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Abstract This paper focuses on modeling of the statistical reception angle properties that

are the result of the environmental influence on transmitted signals. Numerous measure-

ments have shown that the statistical properties of angle of arrival (AOA) significantly

depend on the type of propagation environment. In practice, this means that in the ana-

lytical and simulation studies, the use of statistical models of AOA required their adap-

tation to propagation conditions in research scenario. Despite the large number of papers

that are devoted to the AOA modeling, the method of fitting models to the environment is

not presented in any of the publications. This paper fills this gap. For the assessment of the

propagation properties and environment type classification, the basis is the rms delay

spread (DS). Therefore, the presented method of the model adaptation to the environment

type consists of determining the relationship between the model parameter and DS of

environment. Here, the probability density function (PDF) of models such as the modified

Gaussian, modified Laplacian, modified logistic, and von Mises distribution are considered

as the statistical models of azimuth AOA. For seven different propagation environments,

the measurement results are used as a reference data. A comparative analysis shows that

the modified Laplacian PDF provides the smallest error fit to measurement data. However,

in theoretical analysis and simulation studies, other empirical models can be used due to

relatively low approximation errors. The presented results are the basis for the adaptation

error assessment of the empirical model for any of the research scenario.
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1 Introduction

For multipath propagation environment, mapping the statistical properties of the angle of

arrival (AOA) is important in the analytical and simulation studies of signals in wireless

systems. Part I of this paper [1] is focused on a comparative analysis of empirical and

geometrical (theoretical) models of the probability density function (PDF) of azimuth AOA

(AAOA) for different environmental conditions. Empirical models are based on standard

distributions such as Gaussian [2–5], Laplacian [2, 3, 6–12], logistic [13–16], and von

Mises [3, 17–21], which are being modified due to limited support of PDF of AAOA. The

theoretical models are defined by the geometrical structures that describe the spatial

position of scattering elements. In [1], the comparative analysis of PDF models also takes

into account the results from [22], which relate to the best geometrical models such as

uniform elliptical (receiver (Rx) outside) [23], Gaussian [6, 24, 25], and Rayleigh circular

(Rx outside) [26]. A comparison shows that the smallest approximation errors of the

measured data are provided by modified Laplacian and uniform elliptical (Rx outside) PDF

for empirical and geometrical models, respectively. For all the analyzed scenarios and

measures of the approximation accuracy, the average error is smallest for modified

Laplacian PDF. The simplicity of the analytical description of empirical models, whose

detailed analysis is derived from mathematical statistics, is an additional asset in relation to

other models. This feature of the empirical models plays a significant role in theoretical

and simulation studies. Therefore, in analytical analysis, e.g. [3, 17], which take into

account the impact of AOA on correlational and spectral properties of received signals, the

empirical models are primarily used. Numerous measurements, e.g. [7, 27, 28], show that

the statistical properties of AOA significantly depend on the type of the propagation

environment and spatial parameters of the measurement scenario. In practice, this means

that the use of empirical models in analytical studies requires their adaptation to research

scenario. In COST 207 [29], the assessment of the propagation conditions and classifi-

cation of environment type is based on the rms delay spread (DS), rs. This parameter is

defined on the basis of the impulse response (IR), power delay profile (PDP), or power

delay spectrum (PDS). Therefore, the fit of the model to the type of propagation envi-

ronment consists of determining the relationship between the model parameter and DS of

the environment. It is the fundamental problem of the practical use of empirical models in

analytical and simulation studies. Despite the large number of publications devoted to PDF

of AOA modeling, the method of fitting the model to any environment is not described in

any paper. This paper fills this gap. Here, the method for determining the relationship

between DS and the parameter of each PDF model is presented for all environment types.

In analytical and simulation studies, this method makes it possible to fit each analyzed

model to different propagation environments.

In Part I of this paper [1], the accuracy of AAOA measurement mapping results by

empirical and geometrical PDF models is shown. Part II is focused on the adaptation

method of the empirical models to the different types of propagation environments. In

Sect. 2, the relationship between DS and the rms angle spread (AS) is defined on the basis

of the measurement scenarios taken from the open literature. In Sect. 3, the relationships

between DS and parameters of PDF models are determined by minimizing the mean square

error. Section 4 includes conclusions, which highlights the practical relevance of this

method for analytical and simulation studies.
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2 Statistical Relationship Between DS and AS

Evaluation of propagation environment properties is based on the signal power distribution

over time that is described by such characteristics as IR, PSD, or PDP. These character-

istics are the basis to determine rs that defines the environment properties in the time

domain. However, the propagation environment is described by parameters that are defined

not only in time domain but also in the reception angle domain. In this case, the properties

of the propagation environment are described by the standard deviation of reception angle,

rh, which is defined based on PDF of AOA. In practice, the evaluation of the statistical

properties of reception angle is based on the measurement of the angular power spread.

When analyzing the reception angle in the azimuth plane, rh is defined on the basis of the

power azimuth spectrum (PAS), P(h), as

rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In this case, rh is called AS. For the empirical PAS, rh is marked as rE.

The results of the numerous measurements show that rs and rE increase with increasing

urbanization of environment. In this paper, the relationship between rs and rE is deter-

mined based on data from the seven measurement scenarios described in

[7, 27, 28, 30–32]. In [22], many measurement scenarios are used to assess the approxi-

mation errors of geometrical models of PDF of AAOA. For analysis of empirical models, a

number of measurement data is limited to these scenarios that include the signal charac-

teristics in both time and angle domain. For all selected measurement scenarios, rs and rE
are determined on the basis of PDS or PDP and PAS, respectively. The results of numerical

calculations are included in Table 1.

The correlation coefficient, q, is the basis for assessing the degree of DS and AS

correlation [7]

q ¼
PN

n¼1 rE n½ � � �rEð Þ rs n½ � � �rsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
n¼1 rE n½ � � �rEð Þ2PN

n¼1 rs n½ � � �rsð Þ2
q ð2Þ

where N = 7 is the number of scenarios described in Part I [1], rE[n] and rs[n] are the

estimated AS and DS for the nth scenario, while �rE ¼ 7:328� and �rs ¼ 0:7203 ls are the

sample means of the estimated ASs and DSs, respectively.

Table 1 DSs and ASs—results of numerical calculation for selected measurement scenarios

Measurement
scenario

Matthews
et al. [30]
(Wong
et al. [22,
Fig. 4])

Pedersen
et al. [27]
(Wong
et al. [22,
Fig. 5])

Takada
et al.
[31]
(Wong
et al.

[22,
Fig. 7])

Fleury
et al.
[32]
(Wong
et al.

[22,
Fig. 8])

Mogensen
et al. [28]
(Wong
et al. [22,
Fig. 9])

Pedersen
et al. [7]—
Aarhus
(Wong
et al. [22,
Fig. 10])

Pedersen
et al. [7]—
Stockholm
(Wong et al.
[22,
Fig. 11])

1 2 3 4 5 6 7

DS, rs (ls) 1.4185 0.0932 0.1112 1.2337 1.2337 0.3221 0.6285

AS, rE (�) 8.935 2.089 4.448 10.169 9.782 6.428 9.445
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For empirical data included in Table 1, the correlation coefficient is computed to be

q = 0.8537. This value indicates that AS and DS are highly correlated. This means that

between rs and rE is the functional relationship, which makes it possible to assess the

reception angle spread on the basis of the spread of signal in the time domain. In [7,

Fig. 6], the analysis results of measurement data are a prerequisite to the adaptation of a

linear function for mapping the relationship between rs and rE. The linear regression line

between AS and DS is obtained by using the least square method [33, 34]. For the linear

function

~rh ¼ a � rs þ b ð3Þ

where a and b are the coefficients described by [33]

a ¼ 1

D
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Based on Table 1, the linear relation between rE and rs is

~rE
�½ � ¼ 4:65 � rs ls½ � þ 3:98 ð5Þ

The empirical data and the regression line for DS and AS are presented in Fig. 1.

For the regression line, the root of the mean square error (RMSE), dO is used to evaluate

the approximation error

Fig. 1 Empirical data and regression line for rs and rE
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

rE n½ � � ~rh n½ �ð Þ2

v

u

u

t ð6Þ

where rE[n] and ~rh n½ � are empirical ASs from Table 1 and from regression line for the nth

scenario, respectively. For the empirical data, ~rh n½ � ¼ ~rE n½ �.
On the basis of Eq. (6) and data contained in Table 1, the approximation error is

computed to be RMSE = 1.4953�. The obtained result indicates that the approximation

line yields an error of a value corresponding to the practical accuracy of the measurement

angle. Later in this paper, RMSE is used to compare analyzed PDF models of AAOA.

3 Adaptation of the Empirical Models to Propagation Scenarios

The adaptation of the empirical model to the environment type involves selecting such

value of model parameter that minimizes the approximation error with respect to mea-

surement data. In Part I of this paper [1], the measure for the parameter selection and

evaluation of the approximation error is the least-squares error (LSE). The optimal

parameters of the models and corresponding LSEs are shown in [1, Table 4] and [1,

Table 5], respectively. For all measurement scenarios and optimal parameters, each

empirical model determines specified ASs that are shown in Table 2. To evaluate the

accuracy of rh approximation by particular models, RMSEs relative to measurement

results are also presented here.

In time domain, each measurement scenario is identified by rs. Taking into account all

measurement scenarios and their DSs, the data from Table 2 are the basis for the deter-

mination of the relationship between rh and rs for particular empirical models. The

measurement results [7, Fig. 6] are a prerequisite to the adaptation of a linear function for

the approximation of the relation between AS and DS for all models. Similarly as for (5),

the regression lines for each model are obtained by using the method of least squares based

on data from Tables 1 and 2. For particular models, the relationships are as follows:

• modified Gaussian

~rh ¼ 3:72 � rs þ 2:26 ð7Þ

• modified Laplacian

~rh ¼ 5:32 � rs þ 2:75 ð8Þ

• modified logistic

Table 2 AS and RMSE for particular models and measurement scenarios

Empirical PDF model AS for measurement scenario, rh (�) RMSE (�)

1 2 3 4 5 6 7

Modified Gaussian 7.972 1.173 1.980 6.037 5.598 4.159 7.664 2.693

Modified Laplacian 10.690 1.645 2.477 8.443 8.097 5.617 9.128 1.401

Modified logistic 8.892 1.306 2.140 6.790 6.298 4.549 8.167 2.225

von Mises 7.990 1.173 1.980 6.045 5.604 4.162 7.679 2.687
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~rh ¼ 4:24 � rs þ 2:39 ð9Þ

• von Mises

~rh ¼ 3:73 � rs þ 2:26 ð10Þ

In Fig. 2, the graphical representations of these equations are presented.

The graphs show that the approximation line for the modified Laplacian is the most

convergent to the straight line for measurement data. The accuracy of mapping empirical

relation of AS versus DS for modified Gaussian and von Mises PDF is practically the same.

However, these models introduce a greater approximation error, especially for typical and

bad urban environment.

The purpose of adapting the PDF model of AAOA is to provide such AS that corre-

sponds to the propagation environment type. For each model, there is a close relationship

between its parameter and rh. These relations for analyzed models are included in Table 3.

The above relationships are the basis for determining the parameters of models as a

function of the environment type, that is, depending on rs. For the modified Gaussian and

logistic models and taking (7), (9) into account, the relations between r, s, and rs are,

respectively

• modified Gaussian

~r ¼ 3:73 � rs þ 2:23 ð11Þ

• modified logistic

~s ¼ 2:35 � rs þ 1:32 ð12Þ

The graphs of these equations are presented in Figs. 3 and 4, respectively.

In Table 3 for the modified Laplacian, the relationship between k and rh is described as

a hyperbolic function. Therefore, the relation k versus rs is

Fig. 2 Linear approximation of the relations between AS and DS for the empirical models
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~k ¼ 1

9:44 � rs þ 0:40
ð13Þ

In Fig. 5, the graph of the equation is presented.

For the von Mises PDF, the complexity of relationship between j and rh makes it

difficult to use the least-squares method to determine the approximating function of j
versus rs. Therefore, in this case, the following approximation is adopted:

rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � I1 jð Þ
I0 jð Þ

s

ffi 1

aM0 � jþ bM0

þ cM0 ffi ~rh ð14Þ

Taking (10) and (14) into account, the relation j versus rs takes the form

~j ¼ 1

aM � rs þ bM
þ cM ð15Þ

Table 3 AS versus parameters of particular PDF models

Empirical PDF model Model parameter Normalized factor Theoretical AS

Modified Gaussian r CG rh ¼
ffiffiffiffiffiffi

CG

p
r

Modified Laplacian k CL rh ¼
ffiffiffiffiffiffi

CL

p ffiffi

2
p

k

Modified logistic s CS rh ¼
ffiffiffiffiffiffi

CS

p
s p
ffiffi

3
p ¼

ffiffiffiffiffiffi

CS

p
s p
ffiffi

3
p

3

von Mises j – rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � I1 jð Þ
I0 jð Þ

q

I0(�), I1(�) are the zero- and first-order modified Bessel functions, respectively, CG, CL, and CS are the
normalized factors of the models defined in [1]

Fig. 3 r versus rs for the modified Gaussian
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In (15), the parameters aM, bM, and cM are determined by the use of the least-squares

method relative to optimal j included in [1, Table 4] and data from Table 2. Obtained

results are aM = 0.0426, bM = -0.0035, and cM = 59.0287, so

~j ¼ 1

0:0426 � rs � 0:0035
þ 59:0287 ð16Þ

Graphical representation of (16) is shown in Fig. 6.

Fig. 4 s versus rs for the modified logistic model

Fig. 5 k versus rs for the modified Laplacian
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Based on the close relationship contained in Table 3 and for optimal j from Table 2,

RMSE is 2.687�, whereas for (14) is 2.852�. Therefore, the relative error of RMSE is about

1/16. It shows that (14) introduces about 16 times smaller error in relation to (10). This fact

justifies the adaptation of (14) to approximate the relationship between rh and j for the von

Mises PDF.

For the particular empirical models, (11), (12), (13), and (16) provide the fit of models

to the type environment defined based on rs. However, using these approximation

increases the mapping error of AAOA statistical properties when compared with the

optimal parameters. As in Part I [1], LSE is used to access the PDF mapping error of

AAOA by empirical models. The basis for assessing the mapping error are the average

LSE, for the optimal parameters and the average LSER, for values from (11), (12), (13), and

(16). For the particular models, the results of the numerical calculations of these measures

and their difference are contained in Table 4.

The obtained results make it possible to assess the mapping error of PDF of AAOA for

each model. Comparison of LSER and LSE shows that the adaptation method provides the

smallest increment of mapping error for the von Mises PDF. A slightly greater increase in

error occurs for the modified Laplacian. However, this model provides the smallest error in

the evaluation of PDF of AAOA because it gives the smallest LSE and LSER. Relatively

worse mapping of real AAOA properties by the modified Gaussian, modified logistic, and

von Mises PDFs do not exclude the possibility of their use in theoretical analysis. In many

cases, the simplified description of the statistical properties of AAOA is ensured by PDF

Fig. 6 j versus rs for the von Mises PDF

Table 4 Average LSEs for the
particular models

Empirical PDF model LSE LSER LSER - LSE

Modified Gaussian 0.522322 3.015436 2.493114

Modified Laplacian 0.125177 0.203505 0.078328

Modified logistic 0.358694 2.714384 2.355690

von Mises 0.521320 0.560357 0.039036
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model that introduces a greater approximation error. In this paper, the presented adaptation

method provides the opportunity to evaluate this error.

4 Conclusion

The paper discusses the adaptation of the PDF models of AAOA to study the propagation

scenarios that take into account the diversity of environments. In this publication, the

simplicity of the analytical description and a better fit to the measurement results are

reasons to focus attention on the empirical models. Especially, these properties are

important in analytical and simulation studies of signals in wireless systems. For diverse

propagation environments, such PDF models of AAOA as the modified Gaussian, modified

Laplacian, modified logistic, and von Mises have been considered in the presented com-

parative analysis. Similarly as in COST 207 [29], DS is adopted for the classification of the

propagation environment type. The adaptation method of empirical model boils down to

determining the relationship between DS and the model parameter. The obtained rela-

tionships make it possible to fit each PDF model to the real properties of AAOA that

correspond to each propagation environment. For seven propagation scenarios, the mea-

surement results are used as a reference data. A comparative analysis shows that the

modified Laplacian model provides the smallest fitting error to measurement data. How-

ever, in theoretical and simulation studies, other empirical models can also be used due to

the relatively small error and simple analytical description in relation to the geometric

models. In this case, the presented adaptation method enables the assessment of the

approximation error that results from the application of the empirical model.
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