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Abstract This paper focuses on 16-QAM labelings of bit-interleaved space-time coded

modulation with iterative decoding (BI-STCM-ID). What is contributed is an algorithm to

generate (with no random search) optimal labelings for BI-STCM-ID systems with any

number of transmit- and receive antennas, transmitting over Rayleigh fading channel.

Along with the algorithm, a couple of corollaries are brought, which give an account of the

optimal labelings’ features. Having a complete set of optimal 16-QAM BI-STCM-ID

labelings at hand, it is possible to advance research on labeling diversity scheme by finding

all such labeling pairs that—if applied to a system with two different labeling maps within

adjacent transmit streams—bring maximum asymptotic coding gain.

Keywords Diversity � MIMO systems � Modulation � Space-time coding

1 Introduction and Motivation

Since bit-interleaved coded modulation with iterative decoding (BICM-ID) was introduced

[1, 2], there have been many efforts made to analyze the impact of applied signal labeling

on the system performance. Some researchers tried moving the position of constellation

points for a given modulation order, e.g., [3, 4], but in most cases the constellation points

were fixed and the research focused on solving a combinatorial problem of associating

binary labels with constellation points of well known modulations, like 8-PSK, 16-QAM,

and 64-QAM [3, 5–7]. Interestingly, in [8] some system performance improvement was

obtained by reducing the modulation order and assigning non-unique labels to constellation

points.

There is no explicit definition of the optimal labeling, because different optimization

goals can be considered due to a specific shape of BER versus SNR curves of systems
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incorporating iterative decoding, i.e., at a certain SNR value (‘‘turbo cliff’’ or ‘‘waterfall

region’’) the curves start to decline rapidly to achieve so-called Error-free Feedback (EF)

bound. The most common approach to BICM-ID is looking for the lowest possible position

of the EF bounds, and thereby optimizing asymptotic performance, i.e., for SNR ! 1. In

that case the optimization goal is clearly defined, as shown in Sect. 2.2. For brevity, the

labeling with the asymptotic performance optimized will be referred to as the optimal

labeling throughout the paper.

Unfortunately, better asymptotic performance is usually followed by a lower height of

the turbo cliff, and—what is even worse—the turbo cliff is shifted towards the right in the

BER versus SNR chart. To avoid this disadvantage, the labeling should be well matched to

the channel code. It can be achieved, e.g., by modulation doping [7], which consists of

applying different labelings (the labeling exhibiting good asymptotic performance, and the

Gray one) to different parts of each transmitted packet. A number of bits to be mapped

according to the Gray labeling can be easily changed to fulfill specific performance

requirements.

BI-STCM-ID [9–11] is a BICM-ID descendant, capable of exploiting space-time di-

versity. As for BICM-ID, the optimal labeling map has to be searched for in order to

improve the asymptotic performance of BI-STCM-ID. The optimization goal is a function

of the system diversity order p, reflecting the number of transmit- and receive antennas. In

[11] Huang and Ritcey have searched for the optimal labelings of BI-STCM-ID. They used

Reactive Tabu Search optimization algorithm and subsequently considered numerous di-

versity order values, i.e., p 2 1; 2; 4; 8; 9; 16f g, to get different labeling maps, each time.

The author of the current paper reported in [12] that most of the 16-QAM labelings found

in [11] for different values of p are equivalent to each other and, as such, can be used

regardless of the current BI-STCM-ID configuration (including parallel transmission

modes, i.e. H-type space-time codes in [11]).

Although the labelings were optimized in [11] for transmission over Rayleigh fading

channel, in [12] it was shown that all the equivalent labelings have the same properties as

the M16a labeling found in [6] for BICM-ID transmitting over AWGN channel. For that

reason all the equivalent optimal BI-STCM-ID labelings will be called M16a-compliant

throughout the text. A formal definition of a M16a-compliant labeling will be introduced in

Sect. 2.3

The author of this paper, inspired by modulation doping, proposed a space-time encoded

system, called boosted scheme, in which different labelings, i.e., (Gray, M16a-compliant)

pair, are used within adjacent transmit streams to generate signals carrying the same data

[13]. Afterward, he succeeded in applying two optimal BI-STCM-ID labelings—both

M16a-compliant—instead of the (Gray, M16a-compliant) pair. In [14] he reported that

application of two M16a-compliant labelings yields some asymptotic coding gain over BI-

STCM-ID. The asymptotic coding gain of the scheme proposed in [14], called labeling

diversity (LD) scheme, is achieved only due to the fact that different labelings are used in

individual transmit streams, so it can be considered as labeling diversity gain. What is

worth noting, benefiting from labeling diversity gain does not imply any performance loss

in the turbo cliff region—it is a unique feature of the LD scheme.

The above-mentioned labeling diversity gain is not maximal for every pair of M16a-

compliant labelings [15]. Nevertheless, the use of two M16a-compliant labelings is a

prerequisite, since no higher labeling diversity gain was observed for any other labeling

mixture in [15], wherein a labeling pair optimization was run. The current research

problem is to determine what makes a given pair of M16a-compliant labelings the optimal

choice for labeling diversity purposes. To address that problem it is necessary to get all
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M16a-compliant labelings, and then analyze them pair-by-pair. Such a challenging task

motivated the author to develop an algorithm that enables generation of all M16a-com-

pliant labelings. The algorithm is the main contribution of the paper. The work reported

alongside gives an insight into properties of optimal 16-QAM BI-STCM-ID labelings and

helps understanding the idea of LD scheme.

The paper is organized as follows. Section 2 delivers some preliminaries to enable the

reader to familiarize with the research scope. A thorough analysis of M16a-compliant

labelings is given in Sect. 3 along with some useful corollaries. The algorithm to generate

M16a-compliant labelings is delivered in Sect. 4 and followed by an example of use. Then

the number of M16a-compliant labelings is assessed. The algorithm is applied in Sect. 5 to

determine the pairs of M16a-compliant labeling that are suitable for labeling diversity

purposes. Section 6 is to conclude the work.

2 Preliminaries

2.1 BI-STCM-ID Principles

The BI-STCM-ID system yields a space-time diversity gain over BICM-ID: since the

signals representing given parts of encoded data train are transmitted at least twice (each

time through different antennas and in different time-slots), the signals are more resistant

to detrimental effects of channel fading and additive noise [16, Sec. 3.3.3]. To boost the

space-time diversity gain, NR [ 1 receive antennas can be applied.

Both BI-STCM-ID transmitter and receiver are shown in Fig. 1. At the transmitter, the

data bit sequence d is encoded. Then, the length-M codeword c is bit-wise interleaved (by

the block denoted by p) and the interleaved codeword v is divided into length-m horizontal

binary vectors v1. . .v#. . .v M=md e, where # is a given time instant. Each vector v#; 8#, is

mapped onto a baseband complex signal s# 2 v, according to the labeling map x (v is the

signal constellation—16-QAM herein). Afterward, the space-time encoder takes q con-

secutive signals, ss; . . .; ssþq�1 to specify the tth L � NT space-time codeword Xt, whose

entries are the signals to be transmitted through NT antennas within L timeslots. For

convenience, an overall mapping rule, denoted by -, is introduced to directly associate

length-K ¼ q2mð Þ vectors with the space-time codewords: Xt ¼ - vs vsþ1 . . . vsþq�1

� �� �
.

For the most popular, orthogonal design by Alamouti [17], q ¼ L ¼ NT ¼ 2, and

(a)

(b)

Fig. 1 Transmitter (a) and receiver (b) of the BI-STCM-ID system
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Xt ¼ - v2t v2tþ1½ �ð Þ ¼
s2t s2tþ1

�s�2tþ1 s�2t

� �
; ð1Þ

where �ð Þ� means complex conjugate.

Similarly to BICM-ID, the receiver of BI-STCM-ID performs iterative decoding. In the

case of orthogonal space-time codes [18, 19], the signals ~y#; # ¼ s; . . .; sþ q þ 1, which

are connected with individual signals s# by the following formula:

~y# ¼ ~hts# þ ~n#; ð2Þ

are recovered from the received space-time symbol Yt ¼ XtHt þ Nt by simple linear

processing, which can be treated as a kind of space-time decoding. In the previous sen-

tence, Ht is the current channel gain matrix, whose entries are i.i.d. random variables

�CNð0; 1Þ, and Nt �CNð0;N0Þ contains the additive Gaussian noise samples charac-

terized by the noise power spectral density N0. Next, ~ht is the gain of an effective channel

over which every s#; # ¼ s; . . .; sþ q � 1, is transmitted, and ~n# is an effective noise

sample. Note that all the signals ss; . . .; ssþq�1, associated with the tth space-time codeword

Xt, must be affected by the same ~ht to make the space-time decoding robust. The demapper

design is the same as for conventional BICM-ID, i.e., at each time instant #, the demapper

outputs extrinsic log-likelihood ratios (LLRs) L
½dem;E�
# for all bits mapped onto the #th

signal at the transmitter side. The sequences L
½dem;E�
# are concatenated to form L½dem;E�,

whose deinterleaved version, i.e. L½enc;A� ¼ p�1ðL½dem;E�Þ, feeds the SISO (soft-input soft-

output) decoder. The extrinsic LLRs outputted by the decoder, L½enc;E�, are interleaved

again and serve the demapper during the next iteration as the a priori knowledge L
½dem;A�
# .

After several iterations, the LLRs L½dec;E�, related to the data bits d, are computed by the

decoder. Passed through a decision unit, they play the role of data estimates d̂. A detailed

description of demapper and SISO decoder routine is provided, e.g., in [11] and [20],

respectively.

2.2 Asymptotic BI-STCM-ID Performance

To maximize the benefits derived from iterative processing, the system should reach the EF

state. (In that case the mutual information between the encoded data bits v and respective

LLRs, L½enc;E�, is 1 bit.) The EF state has important theoretical implications, e.g., the

position of a tight upper BER versus SNR bound (EF bound) can be provided [9].

Asymptotically, i.e., for SNR ! 1, the EF bound approaches a straight line on a

logarithmic scale plot. A horizontal shift of that line is called the asymptotic coding gain

and is denoted by eX2. It represents an impact of the overall space-time mapping rule - on

the system performance. The higher asymptotic coding gain, the better asymptotic system

performance. Theorem 1 from [11] says that to maximize the asymptotic coding gain of the

systems employing orthogonal space-time codes it is enough to search for a proper con-

stellation labeling in order to maximize the �pð Þth power mean of Euclidean distances

between the signals whose labels differ in exactly one bit, since

eX2¼ q2 q�1ð Þm

K2K

X

s2v

Xm

k¼1

s � ~skj j2
� 	�p

" #�1
p

; ð3Þ
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where ~sk is a constellation point with opposite bit in the kth position of its label in

comparison with s.

As already mentioned, the author of the current paper has already shown [12] that vast

majority of the optimal 16-QAM labelings found in [11] for BI-STCM-ID performing

specific space-time diversity order p are equivalent to each other and, as such, they can be

employed alternatively. Moreover, all of them have identical asymptotic coding gain (3) as

the M16a found presented in [6]. The original M16a labeling is shown in Fig. 2 for the

Reader’s convenience. Only for p ¼ 1 (no space-time diversity gain—pure BICM-ID

system) another labeling (named M16r in [6]) appeared to be slightly (ca. 0.007 dB) better

than M16a, asymptotically. Apart from this negligible performance loss, M16a seems to be

a labeling that is suitable for BI-STCM-ID in conjunction with any space-time block code

of orthogonal design as well as for single-input single-output transmission.

2.3 Point-wise Distance Spectrum

Distance spectrum analysis [21] is a comprehensive method to study the construction of

labeling maps. In the EF case, the distance spectrum is constituted by a set of squared

Euclidean distances between constellation points s and ~sk, 8s 2 v; k ¼ 1; . . .;m. In order to

study labelings’ properties more thoroughly, it was proposed in [22] to analyze the

spectrum point-by-point, i.e., to count the number of specific s � ~skj j2; k ¼ 1; . . .;m, en-

tries for a given point s 2 v. Such a point-wise distance spectrum is defined as

eS s; v;xð Þ ¼ s � ~skj j2; s; ~sk 2 v; k ¼ 1; . . .;m
n o

: ð4Þ

It was shown in [22] that for M16a-compliant labelings there are only 3 types (namely a, b
and c) of constellation points considering their spectra as presented in Fig. 2. Histograms

of the point-wise distance spectra for the original M16a labeling from [6], are listed in

Table 1.

Note that d is the squared Euclidean distance between neighboring constellation points.

Using the Pythagorean theorem, one can easily calculate the distances between given

points of 16-QAM constellation, shown in Fig. 2, e.g., the squared distance from E to L is

ð
ffiffiffi
d

p
Þ2 þ ð3

ffiffiffi
d

p
Þ2 ¼ 10d.

Now we can formalize a definition of M16a-compliant labeling for better clarity:

Definition 1 (M16a-compliant labeling) A 16-QAM labeling is said to be M16a-com-

pliant if it has the same spectral properties as the original M16a, i.e., there are three types

of constellation points regarding their point-wise spectra (a, b, c, defined in Table 1),

situated in the same way as for M16a labeling.

Fig. 2 Different types of
constellation points considering
their point-wise distance
spectrum; A; . . .; P—letters
identifying individual points;
binary vectors—labels associated
with constellation points
according to the original M16a

labeling developed in [6]
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Taking into account the relation between point-wise distance spectra and the asymptotic

coding gain (3) [the elements of all point-wise distance spectra appear in (3)], it is obvious,

that two labelings with the same spectral properties yield identical asymptotic coding gain.

2.4 Labeling Diversity

Exploiting labeling diversity consists of using different labeling maps, i.e., x 1ð Þ and x 2ð Þ,
within adjacent transmit streams, as shown in Fig. 3. Note that vectors v2t and v2tþ1 are not

demultiplexed. Instead, they feed both mappers simultaneously. The block denoted by P is

to alter even and odd signals, i.e., s
2ð Þ

2t and s
2ð Þ

2tþ1. Thus, the resultant space-time codeword

reads

Xt ¼
s

1ð Þ
2t s

1ð Þ
2tþ1

s
2ð Þ

2tþ1 s
2ð Þ

2t

" #

: ð5Þ

Thanks to the signal exchange within the lower transmit stream, each of the signals s
1ð Þ
# and

s
2ð Þ
# ; 8#, carrying the same part v# of the codeword v, reaches the receiver in a different

timeslot than the other. Such a trick, inherited from space-time codes, alleviates the

detrimental effect of additive Gaussian noise on the signal demodulation. At the same time,

LD scheme fights against fading, since v#; 8# is transmitted twice, each time through

different channels.

At the beginning of the research on labeling diversity, the optimal ðx 1ð Þ;x 2ð ÞÞ pair, i.e.,

the one maximizing the asymptotic coding gain, was searched for by means of Binary

Switching Algorithm (BSA) [14] with the assumption that xð1Þ is one of the M16a-com-

pliant labelings. Later, it was noticed that both labelings that constitute the optimal pair are

M16a-compliant [15].

A receiver deriving its good performance from labeling diversity is similar to that of BI-

STCM-ID, but the received space-time codeword cannot be decoded prior to demodula-

tion, and thereby, the computational payload grows as for a multidimensional mapping

technique from [23].

Table 1 Histograms of the
Point-Wise Distance Spectra for
M16a Labeling

Point type Entries

5d 8d 10d 13d

Occurrences

a 1 1 0 2

b 2 0 1 1

c 3 1 0 0

Fig. 3 Transmitter in the system
exploiting labeling diversity
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When applied to a p ¼ 4 2 � 2 MIMO system, LD scheme yields eX2 ¼ 2:8752 in

comparison with 2.3414 for respective BI-STCM-ID. In other words, there is the labeling

diversity gain of 10 log10
2:8752
2:3414

¼ 0:89 dB. The asymptotic coding gain for BI-STCM-ID is

computed according to (3). The interested reader is referred to [14] to get known how to

obtain eX2 for LD scheme and to see that LD scheme exhibits full diversity order, i.e., it

meets a full-rank criterion, concerned in [18, Sec. II-B].

3 Design of M16a-Compliant Labeling Maps

3.1 Constraints

This section is, mainly, to show that every M16a-compliant labeling that bears the features

of M16a must follow a 2–3–2–3 rule defined as follows:

Definition 2 (2–3–2–3 rule) A given 16-QAM labeling is said to hold the 2–3–2–3 rule

if the labels of the corner constellation points, i.e., A, D, M, and P, read either clockwise or

counterclockwise, differ from the previous one in 2, 3, 2, and 3 bits, respectively.

We will consider all values the Hamming distance between the labels of two given

neighboring corner constellation points 1 can take and examine if it is possible to obtain a

valid M16a-compliant labeling by referring to the spectral properties highlighted in the

previous section. Let us recall that the point-wise distance spectrum entries are the dis-

tances between constellation points, associated with the labels differing exactly in one bit

from each other.

From now on a permutation function w �ð Þ of binary numbers b1. . . b4 and their nega-

tions b1. . . b4 will be used to abstract the proofs from any concrete labeling map. That

function returns a vector of binary numbers. Individual constellation points will be referred

to by the letters shown in Fig. 2. The box-plus operator, e.g., a�b, will represent the

Hamming distance between respective vectors, and VXY ... will denote a set of labels that

can be assigned to any of the points indicated in the subscript (X, Y, etc.).

Theorem 1 The Hamming distance between the labels within any pair of corner con-

stellation points is higher than 1 for any M16a-compliant labeling.

Proof Let X and Y be different corner constellation points. Since the labeling assigns

exactly one label to exactly one constellation point, vX�vY [ 0 obviously holds. Since

neither 9d nor 18d distance appears in the spectrum of M16a a points, the labels of corner

points must not differ in 1 bit from one another. Thus, vX�vY [ 1. h

Theorem 2 For any M16a-compliant labeling map, the labels of adjacent corner con-

stellation points do not differ in 4 bits.

Proof With no loss of generality let us assume that the label of constellation point A is

vA ¼ w b1; b2; b3; b4ð Þ, bk 2 0; 1f g; 8k, and that the label of point M differs in 4 bits from

the label of A, i.e., vM ¼ w b1; b2; b3; b4

� �
. According to Theorem 1, the spectrum of a

points does not contain the distance to any of remaining corner points. Thus, their labels

must not differ in one bit from each other. In consequence, a set of labels that can be

1 Two corner constellation points are called neighboring if they have the same real or imaginary part of their
coordinates.
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assigned to either point D or point P is (in the considered case) initially limited to

VDP ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;

�

w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� ��
:

ð6Þ

Taking into account that the spectrum of M16a b points contains neither d nor 2d (i.e.,

the distances to two the nearest corner points), we get VI � VDP. The spectrum of M16a

labeling provides two 13d entries for every a point. In particular, such distance should

divide point D from both points I and N (there are no other constellation points 13d

distant from D), but within VDP there is no such a pair of labels that differ in 1 bit from

each other. Thus, we conclude that any M16a-compliant labeling cannot be constructed if

vA�vM ¼ 4. h

The same reasoning can be applied to any pair of consecutive corner constellation

points since every corner point exhibits identical distance spectrum. In the light of both

Theorems 1 and 2 any M16a-compliant labeling ensures that the labels of adjacent corner

points differ from each other in either 2 or 3 bits. The following theorems are to show that

in both cases the 2–3–2–3 rule holds.

Theorem 3 An M16a-compliant labeling holds the 2–3–2–3 rule if the labels of any two

adjacent, randomly selected corner constellation points, i.e., A and D, D and P, A and M,

or M and P, differ in 2 bits from each other.

Proof The proof is given in Appendix 1. h

The theorem holds for any pair of adjacent corner constellation points, but it is not

enough to state that every M16a-compliant labeling holds the 2–3–2–3 rule. To prove such

a hypothesis, one more case (in which the labels of arbitrarily chosen adjacent corner

constellation points differ in 3 bits) must be considered.

Theorem 4 (complementary to Theorem 3) An M16a-compliant labeling holds the 2–3–

2–3 rule if the labels of any two adjacent, randomly selected corner constellation points

differ in 3 bits from each other.

Proof The proof comes in Appendix 2. h

We have considered all possible values the Hamming distance between adjacent corner

16-QAM constellation points can take. Now we are allowed to introduce the following

corollary.

Corollary 1 For any M16a-compliant labeling the labels of corner points hold the 2–3–

2–3 rule.

Note that the above corollary is not constructive, i.e., it does not explain how to design

the M16a-compliant labelings. Nevertheless, it allows us to start labeling design from

assigning proper labels to the corner points.

We should consider two kinds of M16a-compliant labelings: ‘‘vertically’’ and

‘‘horizontally’’ oriented.

Definition 3 (‘‘vertically’’ oriented labeling) A labeling is called ‘‘vertically’’ oriented

iff vA�vD ¼ vM�vP ¼ 2 and vA�vM ¼ vD�vP ¼ 3.

Definition 4 (‘‘horizontally’’ oriented labeling) A labeling is called ‘‘horizontally’’

oriented iff vA�vD ¼ vM�vP ¼ 3 and vA�vM ¼ vD�vP ¼ 2.
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Additionally, labelings of both kinds can be reflected. To avoid confusion over nu-

merous labeling configurations, from now on we will consider only the vertically oriented

labelings. For horizontally oriented labelings, it is enough to rename the constellation

points to keep consistency. Such approach is fully justified, since neither rotation nor

reflection of any 16-QAM labeling affects its performance.

3.2 Ambiguous Spectrum Entries

In general, the M16a point-wise distance spectra (shown in Table 1) do not indicate which

of the constellation points constitute the s; ~skð Þ pairs for given k. Nevertheless, some pairs

are unambiguous due to the constellation’s (not: labeling’s) properties, i.e., there is only

one constellation point a given Euclidean distance far from the considered point. The

situation is illustrated in Fig. 4 (resolved connections are shown by solid lines). Making

use of the constellation properties, one can easily conclude that:

– 13d spectrum entries bind a points with the furthermost b points, e.g., A with both L

and O,

– c points’ 8d entries associate them with the furthermost a points.

Some other potential ambiguities can be resolved by realizing that a given distance must

appear simultaneously in spectra of two points. From that remark it can be concluded that

– b points’ 10d is the distance to another, the furthermost b point (10d is also the distance

between b and one of a points, but 10d does not appear in the spectrum of a points;

note the forbidden connection in Fig. 4b).

(a)

(c)

(b)

Fig. 4 Connections with possible counterparts for a point (a), b point (b), c point (c) according to their
spectra
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The only uncertainty concerns some 5d entries. That problem is partially solved while making

the proof of Theorem 3, i.e., according to (28), the labels of points J and K differ in exactly

one bit from both vA and vD. As a result, the following theorem, claiming that any 16a-

compliant labeling is almost fully defined by the corner points’ labels, can be issued.

Theorem 5 Having associated the corner constellation points with labels holding the 2–

3–2–3 rule, exactly two different M16a-compliant labelings can be generated.

Proof The proof comes in Appendix 3. h

According to the above theorem, an M16a-compliant labeling can be obtained by fixing

proper labels of the corner points and then by trying to associate labels to remaining points.

It must be kept in mind that any valid solution must not violate the rules provided by the

M16a point-wise spectrum shown in Table 1.

4 Algorithm to Obtain M16a-compliant Labeling

4.1 Algorithm Formulation

Within this paragraph the following notation is used: V is a set consisting of all possible 4-

bit binary vectors. Sets A;B and G contain only such labels that (at the current stage) are

not forbidden for points of type a; b; c, respectively, whereas W*XY...;W 2 A;B;Gf g
additionally limits the entries of W to such ones that differ exactly in one bit from every of

the labels assigned previously to points listed in the subscript (X, Y, etc.). Finally, rand �ð Þ
function returns a random element of its arguments. The algorithm explained below allows

to obtain one of the M16a-compliant labelings. It can be relaunched several times if one

aims to get a variety of M16a-compliant labelings. Consecutive algorithm steps are as

follows:

Step 1. Assign the labels to the corner constellation points. For this end, define matrices 2

Wn¼

0 0

0 1

1 0

1 1

2

6664

3

7775
; and Wg¼

0 0

0 1

1 1

1 0

2

6664

3

7775
:

Circulate the rows of Wn and Wg, separately, downwards or upwards, random number of

times to get W0
n and W0

g, respectively. Then define W0 as a vertical concatenation of W0
n

and W0
g, and permute the columns of W0 to obtain W. Finally, read length-4 binary labels

from W row-by-row and associate them with consecutive corner constellation points

A;D;M, and P, respectively. The method presented above guarantees that labels of the

corner points hold the 2–3–2–3 rule. (Each row of Wn differs from the subsequent one 3 by

1, 2, 1, 2 bits, respectively, whereas the rows of Wg—holding the Gray rule—always differ

in 1 bit from both the previous and the next one.) Finally, create a set consisting of all

corner points’ labels:

2 The subscript n reflects the fact that subsequent rows of Wn are binary-represented, naturally-encoded,
decimal numbers 0...3. Similarly, the entries of Wg represent subsequent decimal number according to Gray

coding.
3 The first row is treated as if it followed the last one.
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A ¼ vA; vD; vM ; vPf g: ð7Þ

Step 2. If the obtained corner points belong to a ‘‘horizontally’’ oriented labeling (cf.

Definition 4), rename the constellation points as follows: A by M, B by I, C by E, D by A,

E by N, F by J, G by F, H by B, I by O, J by K, K by G, L by C, M by P, N by L, O by H,

and P by D. Thanks to that move there is no necessity to consider two labeling orientations

within the next steps.

Step 3. Define disjoint subsets consisting of labels that can be associated with proper c
points, i.e., they must differ in exactly one bit from the labels of both A, D and from the

labels of both M, P, respectively (cf. the Proof of Theorem 5):

VJK ¼ G*AD¼ v 2 VnA : v�vA ¼ v�vD ¼ 1f g; ð8Þ

VFG ¼ G*MP¼ v 2 Vn A [ VJKð Þ : v�vM ¼ v�vP ¼ 1f g: ð9Þ

Step 4. Create four subsets B*‘, containing the labels differing in exactly one bit from

the labels assigned previously to points A; D; M; P, respectively:

B*‘¼ v 2 Vn VJK [ VFGð Þ : v�v‘ ¼ 1f g; ‘2 A;D;M;Pf g: ð10Þ

The labels from B*‘ will be assigned within next steps to proper b points.

Step 5. As the squared Euclidean distance between points E and I is d (i.e. the shortest

possible one), it is obvious that such points should not be associated with the labels

differing in one bit according to the M16a spectrum. To avoid such a collision, assign

vE ¼ rand v 2 B*Pð Þ; ð11Þ

and

vI ¼ v 2 B*D : vE�v[ 1: ð12Þ

Since each label must be assigned to exactly one constellation point, B and N must be

associated with the labels remaining in sets B*D and B*P, respectively, after removal of

vE and vI , i.e.

vB ¼ v 2 B*PnvE; ð13Þ

vN ¼ v 2 B*DnvI : ð14Þ

Step 6. Now assign proper labels to points H and L. They must differ from the labels

associated with E and I, respectively, in exactly one bit (the spectrum entries of 10d are the

distances between two b points, symmetrical with respect to the origin of the coordinate

system). To satisfy such requirement, take

vH ¼ v 2 B*M : vI�v ¼ 1; ð15Þ

and

vL ¼ v 2 B*A : vE�v ¼ 1: ð16Þ

Consequently,

vC ¼ v 2 B*MnvH ; ð17Þ
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and

vO ¼ v 2 B*AnvL: ð18Þ

Step 7. The last task is to assign the labels to c points. They must not differ in one bit

from the labels belonging to any of four the nearest b points or to the rest of c points.

Otherwise, d or 2d distances would occur in the spectrum. At this point only one collision

has left for each c point (with the label of respective second nearest b point). To hold the

features of M16a, assign

vF ¼ v 2 G*MP : vI�v[ 1; ð19Þ

vG ¼ v 2 G*MPnvF; ð20Þ

vJ ¼ v 2 G*AD : vE�v[ 1; ð21Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 Illustration of subsequent algorithm’s steps (description in the text). The number along the arrows
are the requested Hamming distances between labels of respective constellation points
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and

vK ¼ v 2 V*ADnvJ : ð22Þ

4.2 Example of Use

The algorithm starts with assigning the labels to corner points (Step 1). We proceed

according to the method shown in Sect. 4.1. Let us assume that Wn is circulated 2 times

downwards and Wg—three times. A resultant concatenated matrix is

W0 ¼ W0
n W0

g

h i
¼

1 0 1 0

1 1 0 0

0 0 0 1

0 1 1 1

2

6664

3

7775
:

Now let us assume that the permutation function exchanges the 1st column with the 2nd

column, and the 3rd column with the 4th one to produce the final matrix

W ¼

0 1 0 1

1 1 0 0

0 0 1 0

1 0 1 1

2

6664

3

7775
:

We read consecutive rows of W to get vA ¼ 0101½ �; vD ¼ 1100½ �; vM ¼ 0010½ �;
vP ¼ 1011½ �, as shown in Fig. 5a. The obtained labeling is ‘‘vertically’’ oriented, hence

Step 2 is skipped. In Step 3, we define the labels that can be assigned to points J and K.

They have to differ in exactly one bit from the labels of both points A and D, i.e., they

belong to the set VJK ¼ G*AD ¼ 0100½ �; 1101½ �f g (Fig. 5b). Similarly, we assign the labels

that are allowed for points F and G: VFG ¼ G*MP ¼ 0011½ �; 1010½ �f g (Fig. 5c). At this

stage we get

B ¼ 0000½ �; 0001½ �; 0110½ �; 0111½ �;f
1000½ �; 1001½ �; 1110½ �; 1111½ �g;

and dispatch its entries to the subsets of labels that can be assigned to consecutive b points

(Step 4). For example, the labels of points B and E must both differ exactly in one bit from

the label of P (there is no other way to meet requirement for double 13d entry in the

spectrum of point P). Thus, we assign VBE¼B*P¼ 0000½ �; 0110½ �f g, and—by analogy—

VIN¼B*D¼ 1000½ �; 1110½ �f g (Fig. 5d), VLO¼B*A¼ 0001½ �; 0111½ �f g, VCH¼B*M¼
1001½ �; 1111½ �f g (Fig. 5e). Since further steps are fully determined, at this stage (Step 5) we

finally decide about the labeling rule, i.e., we can assign 0000½ � to point E and 1110½ � to

point I or 0110½ � to point E and, consequently, 1000½ � to I. Note that in every case

vE�vI [ 1 holds. Let us choose the second option, i.e., vE ¼ 0110½ �, vI ¼ 1000½ � (Fig. 5f).

In consequence, the only label from B*P that can be assigned to B is 0000½ � and, by

analogy, we must associate N with 1110½ � (Fig. 5g). In Step 6, to keep 10d distances in

spectra of points E;H; I; L, we must take vH ¼ 1001½ �; vL ¼ 0111½ �, and—to preserve la-

beling’s unambiguity—vC ¼ 1111½ �; vO ¼ 0001½ � (Fig. 5h). The labels associated with c
points are determined by the assignments made previously for b points. Thus, in Step 7 we

get vF ¼ 0011½ �, vG ¼ 1010½ �, vJ ¼ 1101½ �, and vK ¼ 0100½ �.
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4.3 Analysis of the Number of M16a-compliant Labelings

The presented algorithm generates different M16a-compliant labelings, however, some of

them are rotated or flipped version of the others.

Let us start the analysis from assigning labels to the corner points. According to

Corollary 1, they must conform the 2–3–2–3 rule. When executing Step 1 of the algorithm

delivered in Sect. 4.1, we can choose the positions of binary labels to be Gray-labeled (g-

positions) in Qp ¼ 4

2


 �
ways. The remaining positions are, automatically, naturally-

labeled (n-positions). Within each group we can choose one of four constellation points

from which we start assigning labels’ parts on n- and g-positions, respectively

Qs ¼
4

1


 �
 �
, and we can proceed clock- or counterclockwise Qd ¼ 2

1


 �
 �
when

assigning subsequent labels’ parts. In consequence, the total number of possible assign-

ments of 4-bit labels holding the 2–3–2–3 rule to the corner constellation points counts

Q0 ¼ Qp QsQdð Þ2¼ 384. The product QsQd is squared as g- and n-positions are considered

separately. Having assigned the labels to the corner points, there is still one degree of

freedom, as Theorem 5 states. Thus, the total number of 16a-compliant labels is

Q ¼ 2Q0 ¼ 768.

5 Re-look at Labeling Diversity Properties

Using the algorithm from Sect. 4, all 768 M16a-compliant labelings, denoted by

xð1Þ. . .xð768Þ, are generated. (Since the algorithm has a random component, it must be

launched several times and the labelings that has already been found, should be rejected.)

Then, every ðxðuÞ;xðz 6¼uÞÞ pair is examined considering its asymptotic coding gain eX2 in

order to determine complementary labelings.

Definition 5 (Complementary labelings) M16a-compliant labelings xðzÞ and xðuÞ are

regarded as complementary labelings iff eX2ðxðuÞ;xðzÞÞ ¼ 2:8752 for p ¼ 4.

The maximum asymptotic coding gain of 2.8752, which is the criterion of labelings’

complementarity, has been found by the optimization algorithm in [15]. The decision to

consider the maximum value of the asymptotic coding gain for p ¼ 4 has been taken

arbitrarily; one would assume any other value of p with no effect on the result, since

all the M16a-compliant labelings exhibit the same point-wise spectrum, which is not

affected by p.

A thorough analysis of all 768 � 768 M16a-compliant labeling pairs shows that for each

xðuÞ there are exactly 16 complementary labelings, i.e., xðC1ðuÞÞ. . .xðC16ðuÞÞ. After careful

observation of all complementary labeling pairs, we can establish the following corollary:

Corollary 2 A set of the labels associated with the corner constellation points according

to xðCiðuÞÞ; i ¼ 1; . . .; 16; u ¼ 1; . . .; 768, consists of the labels assigned to the corner

constellation points according to x uð Þ with all bits negated.

Note that the above corollary does not provide the order of the corner points’ labels

according to xðCiðuÞÞ; i ¼ 1. . .; 16. Nevertheless, it can be observed that the order is always

disturbed in comparison with the reference xðuÞ labeling in a very specific way, i.e., the
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labels of two corner constellation points differing in two bits are swapped with each other

in the complementary labeling in comparison with the reference labeling.

Obviously, the obtained complementary labeling xðCiðuÞÞ must hold the features of

M16a, as the reference labeling xðuÞ does. But, according to Theorem 5, it is enough to

specify labels for the corner constellation points of the complementary labeling, which

hold the 2–3–2–3 rule and do not violate Corollary 2 and the rest of the labels can be

generated by executing Steps 2–7 of the algorithm presented in Sect. 4. For every tuple of

corner constellation points’ labels one would obtain two complete complementary label-

ings, as Theorem 5 says. Thus, everything we need at this stage to generate a labeling that

is complementary to a given reference M16a-compliant labeling, is a method to dispatch

the labels obtained from the reference labeling according to Corollary 2 to the corner

constellation points, which can be done in 8 ways. Note that the labels, obtained from the

reference labeling, are not required to appear in the same order or to be assigned to the

same points as their origins. A simple algorithm to specify one of xðCiðuÞÞ labelings that are

complementary to a given reference xðuÞ labeling, is presented in the next section.

5.1 Algorithm to Generate Corner Constellation Points’ Labels According

to the Complementary Labeling

The algorithm input is an M16a-compliant labeling. The algorithm steps are as follows:

Step 1. (define a ‘‘raw’’ complementary labeling compliant with Corollary 2) Take the

labels of corner constellation points of the reference labeling, negate all their bits and

assign them to the same points as their origins in the reference labeling.

Step 2. (disturb the order of the labels) If the ‘‘raw’’ labeling is oriented vertically, swap

the labels of points A and D. Otherwise, swap the labels of points A and M. The labels of

corner constellation points that hold the 2–3–2–3 rule are ready.

Step 3. (optional; get alternative labels of corner constellation points) Execute one of

the following operations:

– reflect the labels of the corner constellation points (obtained in Step 2) across

imaginary axis,

– reflect them across real axis,

– reflect them across the origin,

– rotate them 90	 clock-wise,

– rotate them 90	 counterclock-wise,

– exchange the labels of points A and P,

– exchange the labels of points D and M,

Having generated the labels of the corner constellation points, one can easily get a complete

complementary labeling map by using the algorithm delivered in Sect. 4. There are 8 different

ways to specify the corner constellation points of the complementary labeling: in Step 3, one of

7 optional operations can be executed or the step can be skipped. Note that for each assignment

of the labels to the corner constellation points there is one degree of freedom as Theorem 5 says.

Accordingly, 16 complementary labelings can be found from one reference labeling.

As an example, the reference labeling, delivered in Sect. 4.2 and resultant complementary

ones are presented in Table 2; a points and c points are written in bold and in italic,

respectively. Interestingly, any label associated with a point according to the reference

labeling is assigned to one of c points under each of the complementary labeling rules. The

same observation was made in [15] for a few M16a-compliant pairs, found by BSA.
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For reader’s convenience, consecutive steps of the algorithm are presented in Fig. 6.

More precisely, Fig. 6a presents the reference labeling developed in Sect. 4.2. The ‘‘raw’’

complementary labels of the corner points, i.e., the result of the algorithm’s Step 2, are

shown in Fig. 6b. The result of disturbing the order of ‘‘raw’’ labels (Step 3) is shown in

Fig. 6c. Finally, Fig. 6d presents the final complementary labeling, which is the first

complementary labeling with no optional operation from Table 2.

Table 2 Constellation points associated with individual labels according to reference- and complementary
labelings
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6 Conclusion

In the paper it has been shown that the optimal, M16a-compliant labelings, used to be

searched for by means of random optimization methods, can actually be designed in just a

few easy steps.

Apart from theoretical considerations, broadening the current state-of-the-art in the field

of optimal labelings, some practical aspects of the work have been outlined, i.e., thanks to

the algorithm, all M16a-compliant labeling pairs have been investigated to find out what

features they should have to yield maximum labeling diversity gain. Taking one of the

optimal labelings, now it is possible to easily get the complementary one. The developed

algorithm is expected to facilitate future research on labeling diversity.

It sounds interesting to analyze optimal labelings for different modulations and check if

they can benefit from labeling diversity as 16-QAM does. Nevertheless, one should keep in

mind that there is no simple space-time decoder for LD scheme and, hence, it would be

hardly possible to process 64-QAM or 256-QAM signals on a real time basis. Conse-

quently, from a practical point of view it is suggested to focus on constellations of

moderate size, like 32-QAM.
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(a) (b)

(c) (d)

Fig. 6 Generating labeling complementary to the one developed in Sect. 4: reference labeling (a), ‘‘raw’’
labels of corner constellation points (b), labels of corner constellation points after the swap (c), complete
labeling obtained according to Steps 2–7 of the algorithm shown in Sect. 4 (d)
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Appendix 1: Proof of Theorem 3

Let us assume that vA ¼ wðb1; b2; b3; b4Þ and that the label of point D differs in two bits

from that of A, i.e., vD ¼ wðb1; b2; b3; b4Þ (vertical labeling orientation). At first, let us

decide on which labels can be assigned to points M and P. According to Theorems 1 and 2,

all the labels differing in one bit from vA and from vD are forbidden. Additionally, vM must

not differ in four bits from vA, and vP must not differ in four bits from vD. Therefore,

VM ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;

�

w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� ð23Þ

and

VP ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� ��

w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� ð24Þ

It can be easily noticed that VM and VP are identical with the exception for their last

elements. The labels of points K; L;O must differ in one bit from vA since in the spectrum

of a points there are single 8d, and double 13d entries. To reinforce that clause we note that

for point A the only possible 8d distance is that to point K and 13d—to points L and O.

Additionally, vL and vO cannot differ in one bit from vD since there are neither 4d nor 10d

distances in the spectrum of a points. Therefore,

VLO ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
ð25Þ

and

VK ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� ��

w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� ��
:

ð26Þ

Since VLO 
 VK consists of exactly 2 elements, each of them must be assigned to either

point L or point O and, therefore, cannot be assigned to point K. Thus we reformulate

VK ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
: ð27Þ

Now let us repeat similar derivation for points I; J;N. According to the M16a spectrum we

must ensure that vI�vD ¼ vN�vD ¼ vJ�vD ¼ 1 and, additionally, that vJ�vA 6¼ 1. We

obtain

VIN ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
;

and

VJ ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
¼ VK : ð28Þ

At this stage we can assign the labels to points M and P. To accomplish this goal we make

use of the fact that the spectrum of a points contains none of d, 4d and 10d entries. Thus, it

is clear that the labels of M and P cannot differ in one bit from any element of fVIN ;VLOg.

It holds because all fVIN ;VLOg entries have to be dispatched to points I;N; L and O. As a

result,

VM ¼ VP ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
� VMP: ð29Þ
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At the end we note that wðb1; b2; b3; b4Þ�wðb1; b2; b3; b4Þ ¼ 2, vA�wðb1; b2; b3; b4Þ ¼
vD�wðb1; b2; b3; b4Þ ¼ vA�wðb1; b2; b3; b4Þ ¼ vD�wðb1; b2; b3; b4Þ ¼ 3, which proves the

theorem, regardless of the way in which the elements of VMP are finally assigned to points

M and P.

Appendix 2: Proof of Theorem 4

Let us assume that vA ¼ wðb1; b2; b3; b4Þ and that vD ¼ wðb1; b2; b3; b4Þ. Taking into

consideration Theorems 1 and 2 the labels that can be assigned to points M and P belong to

VMP ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;

�

w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� ��
:

ð30Þ

The elements of VMP can be divided into two subsets:

V0

MP ¼ a 2 VMP : a�vA ¼ 3; a�vD ¼ 2f g
¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
;

ð31Þ

and

V00

MP ¼ a 2 VMP : a�vA ¼ 2; a�vD ¼ 3f g
¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
:

ð32Þ

– Let us assume that vM 2 V0

MP. With no loss of generality we take vM ¼ wðb1; b2; b3; b4Þ
[this label differs from the rest of V0

MP only in the positions occupied by ones and zeros,

which actually does not matter since the final labeling is still the result of the

permutation function w �ð Þ]. To hold the M16a spectral requirements, the labels of

points I, N, and J must differ in one bit from vD and must not differ in one bit from vM ,

i.e.

VIJN ¼ b1; b2; b3; b4

� �
; b1; b2; b3; b4

� �� �
: ð33Þ

Since the number of VIJN elements is lower than the number of points to which the

labels must be dispatched, we conclude that vM must not belong to V0

MP. Thus, any 3-3-

x-x rule (cf. the 2–3–2–3 rule in Definition 2) is forbidden for M16a-compliant

labelings.

– Now let us take vM 2 V00

MP. With no loss of generality we assume that

vM ¼ wðb1; b2; b3; b4Þ. The set of labels that can be potentially assigned to point P is

limited to VP ¼ VMPnvM . Prior to final assignment of the label to point P it is worth

dealing with the labels of K; L; and O. With respect to 1-bit Hamming distance to vA

required for the label of K, we initially get

VK ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
;

�

w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� ��
:

ð34Þ

The same rule must be held by the labels of L and O, but they must not differ in 1 bit

from vM , additionally. Therefore,
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VLO ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
: ð35Þ

Since VLO 
 VK , we must limit the number of VK elements, i.e.,

VK ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
: ð36Þ

According to the a point spectrum properties, the label of P must not differ in one bit

from any of the following labels: vM (no 9d entry), a 2 VK (no 2d entry), b 2 VLO (no

d entry). As a result we get VP ¼ fwðb1; b2; b3; b4Þg, what means that there is only one

vP candidate. Note that vP�vM ¼ vA�vD ¼ 3 and vA�vM ¼ vD�vP ¼ 2. Thus, we

conclude that the labeling holds the 2–3–2–3 rule.

Appendix 3: Proof of Theorem 5

In Theorem 4 we analyzed the vertically oriented labeling with vA ¼ wðb1; b2; b3; b4Þ and

vD ¼ wðb1; b2; b3; b4Þ. It has appeared that such a (weak) assumption automatically limits

the number of the labels that can be assigned to 8 constellation points, i.e.,

VIN ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
; ð37Þ

VJK ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
; ð38Þ

and

VMP ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
: ð39Þ

Since d; 2d, and 4d distances (e.g., F � I; F � J; F � N) are forbidden for c points, we get

vF 2 VF ¼ fwðb1; b2; b3; b4Þg and vG 2 VG ¼ fwðb1; b2; b3; b4Þg. Note that both vF and

vG differ in exactly one bit from both elements of VMP, regardless of their final assignment

to points M and P. At this stage only the following labels are not preassigned:

wðb1; b2; b3; b4Þ, wðb1; b2; b3; b4Þ, wðb1; b2; b3; b4Þ, wðb1; b2; b3; b4Þ. Each of them must be

dispatched to one of the following points: B;C;E;H, but without making the final decision

on the labels of points M and P we would get stuck as none of the assignments for points

B;C;E;H currently violates the rules laid down by M16a spectrum. Let us take

vM ¼ wðb1; b2; b3; b4Þ, and vP ¼ wðb1; b2; b3; b4Þ thereby fulfilling the theorem assump-

tions (the 2–3–2–3 rule performed by the corner points).

Now we can dispatch the labels not assigned hitherto to two sets:

VBE ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �� �
; ð40Þ

and

VCH ¼ w b1; b2; b3; b4

� �
;w b1; b2; b3; b4

� �
ð41Þ

making use the following dependencies resulting from the M16a spectrum: vE�vM 6¼
1; vE�vP ¼ 1; vH�vM ¼ 1; vH�vP 6¼ 1; vB�vP ¼ 1; vC�vM ¼ 1 (13d distances are obli-

gatory and 2d distances are forbidden for a points). Once we choose vE ¼ wðb1; b2; b3; b4Þ,
we get vB ¼ wðb1; b2; b3; b4Þ (the labels must be unique), vI ¼ wðb1; b2; b3; b4Þ (because

there is no d entry in the spectrum of b points and vE�vI 6¼ 1, consequently), vJ ¼
wðb1; b2; b3; b4Þ (as vE�vJ 6¼ 1), vK ¼ wðb1; b2; b3; b4Þ (the label of K must differ from
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that of J), vN ¼ wðb1; b2; b3; b4Þ (to ensure that vN 6¼ vI). Next, we get vH ¼
wðb1; b2; b3; b4Þ (it must differ from vC), vL ¼ wðb1; b2; b3; b4Þ (vL�vH 6¼ 1 must hold),

and vO ¼ wðb1; b2; b3; b4Þ (there is no other candidate to be dispatched to point O).

The label associated with point E can be chosen from two candidates. Having dis-

patched the label to point E, there is only one candidate for the labels of remaining points,

which proves the the theorem.
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