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Abstract Wiener filter is the best channel interpolation method in terms of minimizing
mean square error at the time dimension. However, Wiener filter with low order will lose its
efficiency in high-speed communication environments, while Wiener filter with high order
suffers from the problem of high computational complexity. In this paper, we analyze the
relationships among Wiener filter with different orders and their corresponding application
scenarios. Furthermore, based on the analysis, a pilot symbol design criterion for high-speed
communication environments and a simplified Wiener filter based channel estimation tech-
nique are proposed, respectively.

Keywords Channel estimation · Wiener filter · High-speed communication
environments · Long term evolution (LTE)

1 Introduction

With the rapid development of mobile wireless communication technology and high-speed
railway construction worldwide, the moving speed of the user transceivers can be as high
as 350 km/h. In this case, to ensure effective communication of future wireless technologies
such as 3GPP long term evolution (LTE) [1] accurate channel parameters are indispensible.
Channel parameters are essential for coherent detection, diversity combining and decoding.
Therefore, implementable channel estimation method with low computational complexity
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that applicable to such high-speed environments has drawn remarkable interest in recent
years and has remained largely an open problem to be solved urgently.

In current researches of channel estimation, when the users move at low speeds, for exam-
ple less than 120 km/h, the wireless channel changes slowly and smoothly. In this case,
traditional interpolation methods such as linear interpolation can be used to achieve accurate
channel estimation [2–4]. However, when the users move at high speeds, such as 350 km/h
or higher, the wireless channel changes quickly and dramatically. In this case, traditional
interpolation methods mentioned above cannot provide desired channel estimation perfor-
mance under such high-speed environments [2–4]. As is well known, Wiener filter [5] is the
best interpolation method in terms of minimizing mean square error (MMSE) at the time
dimension. However, Wiener filter with low order is not applicable to channel estimation in
high-speed environments, as will be demonstrated in this paper. On the other hand, Wiener
filter with high order can significantly improve the performance of channel estimation in high-
speed environments, at the cost of unacceptable high computational complexity due to the
complex matrix inversion and Bessel function. Usually, Wiener filter with order higher than
three is difficult to realize, since its computational complexity is larger than o(M3), where
M represents the orders of Wiener filter [6]. Therefore, computational complexity restricts
the application of Wiener filter in high-speed environments. In current researches [4–15],
the expression for Wiener filter is derived but none of them analyze the relationships among
Wiener filter with different orders and neither do they illustrate the application scenarios for
Wiener filter in various mobile environments, especially in high-speed cases. Furthermore,
none of them present a further detailed derivation and discuss how to simplify the expression
for Wiener filter, which is critical for its implementation in high-speed environments.

In order to solve the aforementioned problems and limitations of Wiener filter, in this
paper we first analyze the relationships among Wiener filter with different orders and
their application scenarios. Based on the analysis, a pilot symbol design criterion appli-
cable to high-speed environments and a simplified Wiener filter technique are proposed,
respectively.

The remainder of this paper is organized as follows: Sect. 2 introduces the system model
and gives a review of Wiener filter based channel estimation. Section 3 first analyzes the rela-
tionships among Wiener filter with different orders and their application scenarios. Then, a
pilot symbol design criterion applicable to high-speed environments and a simplified Wiener
filter technique are proposed, respectively. Section 4 gives extensive simulation results that
demonstrate the effectiveness of the proposed theory, criterion and technique. We conclude
the paper in Sect. 5.

2 Problem Formulation

Let P̂(k) =
[

Ĥp1(k)Ĥp2(k). . .ĤpM (k)
]T

be a column vector that represents the estimate of

channel frequency response for the kth subcarrier at pilot symbols in orthogonal frequency
division multiple access (OFDMA) or single-carrier frequency division multiple access
(SC-FDMA) system, where pi , i = 1, 2 . . . , M represents the position of the i th pilot symbol
at the time dimension, M represents the pilot symbol number, k = 1, 2, . . . , N , N represents
the symbol length and P̂(k) can be obtained by, for example, the least squares (LS) or mini-
mum mean square error (MMSE) [16] channel estimation method. Then the channel estimate
Ĥp(k) at the data symbol position p can be obtained by interpolating P̂(k). Let Cp(k) be the
interpolation vector and Ĥp(k) can be obtained as
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Ĥp(k) = Cp(k)P̂(k). (1)

The expression for the interpolation vector of Wiener filter at the time dimension is obtained
by minimizing the estimation mean square error εp = E{|Hp(k) − Ĥp(k)|2} [4] and is given
by

Ĉp,wiener (k) = E
{

Hp(k)P̂H (k)
}

E
{

P̂(k)P̂H (k)
}−1

, (2)

where E{·} denotes the expected-value operator, [·]−1 denotes the matrix inversion opera-
tor, [·]H denotes the complex conjugate transpose operator and [·]T denotes the transpose
operator. Let Ĉp,wiener (k) = [wM D,0 wM D,1 . . . wM D,M−1] be the result of (2), where
wM D,m, m = 0, 1, . . . , M − 1 represent the coefficients of Wiener filter, M D represents M
pilot symbols are adopted to complete interpolation at the time dimension.

Since the computational complexity of matrix inversion in (2) increases rapidly with the
increase of M [it is greater than o(M3)], Wiener filter with order higher than three is dif-
ficult to realize for its high complexity. Meanwhile, as will be shown, the computation of
Ĉp,wiener (k) in (2) involves calculating Bessel function, which is an infinite sum formula in
its original format. Therefore, we will mainly discuss the implementable Wiener filter with
order less than or equal to three. The wireless channel changes slowly and smoothly when the
users move at low speeds, in which case linear interpolation method [2] or Wiener filter with
two orders can be adopted to interpolate the channel. However, as we shall see shortly in the
next section, when the users move at very high speeds, the performance of linear interpolation
method and that of Wiener filter with two orders both drop rapidly and lose their efficiency.
In this case, Wiener filter with higher orders are needed to estimate the nonlinear variation
of the wireless channel, which means that more pilot symbols are required.

In this paper, channel and noise are assumed to be independent from each other. Without
loss of generality we assume that noise is Gaussian distribution with zero mean and variance
σ 2. Zadoff–Chu sequence is adopted at pilot symbol X pi (k), so that

∣∣X pi (k)
∣∣2 = 1.

3 Wiener Filter Based Channel Estimation

In this section, the relationship between linear interpolation method and Wiener filter with
two orders is first analyzed mathematically. Based on the analysis the conclusion that Wiener
filter with two orders is not applicable to high-speed environments can be obtained. Then, the
relationship between Wiener filter with two orders and Wiener filter with three orders is also
analyzed mathematically, based on which the relationships among Wiener filter with differ-
ent orders can be easily obtained. According to the analysis, a pilot symbol design criterion
applicable to high-speed environments is also proposed in this section. Finally, a simplified
Wiener filter technique is proposed based on the signal correlation and the properties of
Bessel function.

For the sake of simplicity, the LS channel estimation method is employed to obtain the
channel estimate at pilot symbols in the following derivations. Notice that since there is only
a coefficient difference between the LS and MMSE channel estimation method for Wiener
filter [15], the proposed method in this paper is not restricted to the LS channel estimation
method at pilot symbols but can be easily extended to include the MMSE channel estimation
method at pilot symbols.
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3.1 The Relationship Between Wiener Filter with Two Orders and Linear
Interpolation Method

Let M = 2 in (2) and after some manipulations the coefficients of Wiener filter with two
orders are given by

w2D,0 = 1

|A1|
[

E{Hp H∗
p1

} (
1 + σ 2) − E{Hp H∗

p2
}E{Hp2 H∗

p1
}
]
, (3)

w2D,1 = 1

|A1|
[

E{Hp H∗
p2

} (
1 + σ 2) − E{Hp H∗

p1
}E{Hp2 H∗

p1
}
]
, (4)

where |A1| is the corresponding determinant of Wiener filter with two orders. For the sake
of notational simplicity, the subcarrier index k is omitted in (3), (4) and will be omitted in
the following derivations. Substituting (3) and (4) into (1), the channel estimation result of
Wiener filter with two orders can be expressed as

Ĥ2D = w2D,0 Ĥp1 + w2D,1 Ĥp2 . (5)

The expression for linear interpolation method to estimate the channel at data symbol p is
given by

Ĥlinear = p2 − p

p2 − p1
Ĥp1 + p − p1

p2 − p1
Ĥp2 . (6)

Referring to [7], for 2-D isotropic scattering, E{Hi H∗
j } = J0(2π(i − j) fDT ) in (3) and

(4), which represents the correlation function at the time dimension for the i th and the j th
symbols, fDT is the normalized Doppler frequency, Jv(z) is the vth order Bessel function
of the first kind and is defined as

Jv(z) =
( z

2

)v
∞∑

l=0

(
− z2

4

)l

l!�(v + l + 1)
. (7)

Let v = 0 and z = 2π(i − j) fDT in (7), then E{Hi H∗
j } can be expressed as

J0(2π(i − j) fDT ) =
∞∑

l=0

(−π2 f 2
DT 2(i − j)2

)l

l!�(l + 1)
. (8)

Substituting (8) into (3) and (4), then substituting the resulting (3) and (4) into (5), the rela-
tionship between (8) and (5) can be established. To establish the relationship between Ĥ2D

and Ĥlinear, (6) is substituted into (5), letting σ 2 ≈ 0 and finally the relationship between
Ĥ2D and Ĥlinear can be obtained as

Ĥ2D = Ĥlinear +
(
π2 f 2

DT 2
)
(p − p2)(p − p1)(−2 + π2 f 2

DT 2(p1 − p2)2
)

(
Ĥp1 + Ĥp2

)
+ o

((
π2 f 2

DT 2)2
)

. (9)

It is observed from (9) that since
(
π2 f 2

DT 2
)

is a small number, the terms that include(
π2 f 2

DT 2
)

on the right-hand side of Eq. (9) is very small compared with Ĥlinear. There-
fore, Wiener filter with two orders is approximately equal to linear interpolation method
when σ 2 ≈ 0. Then a conclusion can be made that the main difference between the two is
that when σ 2 �= 0, Wiener filter with two orders has the effect of filtering the noise, whereas
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Fig. 1 The relative position of pilot and data symbols at the time dimension

linear interpolation method do not have. At the same time it is clear that in high-speed envi-
ronments when the wireless channel changes dramatically and nonlinearly, Wiener filter with
two orders and linear interpolation method both lose their efficiency in this situation, in which
case Wiener filter with order higher than two is needed to estimate the nonlinear variation of
the wireless channel.

3.2 The Relationships Among Wiener Filter with Different Orders

In this part, the interconversion condition between Wiener filter with two and three orders is
analyzed, based on which a pilot symbol design criterion applicable to high-speed environ-
ments will be proposed.

Let qi− j = −π2 f 2
DT 2(i − j)2 in (8) and define a function F(qi− j ) as

F(qi− j ) =
∞∑

l=0

(qi− j )
l

l!�(l + 1)
, (10)

where qp−pi = −π2 f 2
DT 2 (p − pi )

2 and qpi −p j = −π2 f 2
DT 2

(
pi − p j

)2
, i, j = 1, 2, 3.

Then substituting (10) into (2) and letting M = 3, after some manipulations the coefficients
of Wiener filter with three orders can be obtained as

w3D,0 = 1

|A2|
[

F(qp−p1)(1+σ 2)2−F(qp−p1)F(qp2−p3)F(qp3−p2 )−(F(qp−p2 )F(qp2−p1)

+ F(qp−p3 )F(qp3−p1))(1 + σ 2) + F(qp−p2 )F(qp2−p3)F(qp3−p1) (11)

+ F(qp−p3 )F(qp2−p1 )F(qp3−p2 )
]
,

and through similar procedure, w3D,1 and w3D,2 can be expressed by F(qi− j ) as

w3D,1 = 1

|A2|
[

F(qp−p2 )(1+σ 2)2+F(qp−p1)F(qp3−p1)F(qp3−p2 )−(F(qp−p1)F(qp2−p1)

+F(qp−p3)F(qp3−p2 ))(1 + σ 2) − F(qp−p2 )F(qp3−p1)F(qp3−p1)

+F(qp−p3)F(qp2−p1)F(qp3−p1)
]
, (12)

w3D,2 = 1

|A2|
[

F(qp−p3)(1 + σ 2)2 + F(qp−p1 )F(qp2−p1)F(qp3−p2 )

− (
F(qp−p1 )F(qp1−p3) + F(qp−p2 )F(qp2−p3)

)
(1 + σ 2)

+F(qp−p2 )F(qp3−p1)F(qp2−p1) − F(qp−p3 )F(qp2−p1)F(qp2−p1)
]
, (13)

where |A2| is the corresponding determinant of Wiener filter with three orders.
Figure 1 illustrates the relative position of three pilot symbols p1, p2, p3 and one data

symbol p at the time dimension. From Fig. 1 it is observed that since p3 is nearest to p2,
the correlation between p3 and p2 is critical to the performance of Wiener filter with three
orders.
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From the above analysis, the relationship between Wiener filter with two and three orders
can be obtained. The relationship between the determinants can be obtained as

|A2| = |A1| (1 + σ 2) + 2F
(
qp3−p1

)
F

(
qp3−p2

)
F

(
qp2−p1

) − (F2 (
qp3−p1

)

+ F2 (
qp3−p2

)
)
(
1 + σ 2) . (14)

The relationship between the first coefficients can be obtained as

w3D,0 = 1

|A2|
[|A1| × w2D,0 + F

(
qp−p1

) (
σ 2 + σ 4) − (

F
(
qp−p2

)
F

(
qp2−p1

)

+F
(
qp−p3

)
F

(
qp3−p1

))
σ 2 − F

(
qp−p3

)
F

(
qp3−p1

) − F
(
qp−p1

)
F2 (

qp3−p2

)

+F
(
qp−p2

)
F

(
qp3−p2

)
F

(
qp3−p1

) + F
(
qp−p3

)
F

(
qp2−p1

)
F

(
qp3−p2

)]
, (15)

and the relationship between the second coefficients can be obtained as

w3D,1 = 1

|A2|
[|A1| × w2D,1 + F

(
qp−p2

)
(σ 2 + σ 4) − (

F
(
qp−p1

)
F

(
qp2−p1

)

+F
(
qp−p3

)
F

(
qp3−p2

))
σ 2 − F

(
qp−p3

)
F

(
qp3−p2

) − F
(
qp−p2

)
F2 (

qp3−p1

)

+F
(
qp−p1

)
F

(
qp3−p1

)
F

(
qp3−p2

) + F
(
qp−p3

)
F

(
qp2−p1

)
F

(
qp3−p1

)]
, (16)

From (13)–(16) it is observed that since σ 2 and σ 4 are very small, function F , defined in (10),
with variable p3 in (13)–(16) will become very small and close to zero with the increase of
p3. Therefore, Wiener filter with three orders will degrade into two orders in this situation.

Now our conclusion obtained in the last paragraph will be validated through simulation.
Figure 2 illustrates the relationship between w3D,i and w2D,i , i = 0, 1, 2 when the normalize
Doppler frequency is 0.0532 (corresponding to 350 km/h in LTE). The vertical axis represents
the interpolation value and the horizontal axis is the position of p3 at the time dimension.
In the simulation we let p1 = 0, p2 = 5, p = 1 in Fig. 1 and make p3 changing from p2 + 1
to 35. From Fig. 2 it is observed that when p3 moves at some specific point, w3D,0 and w2D,0,
w3D,1 and w2D,1, w3D,2 and 0 will converge. Also note that as p3 increases, w3D,0 and w3D,1

will take small oscillation around w2D,0 and w2D,1, respectively, and w3D,2 will oscillate
around 0. Figure 2 corroborates that under certain conditions, Wiener filter with three orders
will degrade into Wiener filter with two orders. We are now in a position to investigate the
factors that determine these positions of convergences.

Figure 3 illustrates the change regularity for the coefficients of Wiener filter when p1 = 0,
p2 = 5 are fixed in Fig. 1 and moving p from 1 to 4. The solid and dotted line represent the
coefficients of Wiener filter with three and two orders, respectively. From Fig. 3 a conclusion
can be made that the convergences (dashed circles in Fig. 3) are not related to the relative
position of p, p1 and p2, but are determined by the relative position of p2 and p3.

Then the normalized Doppler frequency is changed and continuing the simulation process.
Notice that for fix wireless systems, different normalized Doppler frequencies represent dif-
ferent velocities. Figure 4 represents another change regularity for the coefficients of Wiener
filter at 600, 350 and 120 km/h when p1 = 0, p2 = 5 and p = 1 are fixed in Fig. 1. From
Fig. 4 it is observed that not only the relative position of p3 and p2 affects the positions of
convergences, but also the normalized Doppler frequency does. The convergences (dashed
circles in Fig. 4) move to the right when velocity decreases.
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Fig. 2 The relationship between w3D,i and w2D,i , i = 0, 1, 2

Fig. 3 The change regularity of
w3D,0 and w2D,0 when p
changes
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3.3 A Proposed Pilot Symbol Design Criterion

According to the analysis in Sect. 3.2, a final conclusion can be made that the relationship
between Wiener filter with three orders and two orders are determined by the following two
factors:

(1) The relative position of pilot symbols (i.e., p3 and p2).
(2) The normalize Doppler frequency fDT .

Integrating these two factors and defining �p be the distance between p3 and p2, a conclusion
can be drawn as follows:
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Fig. 4 The change regularity of w3D,0 and w2D,0 when fD T changes

1. If fDT �p ≥ 0.45, then w3D,0 will be approximately equal to w2D,0. As �p increases,
w3D,0 will take small oscillation around w2D,0. The reason for the oscillation is that
Bessel function oscillates itself.

2. If fDT �p ≥ 0.35, then w3D,1 will be approximately equal to w2D,1. As �p increases,
w3D,1 will take small oscillation around w2D,1.

3. If fDT �p ≥ 0.55, then w3D,2 will be approximately equal to 0. As �p increases, w3D,2

will take small oscillation around 0.

If we take the union of 1–3, the following result can be obtained that when fDT �p < 0.55,
the coefficients of Wiener filter with three and two orders will be not equal to each other. It
can be inferred from this result that when the users move at high speeds, Wiener filter with
two orders will lose its efficiency according to the analysis in Sect. 3.1. In this case, more pilot
symbols need to be selected to complete Wiener filter with order higher than two in order to
estimate the nonlinear variation of the wireless channel. The selection criterion for extra pilot
symbols should satisfy fDT �p < 0.55, otherwise there will be no performance improve-
ment even more pilot symbols are employed, as have been proved in Sects. 3.2 and 3.3. On
the other hand, the condition fDT �p < 0.55 can be for sure taken as a pilot symbol design
criterion that is applicable to channel estimation in high-speed environments. Apparently, it
is observed that if we follow the discussion of Sects. 3.2 and 3.3, the idea of Sects. 3.2 and
3.3 can be easily and directly extended to include the analysis of the conversion condition
for Wiener filter with any orders.

3.4 A Simplified Wiener Filter Technique

After selecting or designing extra pilot symbols according to the analysis in Sect. 3.2 and
the criterion proposed in Sect. 3.3, Wiener filter with three orders is ready to be completed.
However, directly using (2) when M = 3 is still too complex for implementation in practice.
In this part a simplified Wiener filter technique is proposed according to the signal correlation
and the properties of Bessel function. Notice that before simplification, F(qi− j ) in (10) is an
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Table 1 The proposed selection
criterion

qi− j l

−0.2 ≤ qi− j ≤ 0 l = 1

−0.7 ≤ qi− j < −0.2 l = 2

−1.5 ≤ qi− j < −0.7 l = 3

−2.5 ≤ qi− j < −1.5 l = 4

−4.2 ≤ qi− j < −2.5 l = 5

−6 ≤ qi− j < −4.2 l = 6

qi− j < −6 l ≥ 7

infinite sum formula in its original format. Therefore, a simplified Wiener filter technique by
selecting different l in F(qi− j ) according to different value of qi− j is proposed. The rela-
tionship between the proposed range of qi− j and l in F(qi− j ) is presented in Table 1. The
proposed selection criterion is based on the observation that F(qi− j ) after approximation is
error range of ±10−3 order of magnitude compared with F(qi− j ) in its original infinite sum
formula. The detailed analysis is presented in “Appendix A”.

The proposed simplified Wiener filter technique is in fact a general criterion that can
be adopted to achieve reduced complexity compared with the original Wiener filter with-
out simplification. Therefore, the approach followed to achieve simplification is detailed as
follows:

1. Define qi− j
�= −π2 f 2

DT 2 (i − j)2 in (8).
2. It is observed from (8) that qi− j determines the value of J0(2π(i − j) fDT ) and thus

directly affects the corresponding terms in the adopted Wiener filter, e.g., w3D,0, w3D,1

and w3D,2 in (11)–(13). According to the specific problem or system we are dealing with,
the value of qi− j can be obtained. Then, according to the proposed selection criterion in
Table 1, the corresponding value for l can be obtained.

3. Finally, substituting the selected value for l into (8) and then substituting the resulting (8)
into the adopted Wiener filter. Further the derivations and then the simplified closed-form
expression for the corresponding Wiener filter can be obtained.

After approximation according to Table 1, for a target wireless system p1, p2, p3 and p
are fixed, the simplified F(qi− j ) can be substituted directly into (11)–(13) and continuing
the derivation to obtain the final simplified Wiener filter expression for the target wireless
system. It can be observed that compared with using (2) when M = 3 without simplifica-
tion, the computational complexity can be significantly reduced according to our proposed
simplified technique and moreover, it can be proved that the estimation mean square error
(MSE) is also ±10−3 order of magnitude compared with the original Wiener filter without
approximation. The MSE derivation is detailed in “Appendix A”.

4 Simulation Results and Discussions

In this section, extensive computer simulation results are presented to demonstrate the pro-
posed theory, criterion and technique. LTE uplink system is chosen in our simulation [17].
Its subframe structure is given by [18] and is shown in Fig. 5. The simulation parameters are
listed in Table 2. Considering that our proposed algorithms possibly require more than two
pilot symbols at the time dimension, the sounding reference symbol defined in LTE uplink
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Table 2 Simulation parameters Modulation 16QAM, 64QAM

Velocity 120 km, 350 km/h

Channel model LTE-EVA

Transmission bandwidth 20 MHz

Carrier frequency 2.3 GHz

Transmit and receive
antenna numbers

One transmit antenna and
two receive antennas

one subframe

Data symbol Pilot
symbol

Sounding symbol 
of current subframe

Sounding symbol 
of previous subframe

one slot

1 2 3 4 5 6 7 8 9 10 11 12 130 14

t

f

Fig. 5 The subframe structure in LTE uplink system

system is also considered according to [18]. The sounding reference symbol is used by the
base station to evaluate the quality of wireless channels. It is known by the base station so that
the sounding reference symbol can be regarded as extra pilot symbols to aid interpolation
at the time dimension. Therefore, there are four pilot symbols in total, which consists of
symbols 0, 4, 11 and 14 as shown in Fig. 5. The LS channel estimation method is adopted to
obtain the channel estimate at pilot symbols in the simulation. The complete model for the
simulation is shown in Fig. 6 and more specifically, for practical consideration, the coherent
linear zero-forcing (ZF) equalization method is employed to mitigate the randomness of the
channel.

First, the theory that established in Sect. 3.1 is validated through Fig. 7 without turbo
coding. It is observed from Fig. 7 that the performance of Wiener filter with two orders is
just slightly better than that of linear interpolation method at 120 km/h, for the reason that
the wireless channel changes slowly and linearly in this situation. Figure 7 also shows that at
350 km/h, in which case the wireless channel changes nonlinearly and dramatically, Wiener
filter with two orders is not enough to interpolate channel at the time dimension for its bit
error rate (BER) is bigger than 0.1.

Next, the pilot symbol design criterion that proposed in Sect. 3.3 is validated through
Fig. 8 without turbo coding. In Fig. 8, pilot symbols 0, 11 and 14 are selected to interpolate
data symbols 12 and 13. Compared with only adopting pilot symbols 11 and 14 to interpolate
data symbols 12 and 13, it is observed that the performance of the two schemes are almost
the same because fDT �p = 0.58 > 0.55 in this situation. However, when pilot symbols 4,
11 and 14 are selected to interpolate data symbols 12 and 13, in which case fDT �p = 0.37,
there is about 2 dB signal-to-noise ratio (SNR) gain compared with the case where only
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Fig. 6 The complete model for the simulation, where CRC cyclic redundancy check; IDFT inverse discrete
Fourier transform; CP cyclic prefix; DFT discrete Fourier transform
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Fig. 7 Performance of BER: 64QAM, 120 and 350 km/h

pilot symbols 11 and 14 are adopted to interpolate data symbols 12 and 13. Furthermore,
when pilot symbols 4, 11 and 14 are selected to interpolate data symbol 8, more than 10 dB
SNR gain can be obtained compared with the case where only pilot symbols 4 and 11 are
adopted to interpolate data symbol 8, in which case fDT �p = 0.16. It is demonstrated that
as long as fDT �p < 0.55 is satisfied, Wiener filter with higher orders will significantly
improve the accuracy of channel estimation. However, when fDT �p > 0.55, Wiener fil-
ter with higher orders will have no or just trivial improvement than Wiener filter with low
orders.

Finally, according to the extra pilot symbol selection criterion proposed in Sect. 3.3,
data symbols 1–3, 5–7 are interpolated by pilot symbols 0, 4 and 11. Data symbols 8–10,
12–13 are interpolated by pilot symbols 4, 11and 14. Notice that there are 33 coefficients
of Wiener filter with three orders need to be estimated in total. The details of how to imple-
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Fig. 8 Performance of MSE: 16QAM, 350 km/h

Table 3 The computational complexity comparision

Method Number of multiplication
per subframe

Number of addition per
subframe

120 km/h 350 km/h 120 km/h 350 km/h
l = 2 l = 6 l = 2 l = 6

The proposed method 338 504 241 401

The original Wiener filter with three orders 858 1,386 429 693

ment the simplified Wiener filter technique proposed in Sect. 3.4 are shown in “Appen-
dix B”.

Comparing the simplified expression obtained in “Appendix B” with the original Wiener
filter without simplification shown in (2), it is observed that our proposed simplified Wiener
filter technique is much simpler than the original Wiener filter. The computational complexity
comparison is shown in Table 3. Through simple computation it is obvious to conclude that
when l = 6, 63.64 % number of multiplication per subframe and 42.41 % number of addition
per subframe can be saved. When l = 2, 60.61 % number of multiplication per subframe and
43.82 % number of addition per subframe can be saved. In total, the overall computational
complexity is significantly reduced through our proposed technique.

Figures 9, 10, 11, 12, 13 illustrate the performance of mean square error (MSE) and BER
with regard to SNR without turbo coding. Figures 9, 10 verify that when the users move at
120 km/h, the performance of Wiener filter with three orders is only slightly better than that
of Wiener filter with two orders. There is only about less than 0.5 dB SNR gain for the reason
that the wireless channel changes slowly and linearly when the users move at low speeds.
It is noted that the performance of our proposed simplified Wiener filter technique is almost
the same as that of the original Wiener filter without simplification.
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Fig. 9 Performance of MSE: 64QAM, 120 km/h
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Fig. 10 Performance of BER: 64QAM, 120 km/h

The wireless channel changes nonlinearly and drastically when the users move at 350 km/h.
Figures 11, 12, 13 prove our established theories in Sect. 3.1 again and show that in this sit-
uation, the performance of Wiener filter with three orders is much better than that of Wiener
filter with two orders since it can be observed that there are about 7.5 dB SNR gain at 16QAM
modulation and about 5 dB SNR gain at 64QAM modulation. Figures 11, 12, 13 again prove
that when the users move at high speeds, Wiener filter with order higher than two is needed to
estimate the wireless channel in order to ensure the system performance. It is noted that even
at 350 km/h, our proposed simplified Wiener filter technique is almost equal to the original
Wiener filter without simplification.
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Fig. 11 Performance of MSE: 16QAM, 350 km/h
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Fig. 12 Performance of BER: 16QAM, 350 km/h

Finally, the complete LTE uplink system with turbo coding is simulated in order to eval-
uate the performance of the proposed technique in practical systems which include coding.
Figure 14 illustrates the performance of block error rate (BLER) with regard to SNR. Usually,
for coded transmissions, BLER instead of BER is adopted to measure the performance. The
details of the block considered in the LTE system are shown in Table 4 [17,18].

It is observed that Fig. 14 demonstrates the advantage of Wiener filter with high orders
and the effectiveness of our proposed simplified technique once again.
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Table 4 The details of the block
considered

Resource blocks (RB) 50

Modulation scheme 16QAM

Rate of turbo 1/2

Transmission block size (TBS) 14,112
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5 Conclusion

In this paper, we have mainly focused on the Wiener filter channel interpolation method
that is implementable in practice. First, we analyzed the reason that Wiener filter with two
orders lose its efficiency in high-speed environments. Then, the relationships among Wiener
filter with different orders and their application scenarios were analyzed, based on which an
extra pilot symbols selection criterion to complete Wiener filter higher than two orders in
high-speed environments was investigated and a pilot symbol design criterion applicable to
channel estimation in high-speed environments has been proposed. In the end, a simplified
Wiener filter technique according to the signal correlation and the properties of Bessel func-
tion has been proposed. Extensive simulation results have demonstrated the effectiveness of
our proposed theories and pilot design criterion. The performance difference between our
proposed simplified Wiener filter technique and the original Wiener filter without simplifica-
tion is trivial whereas the computational complexity is significantly reduced. Our proposed
theories, criterion and technique have a potential value for practical implementation in the
upcoming high-speed mobile wireless communication systems and can be readily applied to
these systems.
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Appendix A: The Derivation of MSE of the Simplified Wiener Filter Technique

The MSE of channel estimation is given by

εp = E

{∣∣∣Hp − Ĥp

∣∣∣
2
}

= E
{

Hp H∗
p

}
− E

{
HpP̂H

}
CH

p − Cp E
{

P̂H∗
p

}
+ Cp E

{
P̂P̂

H
}

CH
p

. (17)

Let M = 3 in (2) and substituting the resulting Ĉp,wiener into (17), then MMSE can be
expressed as

ε3D,p = 1 −
(
w3D,0 E

{
Ĥp1 H∗

p

}
+ w3D,1 E

{
Ĥp2 H∗

p

}
+ w3D,2 E

{
Ĥp3 H∗

p

})
. (18)

According to Table 1 and substituting the approximated Bessel function, which is
expressed in (19), into (11)–(13) and continuing the derivation, it can be obtained that the
estimation error for the coefficients of Wiener filter is also � order of magnitude and the
result is given by (20), where � represents the approximation error in order of magnitude.

E{Hpi Ĥ∗
p j

}proposed = E{Hpi Ĥ∗
p j

}original ± �, (19)

(
w3D,i

)
proposed = (

w3D,i
)

original ± �, i = 1, 2, 3. (20)
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Finally, substituting (20) into (18) and after some manipulations the MMSE of our pro-
posed simplified Wiener filter technique can be expressed as

(
ε3D,p

)
proposed = (

ε3D,p
)

original ∓ �

(
2∑

i=0

w3D,i +
3∑

i=1

E
{

Ĥpi H∗
p

}
± 3 × �2

)
. (21)

It is observed that if � > 10−3, the accuracy of the approximation is not enough to guar-
antee the accuracy of channel estimation. If � < 10−3, more l in F(qi− j ) must be selected
to guarantee the accuracy of the approximation, in which case the computational complexity
will be increased. Only when � = 10−3, a compromise can be made between the accuracy
of the approximation and the computational complexity, and at the same time guarantees the
accuracy of channel estimation.

Appendix B: Details of the Simplified Wiener Filter Technique in the Simulation

In the considered LTE system, when velocity is 350 km/h, fD = 745.3704 Hz when velocity
is 120 km/h, fD = 255.5556 Hz. The symbol period T = 7.1354 × 10−5s. Substituting the
above fD , T and (i − j) into qi− j , we can obtain

qi− j =
{−5.4719, when velocity is 350 km/h

−0.6404, when velocity is 120 km/h
. (22)

According to the proposed selection criterion in Table 1, l is thus obtained as

l =
{

6, when velocity is 350 km/h
2, when velocity is 120 km/h

. (23)

Substituting (23) into (8) and then substituting the resulting (8) into (11)–(13), after a few
tedious, but otherwise straightforward, algebraic manipulations, the simplified closed-form
expression for Wiener filter can be obtained as follows

(a) When velocity is 350 km/h,

(a.1) The simplified expressions for the coefficients of symbols 1–3, 5–7 are obtained as
follows,

• The corresponding determinant of Wiener filter with three orders is expressed as

|A| = (−372q−25947q2−1.0518e6q3−2.6759e7q4−4.5887e8q5−5.6187e9q6

− 5.1370e10q7−3.6035e11q8−1.9371e12q9−7.7513e12q10)(σ 2)

− 9.4864e4q3−4.9013e6q4−1.1965e8q5−1.1840q6−1.9154e10q7

− 1.4876e11q8−8.4880e11q9 (24)

• The simplified expressions for the coefficients of symbol 1 w13D, j , j = 0, 1, 2 are
expressed as

w13D,0 = 1

|A| [(−244q−1.8488e4q2−7.4655e5q3−1.7981e7q4−2.8542e8q5

− 3.2049e9q6−2.6765e10q7)(σ 2)−6.468e4q3−3.0939e6q4−6.9851e7q5

− 9.7687e8q6−9.4905e9q7−6.7585e10q8], (25)
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w13D,1 = 1

|A| [(−148q−8040q2−2.1371e5q3−3.3724e6q4−3.5066e7q5

− 2.5795e8q6)(σ 2)−3.388e4q3−1.9368e6q4−5.2686e7q5−8.9397e8q6

− 1.0626e10q7−9.3602e10q8−6.0826e11q9], (26)

w13D,2 = 1

|A| [(20q+157q2−7.0278e3q3−1.2764e5q4−9.8546e5q5−4.5708e6q6

− 7.3947e6q7)(σ 2)+3.696e3q3+1.2936e5q4+1.935e6q5+1.7256e7q6

+ 1.0597e8q7]. (27)

• The simplified expressions for the coefficients of symbol 2 w23D, j , j = 0, 1, 2 are
expressed as

w23D,0 = 1

|A| [(−214q−1.5226e4q2−5.5935e5q3−1.2224e7q4−1.7598e8q5

− 1.7922e9q6−1.3568e10q7)σ 2−3.8808e4q3−1.7334e6q4−3.6444e7q5

− 4.7292e8q6−4.2477e9q7−2.7756e10q8], (28)

w23D,1 = 1

|A| [(−142q−6.3335e3q2−1.4745e5q3−2.0582e6q4−1.8957e7q5

− 1.2354e8q6)σ 2−6.0984e4q3−3.3338e6q4−8.6434e7q5−1.3929e9q6

− 1.5660e10q7−1.2996e11q8−7.9491e11q9], (29)

w23D,2 = 1

|A| [(−16q−1668q2−4.0679e4q3−4.5995e5q4−3.0827e6q5

− 1.3898e7q6−3.2309e7q7)σ 2+4928q3+1.6591e5q4+2.3710e6q5

+ 2.0020e7q6+1.5818e8q7]. (30)

• The simplified expressions for the coefficients of symbol 3 w33D, j , j = 0, 1, 2 are
expressed as

w33D,0 = 1

|A| [(−184q−12468q2−4.1479e5q3−8.1801e6q4−1.0626e8q5

− 9.7652e8q6−6.6641e9q7)σ 2−1.7248e4q3−7.2729e5q4−1.4384e7q5

− 1.75e8q6−1.4685e9q7−8.8663e9q8], (31)

w33D,1 = 1

|A| [(−136q−4988q2−1.0018e5q3−1.2225e6q4−9.8842e6q5

− 5.6604e7q6)σ 2−8.1312e4q3−4.2960e6q4−1.0736e8q5−1.6644e9q6

− 1.7956e10q7−1.4250e11q8−8.3097e11q9], (32)

w33D,2 = 1

|A| [(−52q−3371q2−7.3940e4q3−8.4680e5q4−6.1039e6q5

− 3.0623e7q6−9.9105e7q7)σ 2+3.6960e3q3+1.2197e5q4+1.7095e6q5

+ 1.4105e7q6+7.8726e7q7]. (33)
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• The simplified expressions for the coefficients of symbol 5 w53D, j , j = 0, 1, 2 are
expressed as

w53D,0 = 1

|A| [(−124q−8108q2−2.2079e5q3−3.4883e6q4−3.6242e7q5

− 2.6644e8q6−1.4432e9q7)σ 2+1.2936e4q3+5.0666e5q4+9.2734e6q5

+ 1.0459e8q6+8.1586e8q7+4.4937e9q8], (34)

w53D,1 = 1

|A| [(−124q−3308q2−4.6697e4q3−4.0914e5q4−2.4238e6q5

− 1.0295e7q6)σ 2−1.0164e5q3−5.2006e6q4−1.2588e8q5−1.9014e9q6

− 2.0111e10q7−1.5725e11q8−9.09e11q9], (35)

w53D,2 = 1

|A| [(−124q−6843q2−1.6135e5q3−2.2351e6q4−2.0487e7q5

− 1.3320e8q6−6.3026e8q7)σ 2−6160q3−2.0739e5q4−3.0419e6q5

− 2.6628e7q6−1.5877e8q7]. (36)

• The simplified expressions for the coefficients of symbol 6 w63D, j , j = 0, 1, 2 are
expressed as

w63D,0 = 1

|A| [(−94q−6.3255e3q2−1.5790e5q3−2.2225e6q4−2.0458e7q5

− 1.3315e8q6−6.3023e8q7)σ 2+2.1560e4q3+8.3365e5q4+1.5101e7q5

+ 1.6996e8q6+1.3362e9q7+7.4272e9q8], (37)

w63D,1 = 1

|A| [(−118q−2.9375e3q2−3.5259e4q3−2.5604e5q4−1.2497e6q5

− 4.3851e6q6)σ 2−1.0164e5q3−5.2175e6q4−1.2718e8q5−1.9505e9q6

− 2.1144e10q7−1.7102e11q8−1.0343e12q9], (38)

w63D,2 = 1

|A| [(−160q−8828q2−2.2648e5q3−3.5136e6q4−3.6316e7q5

− 2.6659e8q6−1.4434e9q7)σ 2−1.4784e4q3−5.1744e5q4−8.5026e6q5

− 7.5739e7q6−4.8948e8q7]. (39)

• The simplified expressions for the coefficients of symbol 7 w73D, j , j = 0, 1, 2 are
expressed as

w73D,0 = 1

|A| [(−64q−4688q2−1.1013e5q3−1.3904e6q4−1.1301e7q5

− 6.4668e7q6−2.6036e8q7)σ 2+2.5872e4q3+1.0047e6q4+1.8388e7q5

+ 2.1174e8q6+1.7279e9q7+1.0051e10q8], (40)
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w73D,1 = 1

|A| [(−112q−2856q2−3.2203e4q3−2.1278e5q4−9.2568e5q5

− 2.8496e6q6)σ 2−9.4864e4q3−4.9487e6q4−1.2329e8q5−1.9533e9q6

− 2.2115e10q7−1.8881e11q8−1.2191e12q9], (41)

w73D,2 = 1

|A| [(−196q−11123q2−3.1392e5q3−5.4383e6q4−6.2956e7q5

− 5.1803e8q6−3.1624e9q7)σ 2−2.5872e4q3−9.5726e5q4−1.6076e7q5

− 1.6507e8q6−1.1731e9q7]. (42)

(a.2) The simplified expressions for the coefficients of symbols 8–10, 12–13 are obtained
as follows,

• The corresponding determinant of Wiener filter with three orders is expressed as

|A| = (−316q−18723q2−6.2132e5q3−1.2854e7q4−1.7994e8q5−1.8071e9q6

− 1.3595e10q7−7.8627e10q8−3.4886e11q9)(σ 2)−4.41e4q3−1.9355e6q4

− 4.0137e7q5−5.1459e8q6−4.5729e9q7−2.9775e10q8−1.4176e11q9 (43)

• The simplified expressions for the coefficients of symbol 8 w83D, j , j = 0, 1, 2 are
expressed as

w83D,0 = 1

|A| [(−162q−7.3575e3q2−1.6092e5q3−2.1685e6q4−1.9669e7q5)σ 2

− 1.1340e4q3−3.4398e5q4−4.6690e6q5−3.8436e7q6−2.1792e8q7],
(44)

w83D,1 = 1

|A| [(−92q−2.076e3q2−2.1043e4q3−1.2826e5q4−5.2650e5q5)σ 2

− 5.04e4q3−2.1952e6q4−4.5748e7q5−6.0778e8q6−5.7851e9q7

− 4.1621e10q8−2.2691e11q9], (45)

w83D,2 = 1

|A| [(−62q−3.6375e3q2−7.2105e4q3−7.8451e5q4−5.5385e6q5

− 2.7596e7q6−9.8408e7q7)σ 2+1.764e4q3+6.0368e5q4+9.8391e6q5

+ 1.0149e8q6+7.4479e8q7+3.9855e9q8]. (46)

• The simplified expressions for the coefficients of symbol 9 w93D, j , j = 0, 1, 2 are
expressed as

w93D,0 = 1

|A| [(−128q−5644q2−1.1134e5q3−1.3270e6q4−1.0601e7q5)σ 2

− 6.3e3q3−1.8025e5q4−2.2431e6q5−1.6668e7q6−8.4542e7q7],(47)

w93D,1 = 1

|A| [(−100q−2375q2−2.8728e4q3−2.1571e5q4−1.0939e6q5)σ 2

− 5.25e4q3−2.2575e6q4−4.6127e7q5−5.9268e8q6−5.3795e9q7

− 3.6436e10q8−1.8447e11q9], (48)
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w93D,2 = 1

|A| [(−88q−4.904e3q2−1.0561e5q3−1.3015e6q4−1.0527e7q5

− 6.0236e7q6−2.5266e8q7)σ 2+1.47e4q3+5.0225e5q4+8.1106e6q5

+ 8.1626e7q6+5.7478e8q7+2.9165e9q8]. (49)

• The simplified expressions for the coefficients of symbol 10 w103D, j , j = 0, 1, 2 are
expressed as

w103D,0 = 1

|A| [(−94q−4.1655e3q2−7.5580e4q3−7.9714e5q4−5.5680e6q5)σ 2

− 2.52e3q3−6.944e4q4−8.0960e5q5−5.5376e6q6−2.5547e7q7],
(50)

w103D,1 = 1

|A| [(−108q−2.916e3q2−4.3083e4q3−3.9133e5q4−2.3686e6q5)σ 2

− 5.04e4q3−2.1728e6q4−4.4320e7q5−5.6239e8q6−4.9812e9q7

− 3.2540e10q8−1.5670e11q9], (51)

w103D,2 = 1

|A| [(−114q−6.3255e3q2−1.5128e5q3−2.1159e6q4−1.9480e7q5

− 1.2689e8q6−6.1136e8q7)σ 2+8.82e3q3+3.0674e5q4+5.0221e6q5

+ 5.0717e7q6+3.5411e8q7+1.7712e9q8]. (52)

• The simplified expressions for the coefficients of symbol 12 w123D, j , j = 0, 1, 2 are
expressed as

w123D,0 = 1

|A| [(−26q−1.5055e3q2−2.7497e4q3−2.5007e5q4−1.3858e6q5)σ 2

+ 1.26e3q3+3.4580e4q4+3.8945e5q5+2.5248e6q6+1.0917e7q7],
(53)

w123D,1 = 1

|A| [(−124q−4.82e3q2−9.9281e4q3−1.2199e6q4−9.8795e6q5)σ 2

− 3.36e4q3−1.5232e6q4−3.2662e7q5−4.3234e8q6−3.9608e9q7

− 2.6571e10q8−1.3018e11q9], (54)

w123D,2 = 1

|A| [(−166q−9.9455e3q2−2.975e5q3−5.2684e6q4−6.1442e7q5

− 5.0683e8q6−3.1075e9q7)σ 2−1.176e4q3−4.4688e5q4−8.0016e6q5

− 8.8051e7q6−6.6717e8q7−3.6602e9q8]. (55)

• The simplified expressions for the coefficients of symbol 13 w133D, j , j = 0, 1, 2 are
expressed as

w133D,0 = 1

|A| [(8q−120q2−6.6451e3q3−7.8118e4q4−4.6460e5q5)σ 2

+ 1.26e3q3+3.577e4q4+4.1772e5q5+2.8229e6q6+1.2824e7q7],
(56)
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w133D,1 = 1

|A| [(−132q−6.231e3q2−1.4706e5q3−2.0574e6q4−1.8956e7q5)σ 2

− 1.89e4q3−8.967e5q4−2.0174e7q5−2.8068e8q6−2.7090e9q7

− 1.9198e10q8−9.9403e10q9], (57)

w133D,2 = 1

|A| [(−192q−1.23e4q2−4.092e5q3−8.0754e6q4−1.0494e8q5

− 9.646e8q6−6.594e9q7)σ 2−2.646e4q3−1.0745e6q4−2.0602e7q5

− 2.4345e8q6−1.9874e9q7−1.1836e10q8]. (58)

(b) When velocity is 120 km/h,

(b.1) The simplified expressions for the coefficients of symbols 1–3, 5–7 are obtained as
follows,

• The corresponding determinant of Wiener filter with three orders is expressed as

|A| = 3σ 4+(−372q−25947q2−1.0518e6q3)(σ 2)−9.4864e4q3−4.9013e6q4.(59)

• The simplified expressions for the coefficients of symbol 1 w13D, j , j = 0, 1, 2 are
expressed as

w13D,0 = 1

|A| [(1+q+0.25q2)(σ 4)+(−244q−1.8488e4q2−7.4655e5q3)(σ 2)

− 6.468e4q3−3.0939e6q4], (60)

w13D,1 = 1

|A| [(1+9q+20.25q2)(σ 4)+(−148q−8040q2−2.1371e5q3)(σ 2)

− 3.388e4q3−1.9368e6q4], (61)

w13D,2 = 1

|A| [(1+100q+2500q2)(σ 4)+(20q+157q2−7.0278e3q3)(σ 2)

+ 3.696e3q3+1.2936e5q4]. (62)

• The simplified expressions for the coefficients of symbol 2 w23D, j , j = 0, 1, 2 are
expressed as

w23D,0 = 1

|A| [(1+4q+4q2)(σ 4)+(−214q−1.5226e4q2−5.5935e5q3)σ 2

− 3.8808e4q3−1.7334e6q4], (63)

w23D,1 = 1

|A| [(1+4q+4q2)(σ 4)+(−142q−6.3335e3q2−1.4745e5q3)σ 2

− 6.0984e4q3−3.3338e6q4], (64)

w23D,2 = 1

|A| [(1+81q+1.6403e3q2)(σ 4)+(−16q−1668q2−4.0679e4q3)σ 2

+ 4928q3+1.6591e5q4]. (65)
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• The simplified expressions for the coefficients of symbol 3 w33D, j , j = 0, 1, 2 are
expressed as

w33D,0 = 1

|A| [(1+9q+20.25q2)(σ 4)+(−184q−12468q2−4.1479e5q3)σ 2

− 1.7248e4q3−7.2729e5q4], (66)

w33D,1 = 1

|A| [(1+q+0.25q2)(σ 4)+(−136q−4988q2−1.0018e5q3)σ 2

− 8.1312e4q3−4.2960e6q4], (67)

w33D,2 = 1

|A| [(1+64q+1.024e3q2)(σ 4)+(−52q−3371q2−7.3940e4q3)σ 2

+ 3.6960e3q3+1.2197e5q4]. (68)

• The simplified expressions for the coefficients of symbol 5 w53D, j , j = 0, 1, 2 are
expressed as

w53D,0 = 1

|A| [(1+25q+156.25q2)(σ 4)+(−124q−8108q2−2.2079e5q3)σ 2

+ 1.2936e4q3+5.0666e5q4], (69)

w53D,1 = 1

|A| [(1+q+0.25q2)(σ 4)+(−124q−3308q2−4.6697e4q3)σ 2

− 1.0164e5q3−5.2006e6q4], (70)

w53D,2 = 1

|A| [(1+36q+324q2)(σ 4)+(−124q−6843q2−1.6135e5q3)σ 2

− 6160q3−2.0739e5q4]. (71)

• The simplified expressions for the coefficients of symbol 6 w63D, j , j = 0, 1, 2 are
expressed as

w63D,0 = 1

|A| [(1+36q+324q2)(σ 4)+(−94q−6.3255e3q2−1.5790e5q3)σ 2

+ 2.1560e4q3+8.3365e5q4], (72)

w63D,1 = 1

|A| [(1+4q+4q2)(σ 4)+(−118q−2.9375e3q2−3.5259e4q3)σ 2

− 1.0164e5q3−5.2175e6q4], (73)

w63D,2 = 1

|A| [(1+25q+156.25q2)(σ 4)+(−160q−8828q2−2.2648e5q3)σ 2

− 1.4784e4q3−5.1744e5q4]. (74)

• The simplified expressions for the coefficients of symbol 7 w73D, j , j = 0, 1, 2 are
expressed as

w73D,0 = 1

|A| [(1+49q+600.25q2)(σ 4)+(−64q−4688q2−1.1013e5q3)σ 2

+ 2.5872e4q3+1.0047e6q4], (75)
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w73D,1 = 1

|A| [(1+9q+20.25q2)(σ 4)+(−112q−2856q2−3.2203e4q3)σ 2

− 9.4864e4q3−4.9487e6q4], (76)

w73D,2 = 1

|A| [(1+16q+64q2)(σ 4)+(−196q−11123q2−3.1392e5q3)σ 2

− 2.5872e4q3−9.5726e5q4]. (77)

(b.2) The simplified expressions for the coefficients of symbols 8--10, 12--13 are obtained
as follows,

• The corresponding determinant of Wiener filter with three orders is expressed as

|A| = 3σ 4+(−316q−18723q2−6.2132e5q3)(σ 2)−4.41e4q3−1.9355e6q4. (78)

• The simplified expressions for the coefficients of symbol 8 w83D, j , j = 0, 1, 2 are
expressed as

w83D,0 = 1

|A| [(1+16q+64q2)(σ 4)+(−162q−7.3575e3q2−1.6092e5q3)σ 2

− 1.1340e4q3−3.4398e5q4], (79)

w83D,1 = 1

|A| [(1+9q+20.25q2)(σ 4)+(−92q−2.076e3q2−2.1043e4q3)σ 2

− 5.04e4q3−2.1952e6q4], (80)

w83D,2 = 1

|A| [(1+36q+324q2)(σ 4)+(−62q−3.6375e3q2−7.2105e4q3)σ 2

+ 1.764e4q3+6.0368e5q4]. (81)

• The simplified expressions for the coefficients of symbol 9 w93D, j , j = 0, 1, 2 are
expressed as

w93D,0 = 1

|A| [(1+25q+156.25q2)(σ 4)+(−128q−5644q2−1.1134e5q3)σ 2

− 6.3e3q3−1.8025e5q4], (82)

w93D,1 = 1

|A| [(1+4q+4q2)(σ 4)+(−100q−2375q2−2.8728e4q3)σ 2

− 5.25e4q3−2.2575e6q4], (83)

w93D,2 = 1

|A| [(1+25q+156.25q2)(σ 4)+(−88q−4.904e3q2−1.0561e5q3)σ 2

+ 1.47e4q3+5.0225e5q4]. (84)

• The simplified expressions for the coefficients of symbol 10 w103D, j , j = 0, 1, 2 are
expressed as

w103D,0 = 1

|A| [(1+36q+324q2)(σ 4)+(−94q−41655e3q2−7.5580e4q3)σ 2

− 2.52e3q3−6.944e4q4], (85)
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w103D,1 = 1

|A| [(1+q+0.25q2)(σ 4)+(−108q−2.916e3q2−4.3083e4q3)σ 2

− 5.04e4q3−2.1728e6q4], (86)

w103D,2 = 1

|A| [(1+16q+64q2)(σ 4)+(−114q−6.3255e3q2−1.5128e5q3)σ 2

+ 8.82e3q3+3.0674e5q4]. (87)

• The simplified expressions for the coefficients of symbol 12 w123D, j , j = 0, 1, 2 are
expressed as

w123D,0 = 1

|A| [(1+64q+1.024e3q2)(σ 4)+(−26q−1.5055e3q2−2.7497e4q3)σ 2

+ 1.26e3q3+3.458e4q4], (88)

w123D,1 = 1

|A| [(1+q+0.25q2)(σ 4)+(−124q−4.82e3q2−9.9281e4q3)σ 2

− 3.36e4q3−1.5232e6q4], (89)

w123D,2 = 1

|A| [(1+4q+4q2)(σ 4)+(−166q−9.9455e3q2−2.975e5q3)σ 2

− 1.176e4q3−4.4688e5q4]. (90)

• The simplified expressions for the coefficients of symbol 13 w133D, j , j = 0, 1, 2 are
expressed as

w133D,0 = 1

|A| [(1+81q+1.6403e3q2)(σ 4)+(8q−120q2−6.6451e3q3)σ 2

+ 1.26e3q3+3.577e4q4], (91)

w133D,1 = 1

|A| [(1+4q+4q2)(σ 4)+(−132q−6.231e3q2−1.4706e5q3)σ 2

− 1.89e4q3−8.967e5q4], (92)

w133D,2 = 1

|A| [(1+q+0.25q2)(σ 4)+(−192q−1.23e4q2−4.092e5q3)σ 2

− 2.646e4q3−1.0745e6q4]. (93)

where wiM D,m, m = 0, 1, . . . , M − 1 represent the coefficients of Wiener filter for the i th
symbol, M D represents M pilot symbols are adopted to complete interpolation at the time

dimension and q
�= −π2 f 2

DT 2.
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