOI using the direction of the neighboring nodes signal through

an array of antennas and multiple receivers, which involves costly hardware. TDoA

computes the time difference of arrival of the received signals to avoid dependency of the

synchronization nodes and performs the multilateration combining measurements from

multiple nodes. For the RSSI, the received power is used to calculate propagation losses to

estimate the distance, and uses this to infer the position of the NOI [14], using an empirical
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or theoretical path loss model. The second class involves algorithms for estimating the

position of the NOI. The localization techniques in the third class are classified into three

groups: range-based, range-free, and proximity-based and Hybrid. Range-based techniques

estimate distance between a group of nodes using an estimation range technique. Some of

these techniques are least squares multilateration [4]; multidimensional scaling (MDS)

[15], Ad-hoc Positioning Systems (APS) [16], and ranking Circular and Hyperbolic

algorithms [17]. The range-free techniques estimate the position of the NOI by RSS, so

estimating the distance between nodes is not required, but decreases accuracy with respect

to the former techniques. These techniques include DV-Hop [4, 18, 19], APIT method

(Approximate Point in Triangle) [4, 20], centroid [4], rectangular intersection [21], circular

intersection [21], and hexagonal intersection [21], among others. Finally, hybrid techniques

merge range-free and range-based techniques for a more precise localization of the NOI.

We next describe some of the range-free multi-hop algorithms used for the evaluation

performance in this work: DV-Hop, IDV-Hop and WDV-Hop.

3.1 DV-Hop Localization Algorithm

DV-Hop (Distance Vector Hop) uses the hop-based propagation model [22], which

exchange information about the distances among all nodes of the network, both RNs and

nodes with unknown localization (hereinafter referred to as unknown nodes), so that each

unknown node belonging to the network stores the distance in hops to all RNs Ai. Each

unknown node maintains a table with information: xi; yi;Hi, where ðxi; yiÞ is the coordinate
of the RN and Ai and Hi is the number of hops from the unknown node to the RN. This

table is updated only with information provided by the neighboring nodes of the unknown

node. Figure 1 shows the DV-Hop localization scheme. For each RN Ai, the average

distance of a simple hop known as correction factor ci is estimated using Eq. (2).

ci ¼
P

dijP
hij

¼
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ2 þ ðyi � yjÞ2
q

P
hij

; i 6¼ j; ð2Þ

where dij is the euclidean distance between the RNs Ai and Aj, and hij is the smallest

number of hops between RNs Ai and Aj.

The estimated distance between an unknown node to the RN Ai is represented by

Eq. (3):

d̂pi ¼ ci � hpi; ð3Þ

where hpi is the smallest number of hops between the RN Ai and the unknown node P, ci is

the average distance per hop of the Ai RN closest to the unknown node P, and d̂pi is the

estimated distance of the unknown node to the reference node Ai.

Fig. 1 DV-Hop localization
scheme

5014 J. Mass-Sanchez et al.

123



3.2 Improved DV-Hop Localization Algorithm

One of the problems with the DV-Hop is that as the number of nodes in the network

increases, the number of hops between RNs and unknown nodes also increases, causing a

cumulative error. An increase in the average distance error of hops also increases the

localization error of an unknown node. To address this, in [23, 24], they proposed the IDV-

Hop, wherein they use a mean correction factor in the network, which is defined by Eq. (4):

�c ¼
P

ci

N
; ð4Þ

where N is the number of RNs, and �c is the average correction factor of the network. In this
way, the mean distance in each hop is neither too big nor too small compared to the mean

length of the other hops. The estimated distance between an unknown node to the RN Ai is

computed using the Eq. (5).

d̂pi ¼ �c � hpi: ð5Þ

3.3 Weighted DV-Hop Localization Algorithm

WDV-Hop reduces the localization error by adding a correction parameter in the network

[11]. For this, it first computes the mean correction factor of the network ĉ. Then, it obtains

the mean hop distance error in the network, modifying the mean hop distance in the

network, aiming at improving the accuracy of the unknown node positioning, and, finally,

it computes the mean hop distance error in the network with Eq. (6):

d ¼ Rjdij � d̂ijj=hijP
hij

; i 6¼ j; ð6Þ

where d̂ij ¼ �c � hij represents the estimated distance between RNs Aj and Ai. Afterwards,

parameter d is sent to every node in the network. Finally, the mean hop length in the

network is computed using (7)

ĉ ¼ �cþ kd; ð7Þ

where k 2 ½�1; 1� is a parameter used to balance the mean hop distance in the network,

which highly depends on the network simulation environment. To estimate the distance

between an unknown node P and a RN Ai, the Eq. (8) is used.

d̂pi ¼ ĉ � hpi: ð8Þ

3.4 Hyperbolic Positioning Algorithm

The DV-Hop, IDV-Hop, and WDV-Hop algorithms make use of the hyperbolic positioning

algorithm to find the position of the NOI. The idea behind this algorithm is to find the

position (x, y) which minimizes the sum of squared error from all the set of estimated

distances. If ðxi; yiÞ represents the position of RN Ai where ði ¼ 1; 2; :::;N, where N is the

number of RNs) and d̂i is the estimated distance from the RN Ai to the NOI, then the error

is provided by:
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e ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ ðy� yiÞ2
q

� d̂i

� �2

: ð9Þ

The Eq. (9) shows a nonlinear optimization problem. The Hyperbolic positioning

algorithm [17] transforms the nonlinear problem in a linear problem that can be solved

with a least squares estimator. The distance between a mobile node and a RN Ai, is

expressed by Eq. (10).

d2i ¼ ðx� xiÞ2 þ ðy� yiÞ2: ð10Þ

Expanding Eq. (10) and redefining in matrix form, the following expression is obtained:

2x2 2y2

..

. ..
.

2xN 2yN

2

6
6
4

3

7
7
5

x

y

2

6
4

3

7
5 ¼

x22 þ y22 � d22 þ d21

..

.

x2N þ y2N � d2N þ d21

2

6
6
4

3

7
7
5: ð11Þ

Then, this problem can be formulated as

Hp̂ ¼ ~b; ð12Þ

where

H ¼

2x2 2y2

..

. ..
.

2xN 2yN

2

6
6
4

3

7
7
5; p̂ ¼

x

y

2

6
4

3

7
5; ~b ¼

x22 þ y22 � d22 þ d21

..

.

x2N þ y2N � d2N þ d21

2

6
6
4

3

7
7
5: ð13Þ

Therefore, the estimated position p̂ of the NOI can be calculated by expression (14).

p̂ ¼ ðHTHÞ�1
HT ~b: ð14Þ

The hyperbolic algorithm does not directly minimize the localization error given by (9).

The algorithm minimizes the sum of distances to the hyperbolas defined by the subtraction

of two estimated distances.

4 Performance Evaluation of State-of-the-Art Algorithms for Multi-hop
Localization

Figure 2 shows the localization error for the WDV-Hop algorithm, varying the value of k,

where k is the balancing parameter of the average length hop in the network, considering a

network of 200 randomly distributed nodes, where each node transmits at a maximum

distance of 30 m. Figure 2 shows the localization error for a network of AN = 10, 20, 30

RNs, where AN (Anchor Nodes) represents the number of RNs. Following Fig. 2, it can be

seen that as the number of RNs increases, the localization error decreases. The purpose of

this test is to obtain the value of k that minimizes the localization error of the NOI. In

Fig. 2, with k ¼ 1:2, the smallest localization error is obtained. In the analysis of accuracy

and precision a value of k ¼ 0:6 was selected, since this value is within the range ½�1; 1�,
which enables that the mean hop length is not as far from the actual mean hop length.

5016 J. Mass-Sanchez et al.

123



In Fig. 3, the performance of localization error of the DV-Hop, IDV-Hop, and WDV-

Hop algorithms are observed, considering a 100-node network where the number of RNs

increases from 5 to 30. In this particular scenario, IDV-Hop resulted in a smaller local-

ization error than that of DV-Hop and WDV-Hop for a 5–15 RNs variation. However, as

seen, the error is smaller for the WDV-Hop when the number of RNs is larger than 20. This

means that there is a 25 % decrease of the MSE when comparing the 5 and 30 RNs.

Fig. 2 MSE normalized versus k of [0.4, 1.6]

Fig. 3 Normalized MSE versus Reference nodes for a 100-node network
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Similarly, Fig. 4 shows the performance in a (randomly distributed) 150-node network

for a set of 5, 10, 15, 20, 25 and 30 RNs. As seen, there is around 25 % decrease in the

localization error, where WDV-Hop performs better than DV-Hop and IDV-Hop. How-

ever, as expected, the improvement of the WDV-Hop algorithms is due to the increase in

density of the nodes. Thus, it can be argued that as the density of RNs increases, WDV-

Hop will result in smaller a localization error than DV-Hop and IDV-Hop.

Figure 5 shows the cumulative distribution function (CDF) for the DV-Hop, IDV-Hop

and WDV-Hop algorithms considering a 150-node network with 10 RNs and a transmis-

sion ratio of 20 m for each node. In this scenario, the WDV-Hop algorithm resulted in a

higher precision due to the size of the network (150 nodes). This was not noticeable in a

100 node network. Following Fig. 4, the WDV-Hop results in a smaller error from 10 RNs

onward, which is consistent with Fig. 5.

5 Our Proposal: Weighted Hyperbolic DV-Hop Algorithm (WHDV-Hop)

In this section, we present our proposed localization algorithm for multihop networks. This

proposal involves using a weighted DV-Hop algorithm [11] merged with the weighted

hyperbolic localization algorithm [25], which computes the localization of the NOI. the

hyperbolic localization and weighted hyperbolic algorithms require a priori knowledge about

the estimated distance between the RNs and the NOI, as well as the position of the RNs. The

difference relies in the manner in which these algorithms solve the linear problem: the former

uses a least squares estimator proposed in [17], while the latter algorithm uses a weighted

least squares estimator proposed in [25]. The weighted hyperbolic algorithm achieves higher

accuracy than the hyperbolic algorithm, but requires a greater number of arithmetic opera-

tions during implementation since it runs in time Oðn3Þ [25].

Fig. 4 Normalized MSE versus reference nodes for a 150-node network
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5.1 Weighted Hyperbolic Positioning Algorithm

The traditional hyperbolic positioning algorithm computes the position of the mobile node

using Eq. (14). This algorithm solves the linear problem using a weighted least squares

estimator proposed in [25]. In this case, the position of the mobile node is computed by the

Eq. (15).

p̂ ¼ ðHTS�1HÞ�1
HTS�1~b; ð15Þ

where S is the covariance matrix of the vector ~b. It is important to note that the noise

affects the vector ~b measurements whose mean is not zero, so the estimator (16) is a biased

estimator. Assuming the estimated distances d̂i are independent and the coordinates of the

RNs are constant, the covariance matrix S can be computed using Eq. (15). The devel-

opment of the covariance matrix shown in [25].

S ¼

1þ d2

d1

� �4

1 . . . 1

1 1þ d3

d1

� �4

. . . 1

..

. ..
. . .

. ..
.

1 1 . . . 1þ dn

d1

� �4

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð16Þ

The elements of the covariance matrix S depends on the actual distance di between the NOI

and the RN Ai. Therefore, for an implementation in a real environment estimator in (15), it

is necessary to approximate the actual distance di by the estimated distance d̂i.

Fig. 5 Localization error [R] for a 10 reference node network
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In [14], it was shown that the weighted hyperbolic positioning algorithm achieves

higher accuracy than the classic algorithm of hyperbolic positioning under the same

evaluation scenario, since this algorithm includes a covariance matrix, which contains

information relating the behavior of the estimated distances affected by noise, but implies

more computational complexity.

Our proposed technique is described as follows: first the WDV-Hop algorithm is used,

which should correct the error of the mean hop length d in the network. The parameter d is

sent to all nodes in the network. After the unknown and reference nodes receive the

information of parameter d, Eq. (7) is used to compute the mean hop length of the entire

network ĉ and Eq. (8) is used to estimate the distance P between an unknown and a RN Ai.

Finally, the NOI position is estimated by weighted hyperbolic positioning algorithm pre-

sented in this section using the Eq. 15. It it important to note that the weighted hyperbolic

positioning algorithm and the classic hyperbolic positioning algorithm requires only to

know the coordinates of the reference nodes and estimated distances by weighted DV-Hop

to the NOI to find its position.

6 WHDV-Hop Versus State-of-the-Art Algorithms: A Performance
Comparison

In this section, the performance of the DV-Hop algorithm and its variants discussed in

previous sections is compared with our proposal, the WHDV-Hop algorithm, in terms of

three performance metrics: (1) accuracy (i.e., mean square error - MSE), (2) precision (i.e.,

cumulative probability distribution - CDF), and (3) computational complexity.

6.1 Evaluation Scenario

The localization techniques were evaluated with MATLAB version 2011 B in a scenario

with 100 sensor nodes formed with RNs or anchor nodes (blue triangles) and unknown

nodes (gray circle), are randomly distributed in a 100 m�100 m area as shown in Fig. 6.

Each node has a broadcast range of 20 m, where 20 nodes are considered as RNs (or

anchor nodes). A total of M ¼ 1000 runs were evaluated. The Table 1 shows the param-

eters used in for this scenario. For each scenario, the position of all unknown nodes is

calculated. Figure 6 shows that the cross-shaped node represents a node to locate (i.e, the

NOI) among the set of unknown nodes.

6.2 Performance Metrics

1. Accuracy This parameter is defined as the mean square error (MSE) of the actual and the

estimated NOI position, across several iterations. If (x, y) is the actual position of the NOI and

ðx̂k; ŷkÞ is the estimated position in the k ¼ 1; 2; :::;M iterations, then themetrics are given by:

MSE ¼ 1

M

XM

k¼1

ðx� xkÞ2 þ ðy� ykÞ2: ð17Þ

2. Precision These metrics consider the distance error distribution while the accuracy

considers the mean value of those errors. When two techniques are compared, technique

with concentrated distance errors on small values is preferred.
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3. Computational complexity It refers to the number of mathematical operations performed

by an algorithm in run time. In this paper, this parameter is measured by computing the

mean time it takes for an algorithm to estimate the position of a node for each density of

nodes. It also considers the complexity of the algorithm.

6.3 Accuracy Analysis

Figure 7 shows the behavior of the analyzed algorithms, considering a randomly dis-

tributed 100-node network varying the number of RNs by 5, 10, 15, 20, 25, 30. Analyzing

the localization error obtained shows that the proposed algorithm has a smaller error than

the other localization analyzed algorithms. This analysis shows that WDV-Hop with

weighted hyperbolic positioning yields higher accuracy. The improvement is due to the

weighted hyperbolic positioning algorithm, which is more accurate in locating the NOI in

scenarios where the RN is one hop distance from the NOI. Similarly, Fig. 8 shows an

analysis considering a randomly distributed 150-node network. This configuration shows

that by increasing the number of nodes in the network, the localization error decreases,

which is observed in the analyzed algorithms. The weighted hyperbolic WDV-Hop

Fig. 6 Distribution of the sensor nodes in a 100 m�100 m area

Table 1 Parameters used for the
simulations

Variable Value

Map size 100 m 9 100 m

Sensor nodes 100

Reference nodes (RNs) 20

Iterations (M) 1000

Radio range (R) 20 m
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positioning algorithms, reaches a localization error below 20% for a 30 RN network,

which is an improvement compared with the results shown in Fig. 3, where the proposed

algorithm reaches a localization error of approximately 25%. Figure 9 shows the results of

localization error for a network of 10 RNs, where the number of nodes in the network

varies from 100 to 350 nodes nodes. In Fig. 10, the weighted hyperbolic WDV-Hop

positioning algorithm shows the best performance in terms of accuracy, reaching a

localization error of approximately 28% for a network of 350 randomly distributed nodes,

while DV-Hop and IDV-Hop show a very similar pattern, reaching a localization error of

about 30% for a network with 350 randomly distributed nodes. The analysis shown in

Fig. 10 is similar to Fig. 9. This analysis considers a network with 20 RNs, where the

number of nodes in the network varies. The results show that increasing the number of RNs

causes the the localization error to decrease. Performance graphs of accuracy of the ana-

lyzed algorithms show that the WDV-Hop with weighted hyperbolic positioning algorithm

yields better performance. In this analysis, the WDV-Hop with weighted hyperbolic

positioning algorithm, localization error reaches about 20%. The localization error for a

randomly distributed 150-node network with 10 RNs is observed in Fig. 11. In this

analysis, the radio of communication nodes in the network is increased from 15 to 40 m.

The results show that increasing the radio of communication of any node in the network,

reduces the localization error analyzed algorithms, since an increased radio of communi-

cation implies that there is greater connectivity in the network. In Fig. 12, a randomly

distributed 150-node network with 20 RNs is considered. The results show that increasing

the number of RNs in the network yields a higher localization accuracy of the NOI.

Following Fig. 12, we can observe that the weighted hyperbolic WDV-Hop positioning

algorithm has the smallest localization error for any radio of communication node in the

network. The algorithm WDV-Hop with weighted hyperbolic positioning provides a

localization error of about 20% whereas in Fig. 11 this algorithm yields a localization error

of approximately 25%.

Fig. 7 Normalized MSE versus RNs for a 100-node network
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6.4 Analysis of Precision

For the evaluation of the precision the cumulative probability was calculated. In Fig. 13

shows the cumulative distribution function (CDF) for the analyzed algorithms. The results

Fig. 8 Normalized MSE versus RNs for a 150-node network

Fig. 9 Normalized MSE versus 10-RN network
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show that the algorithm weighted hyperbolic WDV-Hop positioning has a better precision

in the localization of the NOI than the other analyzed algorithms in this evaluation sce-

nario, that is, considering a randomly distributed 150-node network with 10 RNs. Ana-

lyzing the behavior of the CDF from the weighted hyperbolic WDV-Hop positioning

algorithm, it can be seen that for a localization error of 30% there is a probability of about

Fig. 10 Normalized MSE versus 20-RN network

Fig. 11 Normalized MSE versus radio communication for a 10-RN network
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45% of any node in the network is located with an localization error less than 30% error,

while an localization error for a 33% the probability of finding any node with an error of

less than 33% localization is about 80%. The improvement in precision of the analyzed

algorithms with the proposed algorithm of weighted hyperbolic positioning is considerable.

The results show that the precision of localization the NOI will be between ½25%; 40%� of
the localization error while for the precision of the localization for the DV-Hop algorithms

and WDV-Hop is between ½30%; 50%� of the localization error. Figure 14 shows the CDF

of the algorithms analyzed for a 150-node network with 20 RNs. The results show an

improvement in the precision of the localization by increasing the number of RNs. Ana-

lyzing the CDF of algorithm with weighted hyperbolic WDV-Hop positioning, it can be

seen that for a localization error of 25%, the probability of finding an unknown node in the

network with an error of less 25% is about 87%. The probability to find an unknown node

with an error of smaller than 30% is 100% probability, which is a significant improvement

compared with the analysis made for a network with 10 RNs. Figure 15 shows the CDF of

analyzed algorithms for a 200-node network with 10 RNs. Comparing the CDF of the

WDV-Hop with weighted hyperbolic positioning algorithm and the CDF shown in Fig. 13,

we can observe that, in this scenario, the precision is improved in locating the unknown

node, for a localization error of 30% the probability of finding the node of interest is

approximately 65%, whereas the results shown in Fig. 13, the probability of finding the

node of interest with an error less than 30% is approximately 45%. Figure 16 shows the

behavior of the CDF of the analyzed algorithms for a 200-node network with 20 RNs. The

results prove that increasing the amount of RNs in the network, yields an increase in the

precision of the localization of the NOI. Comparing the CDF between WDV-Hop with

weighted hyperbolic positioning and the CDF of the algorithm shown in Fig. 14, it shows

that for this analysis the precision can be improved, since for a localization error of 22%
the probability of finding the NOI is about 78% while those shown in Fig. 14, the CDF is

Fig. 12 Normalized MSE versus radio communication for a 20-RN network
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Fig. 13 Localization error [R] for a 150-node network and 10 RNs

Fig. 14 Localization error [R] for a 150-node network and 20 RNs
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Fig. 15 Localization error [R] for a 200-node network and 10 RNs

Fig. 16 Localization error [R] for a 200-node network and 20 RNs
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about 40% for a localization error approximately 22%, then there is an improvement of

38% of precision in locating the node of interest.

6.5 Analysis of Complexity

Table 2 shows the execution time in seconds of the algorithms described in previous

sections for different node densities. The results of Table 2 were obtained as an average of

750 iterations for each node density. According to the results, it is observed that the

weighted hyperbolic WDV-Hop positioning algorithm has higher execution time, but the

difference is not significant. In Fig. 17, the runtime of the analyzed algorithms for different

densities of nodes is observed. Basically, all the analyzed algorithms describe a similar

behavior with low density of nodes. However, as the number of nodes increases it can be

seen a small variation between them, so that WDV-Hop requires more processing time to

find the position of the NOI.

6.6 Results Discussion

In Table 3, the performance of localization techniques analyzed using performance metrics

as RMS error, accuracy, and complexity is shown. The indicators used to measure the

quality of performance of each algorithm are analyzed: very bad, bad, fair, good and very

good. Table 3 shows that DV-Hop, IDV-Hop, and WDV-Hop have a very good accuracy

and precision, but according to the results WDV-Hop yields higher accuracy and precision

in locating the NOI due to the average-distance correction factor per hop included in the

algorithm.

The complexity of these algorithms is bad since they use the weighted hyperbolic

positioning algorithm, its order of complexity is Oðn3Þ, where n is the number of RNs

within the coverage area of NOI, but no all RNs. Instead the DV-Hop, IDV-Hop, and

WDV-Hop with classic hyperbolic positioning algorithms, provide regular complexity,

since this algorithm is asymptotic cost of O(n), because it only involves matrix multipli-

cation operations. In a sensor network, a regular node requires considerable processing

time for range-based localization algorithms, instead, it is recommended to have the

information processed in a data fusion center or a central computer to which sensor nodes

would send it since nodes would be of low power consumption and need to be energy

efficient. Besides, the efficiency of these algorithms can be improved employing

Table 2 Run-time of the analyzed algorithms for different densities of nodes

Algorithm Density of nodes/time execution (s)

100 150 200 250 300 350

DV-Hop 22.226 86.635 229.511 512.500 1000.232 1780.764

WDV-Hop 23.018 87.761 231.716 518.611 1015.199 1983.258

WHDV-Hop 22.722 86.947 229.344 504.244 980.883 1770.735

WHIDV-Hop 22.699 87.885 232.313 525.172 1028.644 1828.323

WHWDV-Hop 23.330 87.950 230.578 505.802 992.612 1768.970

5028 J. Mass-Sanchez et al.

123



parallelization techniques for matrix operations. Range-free algorithms would be a better

implementation choice for WSNs. WHDW-Hop algorithm shows a better performance in

accuracy and precision during the NOI localization in comparison with other mentioned

algorithms. It requires, however, a higher number of computing operations in order to

estimate the NOI position.

WHDW-Hop algorithm could be used on WSN applications such as health, energy

quality, remote monitoring, object tracking, home automation, fire detection, among oth-

ers, since the precision of this algorithm guarantees a more accurate object localization or

event detection.

7 Conclusions

In WSN, the connectivity information from neighboring nodes to access points is used to

estimate the position of an unknown node. Analyzing evaluated algorithms, range-free

algorithms are computationally more efficient than the algorithms range-based as DV-

Fig. 17 Number of nodes in the network versus runtime [s] for a 200-node network with 20 RNs

Table 3 Quality performance
metrics

Algorithm/metric RMS error Precision Complexity

DV-Hop Fair Fair Fair

IDV-Hop Fair Fair Fair

WDV-Hop Good Good Fair

DV-Hop ? WH Very good Very good Bad

IDV-Hop ? WH Very good Very good Bad

WDV-Hop ? WH Very good Very good Bad
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Distance, since this algorithm requires knowing the distance between two nodes, using

some distance estimation technique. On the other side, range-free algorithms such as DV-

Hop only estimate the number of intermediate nodes between two access points. In this

manuscript, we proposed a fusion of WDV-Hop with the weighted hyperbolic positioning

algorithm, which yields higher precision and accuracy than the other analyzed algorithms,

albeit more computationally complex. As a future work, we will reduce the computing

complexity related to the designed algorithm, and improve accuracy and precision in

localization using alternate algorithms. Finally, we will analyze the impact of localization

algorithms described in this article on a real environment and extend the localization of

nodes in WSN applications.
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